Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Alveolar Type 2 Epithelial Cells as Potential Therapeutics for Acute Lung Injury/Acute Respiratory Distress Syndrome

Author(s): Honglei Zhang, Yong Cui, Zhiyu Zhou, Yan Ding and Hongguang Nie*

Volume 25, Issue 46, 2019

Page: [4877 - 4882] Pages: 6

DOI: 10.2174/1381612825666191204092456

Price: $65

Abstract

Acute lung injury/acute respiratory distress syndrome is a common clinical illness with high morbidity and mortality, which is still one of the medical problems urgently needed to be solved. Alveolar type 2 epithelial cells are an important component of lung epithelial cells and as a kind of stem cells, they can proliferate and differentiate into alveolar type 1 epithelial cells, thus contributing to lung epithelial repairment. In addition, they synthesize and secrete all components of the surfactant that regulates alveolar surface tension in the lungs. Moreover, alveolar type 2 epithelial cells play an active role in enhancing alveolar fluid clearance and reducing lung inflammation. In recent years, as more advanced approaches appear in the field of stem and progenitor cells in the lung, many preclinical studies have shown that the cell therapy of alveolar type 2 epithelial cells has great potential effects for acute lung injury/acute respiratory distress syndrome. We reviewed the recent progress on the mechanisms of alveolar type 2 epithelial cells involved in the damaged lung repairment, aiming to explore the possible therapeutic targets in acute lung injury/acute respiratory distress syndrome.

Keywords: Alveolar type 2 epithelial cells, acute lung injury, acute respiratory distress syndrome, surfactant, alveolar fluid clearance, surface-active proteins.

[1]
Mokra D, Kosutova P. Biomarkers in acute lung injury. Respir Physiol Neurobiol 2015; 209: 52-8.
[http://dx.doi.org/10.1016/j.resp.2014.10.006] [PMID: 25466727]
[2]
Reiss LK, Uhlig U, Uhlig S. Models and mechanisms of acute lung injury caused by direct insults. Eur J Cell Biol 2012; 91(6-7): 590-601.
[http://dx.doi.org/10.1016/j.ejcb.2011.11.004] [PMID: 22284832]
[3]
Bhargava M, Wendt CH. Biomarkers in acute lung injury. Transl Res 2012; 159(4): 205-17.
[http://dx.doi.org/10.1016/j.trsl.2012.01.007] [PMID: 22424425]
[4]
Zhai Y, Zhou X, Dai Q, Fan Y, Huang X. Hydrogen-rich saline ameliorates lung injury associated with cecal ligation and puncture-induced sepsis in rats. Exp Mol Pathol 2015; 98(2): 268-76.
[http://dx.doi.org/10.1016/j.yexmp.2015.03.005] [PMID: 25746665]
[5]
Wada T, Jesmin S, Gando S, et al. The role of angiogenic factors and their soluble receptors in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) associated with critical illness. J Inflamm (Lond) 2013; 10(1): 6.
[http://dx.doi.org/10.1186/1476-9255-10-6] [PMID: 23394254]
[6]
Lalu MM, Moher D, Marshall J, et al. Canadian critical care translational biology group. Efficacy and safety of mesenchymal stromal cells in preclinical models of acute lung injury: a systematic review protocol. Syst Rev 2014; 3: 48.
[http://dx.doi.org/10.1186/2046-4053-3-48] [PMID: 24887266]
[7]
Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA 2018; 319(7): 698-710.
[http://dx.doi.org/10.1001/jama.2017.21907] [PMID: 29466596]
[8]
Wansleeben C, Barkauskas CE, Rock JR, Hogan BL. Stem cells of the adult lung: their development and role in homeostasis, regeneration, and disease. Wiley Interdiscip Rev Dev Biol 2013; 2(1): 131-48.
[http://dx.doi.org/10.1002/wdev.58] [PMID: 23799633]
[9]
Kotton DN, Morrisey EE. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med 2014; 20(8): 822-32.
[http://dx.doi.org/10.1038/nm.3642] [PMID: 25100528]
[10]
Gonzalez RF, Dobbs LG. Isolation and culture of alveolar epithelial type I and type II cells from rat lungs. Methods Mol Biol 2013; 945: 145-59.
[http://dx.doi.org/10.1007/978-1-62703-125-7_10] [PMID: 23097106]
[11]
Hasegawa K, Sato A, Tanimura K, et al. Fraction of MHCII and EpCAM expression characterizes distal lung epithelial cells for alveolar type 2 cell isolation. Respir Res 2017; 18(1): 150.
[http://dx.doi.org/10.1186/s12931-017-0635-5] [PMID: 28784128]
[12]
Messier EM, Mason RJ, Kosmider B. Efficient and rapid isolation and purification of mouse alveolar type II epithelial cells. Exp Lung Res 2012; 38(7): 363-73.
[http://dx.doi.org/10.3109/01902148.2012.713077] [PMID: 22888851]
[13]
Kim C F B, Jackson EL, Woolfenden AE, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005; 121(6): 823-35.
[http://dx.doi.org/10.1016/j.cell.2005.03.032] [PMID: 15960971]
[14]
Zheng D, Limmon GV, Yin L, et al. A cellular pathway involved in Clara cell to alveolar type II cell differentiation after severe lung injury. PLoS One 2013; 8(8) e71028
[http://dx.doi.org/10.1371/journal.pone.0071028] [PMID: 23940685]
[15]
Zheng D, Limmon GV, Yin L, et al. Regeneration of alveolar type I and II cells from Scgb1a1-expressing cells following severe pulmonary damage induced by bleomycin and influenza. PLoS One 2012; 7(10) e48451
[http://dx.doi.org/10.1371/journal.pone.0048451] [PMID: 23119022]
[16]
Huang SX, Islam MN, O’Neill J, et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol 2014; 32(1): 84-91.
[http://dx.doi.org/10.1038/nbt.2754] [PMID: 24291815]
[17]
McCauley KB, Hawkins F, Serra M, Thomas DC, Jacob A, Kotton DN. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell 2017; 20(6): 844-57.e6.
[http://dx.doi.org/10.1016/j.stem.2017.03.001] [PMID: 28366587]
[18]
Schmeckebier S, Mauritz C, Katsirntaki K, et al. Keratinocyte growth factor and dexamethasone plus elevated cAMP levels synergistically support pluripotent stem cell differentiation into alveolar epithelial type II cells. Tissue Eng Part A 2013; 19(7-8): 938-51.
[http://dx.doi.org/10.1089/ten.tea.2012.0066] [PMID: 23176317]
[19]
Wang C, Hei F, Ju Z, Yu J, Yang S, Chen M. Differentiation of urine-derived human induced pluripotent stem cells to alveolar type II Epithelial Cells. Cell Reprogram 2016; 18(1): 30-6.
[http://dx.doi.org/10.1089/cell.2015.0015] [PMID: 26679635]
[20]
Tamò L, Hibaoui Y, Kallol S, et al. Generation of an alveolar epithelial type II cell line from induced pluripotent stem cells. Am J Physiol Lung Cell Mol Physiol 2018; 315(6): L921-32.
[http://dx.doi.org/10.1152/ajplung.00357.2017] [PMID: 30211653]
[21]
Zhou Q, Ye X, Sun R, et al. Differentiation of mouse induced pluripotent stem cells into alveolar epithelial cells in vitro for use in vivo. Stem Cells Transl Med 2014; 3(6): 675-85.
[http://dx.doi.org/10.5966/sctm.2013-0142] [PMID: 24763685]
[22]
Shafa M, Ionescu LI, Vadivel A, et al. Human induced pluripotent stem cell-derived lung progenitor and alveolar epithelial cells attenuate hyperoxia-induced lung injury. Cytotherapy 2018; 20(1): 108-25.
[http://dx.doi.org/10.1016/j.jcyt.2017.09.003] [PMID: 29056548]
[23]
Yang J, Jia Z. Cell-based therapy in lung regenerative medicine. Regen Med Res 2014; 2(1): 7.
[http://dx.doi.org/10.1186/2050-490X-2-7] [PMID: 25984335]
[24]
Guillamat-Prats R, Camprubí-Rimblas M, Bringué J, Tantinyà N, Artigas A. Cell therapy for the treatment of sepsis and acute respiratory distress syndrome. Ann Transl Med 2017; 5(22): 446.
[http://dx.doi.org/10.21037/atm.2017.08.28] [PMID: 29264363]
[25]
Wang D, Morales JE, Calame DG, Alcorn JL, Wetsel RA. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther 2010; 18(3): 625-34.
[http://dx.doi.org/10.1038/mt.2009.317] [PMID: 20087316]
[26]
Wang X, Zhang L, Sun B. Neonatal type II alveolar epithelial cell transplant facilitates lung reparation in piglets with acute lung injury and extracorporeal life support. Pediatr Crit Care Med 2016; 17(4): e182-92.
[http://dx.doi.org/10.1097/PCC.0000000000000667] [PMID: 26890195]
[27]
Guillamat-Prats R, Puig F, Herrero R, et al. Effect of the alveolar type II cells transplantation for the treatment of acute lung injury. Intensive Care Med Exp 2015; 3: 1-2.
[http://dx.doi.org/10.1186/2197-425X-3-S1-A803]
[28]
Guillamat-Prats R, Puig F, Camprubí-Rimblas M, et al. Intratracheal instillation of alveolar type II cells enhances recovery from acute lung injury in rats. J Heart Lung Transplant 2018; 37(6): 782-91.
[http://dx.doi.org/10.1016/j.healun.2017.10.025] [PMID: 29229270]
[29]
Guillamat-Prats R, Gay-Jordi G, Xaubet A, Peinado VI, Serrano-Mollar A. Alveolar type II cell transplantation restores pulmonary surfactant protein levels in lung fibrosis. J Heart Lung Transplant 2014; 33(7): 758-65.
[http://dx.doi.org/10.1016/j.healun.2014.03.008] [PMID: 25023067]
[30]
Serrano-Mollar A, Gay-Jordi G, Guillamat-Prats R, et al. Safety and tolerability of alveolar type II cell transplantation in idiopathic pulmonary fibrosis. Chest 2016; 150(3): 533-43.
[http://dx.doi.org/10.1016/j.chest.2016.03.021] [PMID: 27020420]
[31]
Ardhanareeswaran K, Mirotsou M. Lung stem and progenitor cells. Respiration 2013; 85(2): 89-95.
[http://dx.doi.org/10.1159/000346500] [PMID: 23406722]
[32]
Barkauskas CE, Cronce MJ, Rackley CR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 2013; 123(7): 3025-36.
[http://dx.doi.org/10.1172/JCI68782] [PMID: 23921127]
[33]
Leeman KT, Fillmore CM, Kim CF. Lung stem and progenitor cells in tissue homeostasis and disease. Curr Top Dev Biol 2014; 107: 207-33.
[http://dx.doi.org/10.1016/B978-0-12-416022-4.00008-1] [PMID: 24439808]
[34]
Weibel ER. On the tricks alveolar epithelial cells play to make a good lung. Am J Respir Crit Care Med 2015; 191(5): 504-13.
[http://dx.doi.org/10.1164/rccm.201409-1663OE] [PMID: 25723823]
[35]
Zeng L, Yang XT, Li HS, et al. The cellular kinetics of lung alveolar epithelial cells and its relationship with lung tissue repair after acute lung injury. Respir Res 2016; 17(1): 164.
[http://dx.doi.org/10.1186/s12931-016-0480-y] [PMID: 27923370]
[36]
Liu Y, Kumar VS, Zhang W, Rehman J, Malik AB. Activation of type II cells into regenerative stem cell antigen-1(+) cells during alveolar repair. Am J Respir Cell Mol Biol 2015; 53(1): 113-24.
[http://dx.doi.org/10.1165/rcmb.2013-0497OC] [PMID: 25474582]
[37]
Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 2014; 507(7491): 190-4.
[http://dx.doi.org/10.1038/nature12930] [PMID: 24499815]
[38]
Jansing NL, McClendon J, Henson PM, Tuder RM, Hyde DM, Zemans RL. Unbiased quantitation of alveolar type II to alveolar type I cell transdifferentiation during repair after lung injury in mice. Am J Respir Cell Mol Biol 2017; 57(5): 519-26.
[http://dx.doi.org/10.1165/rcmb.2017-0037MA] [PMID: 28586241]
[39]
Ghosh MC, Gorantla V, Makena PS, et al. Insulin-like growth factor-I stimulates differentiation of ATII cells to ATI-like cells through activation of Wnt5a. Am J Physiol Lung Cell Mol Physiol 2013; 305(3): L222-8.
[http://dx.doi.org/10.1152/ajplung.00014.2013] [PMID: 23709620]
[40]
Zhao L, Yee M, O’Reilly MA. Transdifferentiation of alveolar epithelial type II to type I cells is controlled by opposing TGF-β and BMP signaling. Am J Physiol Lung Cell Mol Physiol 2013; 305(6): L409-18.
[http://dx.doi.org/10.1152/ajplung.00032.2013] [PMID: 23831617]
[41]
Parra E, Pérez-Gil J. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem Phys Lipids 2015; 185: 153-75.
[http://dx.doi.org/10.1016/j.chemphyslip.2014.09.002] [PMID: 25260665]
[42]
Olmeda B, Martínez-Calle M, Pérez-Gil J. Pulmonary surfactant metabolism in the alveolar airspace: biogenesis, extracellular conversions, recycling. Ann Anat 2017; 209: 78-92.
[http://dx.doi.org/10.1016/j.aanat.2016.09.008] [PMID: 27773772]
[43]
Agassandian M, Mallampalli RK. Surfactant phospholipid metabolism. Biochim Biophys Acta 2013; 1831(3): 612-25.
[http://dx.doi.org/10.1016/j.bbalip.2012.09.010] [PMID: 23026158]
[44]
Guillot L, Nathan N, Tabary O, et al. Alveolar epithelial cells: master regulators of lung homeostasis. Int J Biochem Cell Biol 2013; 45(11): 2568-73.
[http://dx.doi.org/10.1016/j.biocel.2013.08.009] [PMID: 23988571]
[45]
Xiao B, Xu J, Wang G, et al. Troglitazone-activated PPARγ inhibits LPS-induced lung alveolar type II epithelial cells injuries via TNF-α. Mol Biol Rep 2011; 38(8): 5009-15.
[http://dx.doi.org/10.1007/s11033-010-0647-4] [PMID: 21153920]
[46]
Han S, Mallampalli RK. The role of surfactant in lung disease and host defense against pulmonary infections. Ann Am Thorac Soc 2015; 12(5): 765-74.
[http://dx.doi.org/10.1513/AnnalsATS.201411-507FR] [PMID: 25742123]
[47]
Wang WN, Zhou JH, Wang P, Zhang XJ. The localization of SP-B and influences of lipopolysaccharide on it. Eur Rev Med Pharmacol Sci 2016; 20(11): 2338-45.
[PMID: 27338059]
[48]
Sun H, Quan Y, Yan Q, et al. Isolation and characterization of alveolar epithelial type II cells derived from mouse embryonic stem cells. Tissue Eng Part C Methods 2014; 20(6): 464-72.
[http://dx.doi.org/10.1089/ten.tec.2013.0415] [PMID: 24102479]
[49]
Raghavendran K, Willson D, Notter RH. Surfactant therapy of ALI and ARDS. Crit Care Clin 2011; 27: 525-59.
[http://dx.doi.org/10.1016/j.ccc.2011.04.005] [PMID: 21742216]
[50]
Stegemann-Koniszewski S, Jeron A, Gereke M, et al. Alveolar type II epithelial cells contribute to the anti-influenza A virus response in the lung by integrating pathogen- and microenvironment-derived signals. MBio 2016; 7(3): e00276-16.
[http://dx.doi.org/10.1128/mBio.00276-16] [PMID: 27143386]
[51]
Chignalia AZ, Vogel SM, Reynolds AB, et al. p120-catenin expressed in alveolar type II cells is essential for the regulation of lung innate immune response. Am J Pathol 2015; 185(5): 1251-63.
[http://dx.doi.org/10.1016/j.ajpath.2015.01.022] [PMID: 25773174]
[52]
Hu G. p120-Catenin: a novel regulator of innate immunity and inflammation. Crit Rev Immunol 2012; 32(2): 127-38.
[http://dx.doi.org/10.1615/CritRevImmunol.v32.i2.20] [PMID: 23216611]
[53]
Lo B, Hansen S, Evans K, Heath JK, Wright JR. Alveolar epithelial type II cells induce T cell tolerance to specific antigen. J Immunol 2008; 180(2): 881-8.
[http://dx.doi.org/10.4049/jimmunol.180.2.881] [PMID: 18178827]
[54]
Wong MH, Johnson MD. Differential response of primary alveolar type I and type II cells to LPS stimulation. PLoS One 2013; 8(1)e55545
[http://dx.doi.org/10.1371/journal.pone.0055545] [PMID: 23383221]
[55]
Sinha M, Lowell CA. Immune defense protein expression in highly purified mouse lung epithelial cells. Am J Respir Cell Mol Biol 2016; 54(6): 802-13.
[http://dx.doi.org/10.1165/rcmb.2015-0171OC] [PMID: 26574781]
[56]
Vieira F, Kung JW, Bhatti F. Structure, genetics and function of the pulmonary associated surfactant proteins A and D: the extra-pulmonary role of these C type lectins. Ann Anat 2017; 211: 184-201.
[http://dx.doi.org/10.1016/j.aanat.2017.03.002] [PMID: 28351530]
[57]
Nathan N, Taytard J, Duquesnoy P, et al. Surfactant protein A: a key player in lung homeostasis. Int J Biochem Cell Biol 2016; 81(Pt A): 151-5. 2016.
[http://dx.doi.org/10.1016/j.biocel.2016.11.003]] [PMID: 27836807]
[58]
Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol 2015; 16(1): 27-35.
[http://dx.doi.org/10.1038/ni.3045] [PMID: 25521682]
[59]
Rana T, Jiang C, Liu G, et al. PAI-1 regulation of TGF-β1-induced ATII cell senescence, SASP secretion, and SASP-mediated activation of alveolar macrophages. Am J Respir Cell Mol Biol 2019.
[http://dx.doi.org/10.1165/rcmb.2019-0071OC] [PMID: 31513752]
[60]
Xu X, Luo S, Li B, Dai H, Zhang J. Feature article: IL-25 contributes to lung fibrosis by directly acting on alveolar epithelial cells and fibroblasts. Exp Biol Med (Maywood) 2019; 244(9): 770-80.
[http://dx.doi.org/10.1177/1535370219843827] [PMID: 30997832]
[61]
Nureki SI, Tomer Y, Venosa A, et al. Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis. J Clin Invest 2018; 128(9): 4008-24.
[http://dx.doi.org/10.1172/JCI99287] [PMID: 29920187]
[62]
Naikawadi RP, Disayabutr S, Mallavia B, et al. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis. JCI Insight 2016; 1(14) e86704
[http://dx.doi.org/10.1172/jci.insight.86704] [PMID: 27699234]
[63]
Lin EH, Chang HY, Yeh SD, Yang KY, Hu HS, Wu CW. Polyethyleneimine and DNA nanoparticles-based gene therapy for acute lung injury. Nanomedicine (Lond) 2013; 9(8): 1293-303.
[http://dx.doi.org/10.1016/j.nano.2013.05.004] [PMID: 23727098]
[64]
Zhang JL, Zhuo XJ, Lin J, et al. Maresin1 stimulates alveolar fluid clearance through the alveolar epithelial sodium channel Na,K-ATPase via the ALX/PI3K/Nedd4-2 pathway. Lab Invest 2017; 97(5): 543-54.
[http://dx.doi.org/10.1038/labinvest.2016.150] [PMID: 28218740]
[65]
Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest 2012; 122(8): 2731-40.
[http://dx.doi.org/10.1172/JCI60331] [PMID: 22850883]
[66]
Hollenhorst MI, Richter K, Fronius M. Ion transport by pulmonary epithelia. J Biomed Biotechnol 2011; 2011 174306
[http://dx.doi.org/10.1155/2011/174306] [PMID: 22131798]
[67]
Wang Q, Zheng X, Cheng Y, et al. Resolvin D1 stimulates alveolar fluid clearance through alveolar epithelial sodium channel, Na,K-ATPase via ALX/cAMP/PI3K pathway in lipopolysaccharide-induced acute lung injury. J Immunol 2014; 192(8): 3765-77.
[http://dx.doi.org/10.4049/jimmunol.1302421] [PMID: 24646745]
[68]
Liu Y, Jiang BJ, Zhao RZ, Ji HL. Epithelial sodium channels in pulmonary epithelial progenitor and stem cells. Int J Biol Sci 2016; 12(9): 1150-4.
[http://dx.doi.org/10.7150/ijbs.15747] [PMID: 27570489]
[69]
Randrianarison N, Clerici C, Ferreira C, et al. Low expression of the beta-ENaC subunit impairs lung fluid clearance in the mouse. Am J Physiol Lung Cell Mol Physiol 2008; 294(3): L409-16.
[http://dx.doi.org/10.1152/ajplung.00307.2007] [PMID: 18024719]
[70]
Rokkam D, Lafemina MJ, Lee JW, Matthay MA, Frank JA. Claudin-4 levels are associated with intact alveolar fluid clearance in human lungs. Am J Pathol 2011; 179(3): 1081-7.
[http://dx.doi.org/10.1016/j.ajpath.2011.05.017] [PMID: 21741940]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy