General Review Article

如通过分子光谱法所见的抑郁。 情感障碍和痴呆症中的磷脂蛋白平衡

卷 20, 期 6, 2020

页: [484 - 487] 页: 4

弟呕挨: 10.2174/1566524020666191219102746

价格: $65

conference banner
摘要

越来越多的研究领域正在研究测量情感障碍发展的手段。 评论的目的是引起医学界对分子光谱技术(FTIR,拉曼光谱和UV-Vis)的关注,该技术可用于监测和量化抑郁症患者血清中的磷脂蛋白平衡。 即使是被引用的原始研究的面部综述也强烈表明,磷脂-蛋白质平衡紊乱可能是情感障碍的生物标志之一。 抑郁患者的血清监测将作为更有效的整体治疗的工具。

关键词: 情感障碍,痴呆,分子光谱,蛋白质,FTIR,拉曼。

[1]
Park C, Rosenblat JD, Brietzke E, et al. Stress, epigenetics and depression: A systematic review. Neurosci Biobehav Rev 2019; 102: 139-52.
[http://dx.doi.org/10.1016/j.neubiorev.2019.04.010] [PMID: 31005627]
[2]
aan het Rot M, Mathew SJ, Charney DS. Neurobiological mechanisms in major depressive disorder. CMAJ Can Med Assoc J J Assoc Medicale Can 2009; 180(3): 305-13.
[3]
Bernaras E, Jaureguizar J, Garaigordobil M. Child and adolescent depression: a review of theories, evaluation instruments, prevention programs, and treatments. Front Psychol 2019; 10: 543.
[http://dx.doi.org/10.3389/fpsyg.2019.00543] [PMID: 30949092]
[4]
Harrison PJ, Geddes JR, Tunbridge EM. The emerging neurobiology of bipolar disorder. Trends Neurosci [Internet] 2018; Jan 141(1): 18-30. Available from:
[http://dx.doi.org/10.1016/j.tins.2017.10.006]
[5]
GBD 2016 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390(10100): 1260-344.
[http://dx.doi.org/10.1016/S0140-6736(17)32130-X] [PMID: 28919118]
[6]
Patel V, Chisholm D, Parikh R, Charlson FJ, Degenhardt L, Dua T, et al. Global priorities for addressing the burden of mental, neurological, and substance use disorders: key messages from disease control priorities. The Lancet 2016; 16387(10028): 1672-85. Available from:
[http://dx.doi.org/10.1016/S0140-6736(15)00390-6]
[7]
da Silva J, Gonçalves-Pereira M, Xavier M, Mukaetova-Ladinska EB. Affective disorders and risk of developing dementia: systematic review. Br J Psychiatry 2013; 202(3): 177-86.
[http://dx.doi.org/10.1192/bjp.bp.111.101931] [PMID: 23457181]
[8]
Galts CPC, Bettio LEB, Jewett DC, et al. Depression in neurodegenerative diseases: Common mechanisms and current treatment options. Neurosci Biobehav Rev 2019; 102: 56-84.
[http://dx.doi.org/10.1016/j.neubiorev.2019.04.002] [PMID: 30995512]
[9]
Smith K. Mental health: A world of depression. A global view of the burden caused by depression. Nature 2014; 515: 118.
[http://dx.doi.org/10.1038/515180a]
[10]
Herrman H, Kieling C, McGorry P, Horton R, Sargent J, Patel V. Reducing the global burden of depression: a Lancet–world psychiatric association commission. The Lancet 2019; 15393(10189): e42-3. Available from:
[http://dx.doi.org/10.1016/S0140-6736(18)32408-5]
[11]
Hacimusalar Y, Eşel E. Suggested Biomarkers for major depressive disorder. Noro Psikiyatri Arsivi 2018; 55(3): 280-90.
[http://dx.doi.org/30224877] [PMID: 30224877]
[12]
Fonseka TM, MacQueen GM, Kennedy SH. Neuroimaging biomarkers as predictors of treatment outcome in major depressive disorder. Journal of Affect Disord 2018; 233: 21-35.
[http://dx.doi.org/10.1016/j.jad.2017.10.049]
[13]
Evans-Lacko SE, Zeber JE, Gonzalez JM, Olvera RL. Medical comorbidity among youth diagnosed with bipolar disorder in the United States. J Clin Psychiatry 2009; 70(10): 1461-6.
[http://dx.doi.org/10.4088/JCP.08m04871] [PMID: 19744408]
[14]
Grunze H. Bipolar Disorder. In: Zigmond MJ, Rowland LP, Coyle JT, Eds. Neurobiology of Brain Disorders. San Diego Academic Press In: 2015; pp. 655-73.http://www.sciencedirect.com/science/article/pii/B9780123982704000409
[15]
Leboyer M, Soreca I, Scott J, et al. Can bipolar disorder be viewed as a multi-system inflammatory disease? J Affect Disord 2012; 141(1): 1-10.
[http://dx.doi.org/10.1016/j.jad.2011.12.049] [PMID: 22497876]
[16]
McIntyre RS, Danilewitz M, Liauw SS, et al. Bipolar disorder and metabolic syndrome: an international perspective. J Affect Disord 2010; 126(3): 366-87.
[http://dx.doi.org/10.1016/j.jad.2010.04.012] [PMID: 20541810]
[17]
Silarova B, Giltay EJ, Van Reedt Dortland A, et al. Metabolic syndrome in patients with bipolar disorder: comparison with major depressive disorder and non-psychiatric controls. J Psychosom Res 2015; 78(4): 391.
[http://dx.doi.org/10.1016/j.jpsychores.2015.02.010] [PMID: 25742722]
[18]
Rosenblat JD, Gregory JM, Flor-Henry S, McIntyre RS. Inflammation in bipolar disorder. In: Baune Bt, Ed. inflammation and immunity in depression. Academic Press 2018;445-54.
[http://dx.doi.org/10.1016/B978-0-12-811073-7.00025-8]
[19]
Belvederi Murri M, Prestia D, Mondelli V, et al. The HPA axis in bipolar disorder: Systematic review and meta-analysis. Psychoneuroendocrinology 2016; 63: 327-42.
[http://dx.doi.org/10.1016/j.psyneuen.2015.10.014] [PMID: 26547798]
[20]
Thomas M, Bruton A, Moffat M, Cleland J. Asthma and psychological dysfunction. Prim Care Respir J 2011; 20(3): 250-6.
[http://dx.doi.org/10.4104/pcrj.2011.00058] [PMID: 21674122]
[21]
McEwen BS, Wingfield JC. The concept of allostasis in biology and biomedicine. Horm Behav 2003; 43(1): 2-15.
[http://dx.doi.org/10.1016/S0018-506X(02)00024-7] [PMID: 12614627]
[22]
Kapczinski F, Vieta E, Andreazza AC, et al. Allostatic load in bipolar disorder: implications for pathophysiology and treatment. Neurosci Biobehav Rev 2008; 32(4): 675-92.
[http://dx.doi.org/10.1016/j.neubiorev.2007.10.005] [PMID: 18199480]
[23]
Vieta E, Popovic D, Rosa AR, et al. The clinical implications of cognitive impairment and allostatic load in bipolar disorder. Eur Psychiatry 2013; 28(1): 21-9.
[http://dx.doi.org/10.1016/j.eurpsy.2011.11.007] [PMID: 22534552]
[24]
Savitz J, Drevets WC. Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neuroscience and Biobehavioral Reviews 2009; 33(5): 699-771.
[25]
Han K-M, De Berardis D, Fornaro M, Kim Y-K. Differentiating between bipolar and unipolar depression in functional and structural MRI studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019; 91: 20-7.
[http://dx.doi.org/10.1016/j.pnpbp.2018.03.022]
[26]
Kapczinski F, Dal-Pizzol F, Teixeira AL, et al. Peripheral biomarkers and illness activity in bipolar disorder. J Psychiatr Res 2011; 45(2): 156-61.
[http://dx.doi.org/10.1016/j.jpsychires.2010.05.015] [PMID: 20541770]
[27]
Vavakova M, Durackova Z, Trebatick J. Markers of oxidative stress and neuroprogression in depression disorder. Oxid Med Cell Longev 2015; 2015: 12.
[http://dx.doi.org/10.1155/2015/898393]
[28]
Brown NC, Andreazza AC, Young LT. An updated meta-analysis of oxidative stress markers in bipolar disorder. Psychiatry Res 2014; 218(1-2): 61-8.
[http://dx.doi.org/10.1016/j.psychres.2014.04.005] [PMID: 24794031]
[29]
Hatch J, Andreazza A, Olowoyeye O, Rezin GT, Moody A, Goldstein BI. Cardiovascular and psychiatric characteristics associated with oxidative stress markers among adolescents with bipolar disorder. J Psychosom Res 2015; 79(3): 222-7.
[http://dx.doi.org/10.1016/j.jpsychores.2015.04.005] [PMID: 25934154]
[30]
Misiak B, Stańczykiewicz B, Kotowicz K, Rybakowski JK, Samochowiec J, Frydecka D. Cytokines and C-reactive protein alterations with respect to cognitive impairment in schizophrenia and bipolar disorder: A systematic review. Schizophr Res 2018; 192: 16-29.
[http://dx.doi.org/10.1016/j.schres.2017.04.015] [PMID: 28416092]
[31]
Gadad BS, Jha MK, Czysz A, et al. Peripheral biomarkers of major depression and antidepressant treatment response: current knowledge and future outlooks. Journal of affective disorders 2018; 233: 3-14.
[32]
Jha MK, Minhajuddin A, Gadad BS, et al. Can C-reactive protein inform antidepressant medication selection in depressed outpatients? Findings from the CO-MED trial. Psychoneuroendocrinology 2017; 78: 105-13.
[http://dx.doi.org/10.1016/j.psyneuen.2017.01.023] [PMID: 28187400]
[33]
Strawbridge R, Young AH, Cleare AJ. Biomarkers for depression: recent insights, current challenges and future prospects. Neuropsychiatr Dis Treat 2017; 13: 1245-62.https://www.ncbi.nlm.nih.gov/pubmed/28546750
[http://dx.doi.org/10.2147/NDT.S114542] [PMID: 28546750]
[34]
Kealey D, Haines PJ. Instant notes in analytical chemistry. BIOS Scientific Publishers Taylor & Francis Group. BIOS Instant Notes 2002.
[http://dx.doi.org/10.4324/9780203645444]
[35]
Downes A, Elfick A. Raman spectroscopy and related techniques in biomedicine. Sensors (Basel) 2010; 10(3): 1871-89.
[http://dx.doi.org/10.3390/s100301871] [PMID: 21151763]
[36]
Kuhar N, Sil S, Verma T, Umapathy S. Challenges in application of Raman spectroscopy to biology and materials. RSC Advances 2018; 8(46): 25888-908.
[http://dx.doi.org/10.1039/C8RA04491K]
[37]
Czamara K, Szafraniec E, Wiercigroch E, Tott S, Zając G, Machalska E, et al. Small and large molecules investigated by raman spectroscopy. In: koleżyński a, król m, eds. molecular spectroscopy—experiment and theory: from molecules to functional materials. Cham: Springer International Publishing 2019; pp.161-98.
[http://dx.doi.org/10.1007/978-3-030-01355-4_6]
[38]
Mutter ST, Zielinski F, Popelier PLA, Blanch EW. Calculation of Raman optical activity spectra for vibrational analysis. Analyst (Lond) 2015; 140(9): 2944-56.
[http://dx.doi.org/10.1039/C4AN02357A] [http://dx.doi.org/25646177]
[39]
Larkin PJ. Introduction: Infrared and Raman Spectroscopy. In: Larkin PJ, Ed.Infrared and Raman Spectroscopy. 2nd ed. Elsevier 2018; pp. 1-5.
[http://dx.doi.org/10.1016/B978-0-12-804162-8.00001-X]
[40]
Abramczyk H, Brozek-Pluska B. Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer. Chem Rev 2013; 113(8): 5766-81.
[http://dx.doi.org/10.1021/cr300147r] [PMID: 23697873]
[41]
Kaczor A, Marzec KM, Majzner K, Kochan K, Pacia MZ, Baranska M. Raman imaging of biomedical samples. In: Toporski J, Dieing T, Hollricher O, Eds.Confocal Raman Microscopy. Cham: Springer International Publishing 2018; pp. 307-46.
[http://dx.doi.org/10.1007/978-3-319-75380-5_14]
[42]
Shipp DW, Sinjab F, Notingher I. Raman spectroscopy: techniques and applications in the life sciences. Adv Opt Photonics 2017; 9(2): 315-428.
[http://dx.doi.org/10.1364/AOP.9.000315]
[43]
Depciuch J, Sowa-Kućma M, Nowak G, et al. Phospholipid-protein balance in affective disorders: Analysis of human blood serum using Raman and FTIR spectroscopy. A pilot study. J Pharm Biomed Anal 2016; 131: 287-96.
[http://dx.doi.org/10.1016/j.jpba.2016.08.037] [PMID: 27614042]
[44]
Depciuch J, Sowa-Kućma M, Misztak P, et al. Olfactory bulbectomy-induced changes in phospholipids and protein profiles in the hippocampus and prefrontal cortex of rats. A preliminary study using a FTIR spectroscopy. Pharmacol Rep 2016; 68(3): 521-8.
[http://dx.doi.org/10.1016/j.pharep.2015.12.005] [PMID: 26891240]
[45]
Depciuch J, Sowa-Kućma M, Nowak G, Szewczyk B, Doboszewska U, Parlinska-Wojtan M. The role of zinc deficiency-induced changes in the phospholipid-protein balance of blood serum in animal depression model by Raman, FTIR and UV-vis spectroscopy. Biomed Pharmacother 2017; 89: 549-58.
[http://dx.doi.org/10.1016/j.biopha.2017.01.180] [PMID: 28258037]
[46]
Depciuch J, Parlinska-Wojtan M. Qualitative and quantitative changes in phospholipids and proteins investigated by spectroscopic techniques in olfactory bulbectomy animal depression model. J Pharm Biomed Anal 2018; 148: 24-31.
[http://dx.doi.org/10.1016/j.jpba.2017.09.016] [PMID: 28950213]
[47]
Depciuch J, Parlinska-Wojtan M. Comparing dried and liquid blood serum samples of depressed patients: An analysis by Raman and infrared spectroscopy methods. J Pharm Biomed Anal 2018; 150: 80-6.
[http://dx.doi.org/10.1016/j.jpba.2017.11.074] [PMID: 29216589]
[48]
Depciuch J, Zawlik I, Skrzypa M, et al. FTIR spectroscopy of cerebrospinal fluid reveals variations in the lipid: protein ratio at different stages of Alzheimer’s disease. J Alzheimers Dis 2019; 68(1): 281-93.
[http://dx.doi.org/10.3233/JAD-181008] [PMID: 30775998]
[49]
Mordechai S, Shufan E, Porat Katz BS, Salman A. Early diagnosis of Alzheimer’s disease using infrared spectroscopy of isolated blood samples followed by multivariate analyses. Analyst (Lond) 2017; 142(8): 1276-84.
[http://dx.doi.org/10.1039/C6AN01580H] [PMID: 27827489]
[50]
Correia M, Lopesa J, Silva R, Martins R, Henriques AG, Delgadillo I, et al. FTIR Spectroscopy - A Potential Tool to Identify Metabolic Changes in Dementia Patients. J Alzheimers Neurodegener Dis 2016; 2: 007.
[51]
Appleton K, Sallis H, Perry R, Ness A, Churchill R. Omega‐3 fatty acids for depression in adults 2015.
[http://dx.doi.org/10.1002/14651858.CD004692.pub4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy