Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

General Review Article

Depression as is Seen by Molecular Spectroscopy. Phospholipid- Protein Balance in Affective Disorders and Dementia

Author(s): Dariusz Pogocki*, Joanna Kisała and Józef Cebulski

Volume 20, Issue 6, 2020

Page: [484 - 487] Pages: 4

DOI: 10.2174/1566524020666191219102746

Price: $65

Abstract

There is an expanding field of research investigating the instrumental methods to measure the development of affective disorders. The goal of the commentary is to turn the attention of medical practitioners at the molecular spectroscopy techniques (FTIR, Raman and UV-Vis) that can be applied for monitoring and quantification of the phospholipid-protein balance in human blood serum of depressed patients. Even facial overview of cited original research strongly suggests that disturbed phospholipid-protein balance could be one of the biomarkers of affective disorders. The blood serum monitoring of depressed patients would serve as a tool for more effective holistic therapy.

Keywords: Affective disorders, dementia, molecular spectroscopy, protein, FTIR, Raman.

[1]
Park C, Rosenblat JD, Brietzke E, et al. Stress, epigenetics and depression: A systematic review. Neurosci Biobehav Rev 2019; 102: 139-52.
[http://dx.doi.org/10.1016/j.neubiorev.2019.04.010] [PMID: 31005627]
[2]
aan het Rot M, Mathew SJ, Charney DS. Neurobiological mechanisms in major depressive disorder. CMAJ Can Med Assoc J J Assoc Medicale Can 2009; 180(3): 305-13.
[3]
Bernaras E, Jaureguizar J, Garaigordobil M. Child and adolescent depression: a review of theories, evaluation instruments, prevention programs, and treatments. Front Psychol 2019; 10: 543.
[http://dx.doi.org/10.3389/fpsyg.2019.00543] [PMID: 30949092]
[4]
Harrison PJ, Geddes JR, Tunbridge EM. The emerging neurobiology of bipolar disorder. Trends Neurosci [Internet] 2018; Jan 141(1): 18-30. Available from:
[http://dx.doi.org/10.1016/j.tins.2017.10.006]
[5]
GBD 2016 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390(10100): 1260-344.
[http://dx.doi.org/10.1016/S0140-6736(17)32130-X] [PMID: 28919118]
[6]
Patel V, Chisholm D, Parikh R, Charlson FJ, Degenhardt L, Dua T, et al. Global priorities for addressing the burden of mental, neurological, and substance use disorders: key messages from disease control priorities. The Lancet 2016; 16387(10028): 1672-85. Available from:
[http://dx.doi.org/10.1016/S0140-6736(15)00390-6]
[7]
da Silva J, Gonçalves-Pereira M, Xavier M, Mukaetova-Ladinska EB. Affective disorders and risk of developing dementia: systematic review. Br J Psychiatry 2013; 202(3): 177-86.
[http://dx.doi.org/10.1192/bjp.bp.111.101931] [PMID: 23457181]
[8]
Galts CPC, Bettio LEB, Jewett DC, et al. Depression in neurodegenerative diseases: Common mechanisms and current treatment options. Neurosci Biobehav Rev 2019; 102: 56-84.
[http://dx.doi.org/10.1016/j.neubiorev.2019.04.002] [PMID: 30995512]
[9]
Smith K. Mental health: A world of depression. A global view of the burden caused by depression. Nature 2014; 515: 118.
[http://dx.doi.org/10.1038/515180a]
[10]
Herrman H, Kieling C, McGorry P, Horton R, Sargent J, Patel V. Reducing the global burden of depression: a Lancet–world psychiatric association commission. The Lancet 2019; 15393(10189): e42-3. Available from:
[http://dx.doi.org/10.1016/S0140-6736(18)32408-5]
[11]
Hacimusalar Y, Eşel E. Suggested Biomarkers for major depressive disorder. Noro Psikiyatri Arsivi 2018; 55(3): 280-90.
[http://dx.doi.org/30224877] [PMID: 30224877]
[12]
Fonseka TM, MacQueen GM, Kennedy SH. Neuroimaging biomarkers as predictors of treatment outcome in major depressive disorder. Journal of Affect Disord 2018; 233: 21-35.
[http://dx.doi.org/10.1016/j.jad.2017.10.049]
[13]
Evans-Lacko SE, Zeber JE, Gonzalez JM, Olvera RL. Medical comorbidity among youth diagnosed with bipolar disorder in the United States. J Clin Psychiatry 2009; 70(10): 1461-6.
[http://dx.doi.org/10.4088/JCP.08m04871] [PMID: 19744408]
[14]
Grunze H. Bipolar Disorder. In: Zigmond MJ, Rowland LP, Coyle JT, Eds. Neurobiology of Brain Disorders. San Diego Academic Press In: 2015; pp. 655-73.http://www.sciencedirect.com/science/article/pii/B9780123982704000409
[15]
Leboyer M, Soreca I, Scott J, et al. Can bipolar disorder be viewed as a multi-system inflammatory disease? J Affect Disord 2012; 141(1): 1-10.
[http://dx.doi.org/10.1016/j.jad.2011.12.049] [PMID: 22497876]
[16]
McIntyre RS, Danilewitz M, Liauw SS, et al. Bipolar disorder and metabolic syndrome: an international perspective. J Affect Disord 2010; 126(3): 366-87.
[http://dx.doi.org/10.1016/j.jad.2010.04.012] [PMID: 20541810]
[17]
Silarova B, Giltay EJ, Van Reedt Dortland A, et al. Metabolic syndrome in patients with bipolar disorder: comparison with major depressive disorder and non-psychiatric controls. J Psychosom Res 2015; 78(4): 391.
[http://dx.doi.org/10.1016/j.jpsychores.2015.02.010] [PMID: 25742722]
[18]
Rosenblat JD, Gregory JM, Flor-Henry S, McIntyre RS. Inflammation in bipolar disorder. In: Baune Bt, Ed. inflammation and immunity in depression. Academic Press 2018;445-54.
[http://dx.doi.org/10.1016/B978-0-12-811073-7.00025-8]
[19]
Belvederi Murri M, Prestia D, Mondelli V, et al. The HPA axis in bipolar disorder: Systematic review and meta-analysis. Psychoneuroendocrinology 2016; 63: 327-42.
[http://dx.doi.org/10.1016/j.psyneuen.2015.10.014] [PMID: 26547798]
[20]
Thomas M, Bruton A, Moffat M, Cleland J. Asthma and psychological dysfunction. Prim Care Respir J 2011; 20(3): 250-6.
[http://dx.doi.org/10.4104/pcrj.2011.00058] [PMID: 21674122]
[21]
McEwen BS, Wingfield JC. The concept of allostasis in biology and biomedicine. Horm Behav 2003; 43(1): 2-15.
[http://dx.doi.org/10.1016/S0018-506X(02)00024-7] [PMID: 12614627]
[22]
Kapczinski F, Vieta E, Andreazza AC, et al. Allostatic load in bipolar disorder: implications for pathophysiology and treatment. Neurosci Biobehav Rev 2008; 32(4): 675-92.
[http://dx.doi.org/10.1016/j.neubiorev.2007.10.005] [PMID: 18199480]
[23]
Vieta E, Popovic D, Rosa AR, et al. The clinical implications of cognitive impairment and allostatic load in bipolar disorder. Eur Psychiatry 2013; 28(1): 21-9.
[http://dx.doi.org/10.1016/j.eurpsy.2011.11.007] [PMID: 22534552]
[24]
Savitz J, Drevets WC. Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neuroscience and Biobehavioral Reviews 2009; 33(5): 699-771.
[25]
Han K-M, De Berardis D, Fornaro M, Kim Y-K. Differentiating between bipolar and unipolar depression in functional and structural MRI studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019; 91: 20-7.
[http://dx.doi.org/10.1016/j.pnpbp.2018.03.022]
[26]
Kapczinski F, Dal-Pizzol F, Teixeira AL, et al. Peripheral biomarkers and illness activity in bipolar disorder. J Psychiatr Res 2011; 45(2): 156-61.
[http://dx.doi.org/10.1016/j.jpsychires.2010.05.015] [PMID: 20541770]
[27]
Vavakova M, Durackova Z, Trebatick J. Markers of oxidative stress and neuroprogression in depression disorder. Oxid Med Cell Longev 2015; 2015: 12.
[http://dx.doi.org/10.1155/2015/898393]
[28]
Brown NC, Andreazza AC, Young LT. An updated meta-analysis of oxidative stress markers in bipolar disorder. Psychiatry Res 2014; 218(1-2): 61-8.
[http://dx.doi.org/10.1016/j.psychres.2014.04.005] [PMID: 24794031]
[29]
Hatch J, Andreazza A, Olowoyeye O, Rezin GT, Moody A, Goldstein BI. Cardiovascular and psychiatric characteristics associated with oxidative stress markers among adolescents with bipolar disorder. J Psychosom Res 2015; 79(3): 222-7.
[http://dx.doi.org/10.1016/j.jpsychores.2015.04.005] [PMID: 25934154]
[30]
Misiak B, Stańczykiewicz B, Kotowicz K, Rybakowski JK, Samochowiec J, Frydecka D. Cytokines and C-reactive protein alterations with respect to cognitive impairment in schizophrenia and bipolar disorder: A systematic review. Schizophr Res 2018; 192: 16-29.
[http://dx.doi.org/10.1016/j.schres.2017.04.015] [PMID: 28416092]
[31]
Gadad BS, Jha MK, Czysz A, et al. Peripheral biomarkers of major depression and antidepressant treatment response: current knowledge and future outlooks. Journal of affective disorders 2018; 233: 3-14.
[32]
Jha MK, Minhajuddin A, Gadad BS, et al. Can C-reactive protein inform antidepressant medication selection in depressed outpatients? Findings from the CO-MED trial. Psychoneuroendocrinology 2017; 78: 105-13.
[http://dx.doi.org/10.1016/j.psyneuen.2017.01.023] [PMID: 28187400]
[33]
Strawbridge R, Young AH, Cleare AJ. Biomarkers for depression: recent insights, current challenges and future prospects. Neuropsychiatr Dis Treat 2017; 13: 1245-62.https://www.ncbi.nlm.nih.gov/pubmed/28546750
[http://dx.doi.org/10.2147/NDT.S114542] [PMID: 28546750]
[34]
Kealey D, Haines PJ. Instant notes in analytical chemistry. BIOS Scientific Publishers Taylor & Francis Group. BIOS Instant Notes 2002.
[http://dx.doi.org/10.4324/9780203645444]
[35]
Downes A, Elfick A. Raman spectroscopy and related techniques in biomedicine. Sensors (Basel) 2010; 10(3): 1871-89.
[http://dx.doi.org/10.3390/s100301871] [PMID: 21151763]
[36]
Kuhar N, Sil S, Verma T, Umapathy S. Challenges in application of Raman spectroscopy to biology and materials. RSC Advances 2018; 8(46): 25888-908.
[http://dx.doi.org/10.1039/C8RA04491K]
[37]
Czamara K, Szafraniec E, Wiercigroch E, Tott S, Zając G, Machalska E, et al. Small and large molecules investigated by raman spectroscopy. In: koleżyński a, król m, eds. molecular spectroscopy—experiment and theory: from molecules to functional materials. Cham: Springer International Publishing 2019; pp.161-98.
[http://dx.doi.org/10.1007/978-3-030-01355-4_6]
[38]
Mutter ST, Zielinski F, Popelier PLA, Blanch EW. Calculation of Raman optical activity spectra for vibrational analysis. Analyst (Lond) 2015; 140(9): 2944-56.
[http://dx.doi.org/10.1039/C4AN02357A] [http://dx.doi.org/25646177]
[39]
Larkin PJ. Introduction: Infrared and Raman Spectroscopy. In: Larkin PJ, Ed.Infrared and Raman Spectroscopy. 2nd ed. Elsevier 2018; pp. 1-5.
[http://dx.doi.org/10.1016/B978-0-12-804162-8.00001-X]
[40]
Abramczyk H, Brozek-Pluska B. Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer. Chem Rev 2013; 113(8): 5766-81.
[http://dx.doi.org/10.1021/cr300147r] [PMID: 23697873]
[41]
Kaczor A, Marzec KM, Majzner K, Kochan K, Pacia MZ, Baranska M. Raman imaging of biomedical samples. In: Toporski J, Dieing T, Hollricher O, Eds.Confocal Raman Microscopy. Cham: Springer International Publishing 2018; pp. 307-46.
[http://dx.doi.org/10.1007/978-3-319-75380-5_14]
[42]
Shipp DW, Sinjab F, Notingher I. Raman spectroscopy: techniques and applications in the life sciences. Adv Opt Photonics 2017; 9(2): 315-428.
[http://dx.doi.org/10.1364/AOP.9.000315]
[43]
Depciuch J, Sowa-Kućma M, Nowak G, et al. Phospholipid-protein balance in affective disorders: Analysis of human blood serum using Raman and FTIR spectroscopy. A pilot study. J Pharm Biomed Anal 2016; 131: 287-96.
[http://dx.doi.org/10.1016/j.jpba.2016.08.037] [PMID: 27614042]
[44]
Depciuch J, Sowa-Kućma M, Misztak P, et al. Olfactory bulbectomy-induced changes in phospholipids and protein profiles in the hippocampus and prefrontal cortex of rats. A preliminary study using a FTIR spectroscopy. Pharmacol Rep 2016; 68(3): 521-8.
[http://dx.doi.org/10.1016/j.pharep.2015.12.005] [PMID: 26891240]
[45]
Depciuch J, Sowa-Kućma M, Nowak G, Szewczyk B, Doboszewska U, Parlinska-Wojtan M. The role of zinc deficiency-induced changes in the phospholipid-protein balance of blood serum in animal depression model by Raman, FTIR and UV-vis spectroscopy. Biomed Pharmacother 2017; 89: 549-58.
[http://dx.doi.org/10.1016/j.biopha.2017.01.180] [PMID: 28258037]
[46]
Depciuch J, Parlinska-Wojtan M. Qualitative and quantitative changes in phospholipids and proteins investigated by spectroscopic techniques in olfactory bulbectomy animal depression model. J Pharm Biomed Anal 2018; 148: 24-31.
[http://dx.doi.org/10.1016/j.jpba.2017.09.016] [PMID: 28950213]
[47]
Depciuch J, Parlinska-Wojtan M. Comparing dried and liquid blood serum samples of depressed patients: An analysis by Raman and infrared spectroscopy methods. J Pharm Biomed Anal 2018; 150: 80-6.
[http://dx.doi.org/10.1016/j.jpba.2017.11.074] [PMID: 29216589]
[48]
Depciuch J, Zawlik I, Skrzypa M, et al. FTIR spectroscopy of cerebrospinal fluid reveals variations in the lipid: protein ratio at different stages of Alzheimer’s disease. J Alzheimers Dis 2019; 68(1): 281-93.
[http://dx.doi.org/10.3233/JAD-181008] [PMID: 30775998]
[49]
Mordechai S, Shufan E, Porat Katz BS, Salman A. Early diagnosis of Alzheimer’s disease using infrared spectroscopy of isolated blood samples followed by multivariate analyses. Analyst (Lond) 2017; 142(8): 1276-84.
[http://dx.doi.org/10.1039/C6AN01580H] [PMID: 27827489]
[50]
Correia M, Lopesa J, Silva R, Martins R, Henriques AG, Delgadillo I, et al. FTIR Spectroscopy - A Potential Tool to Identify Metabolic Changes in Dementia Patients. J Alzheimers Neurodegener Dis 2016; 2: 007.
[51]
Appleton K, Sallis H, Perry R, Ness A, Churchill R. Omega‐3 fatty acids for depression in adults 2015.
[http://dx.doi.org/10.1002/14651858.CD004692.pub4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy