General Research Article

β2-肾上腺素受体动力学的单细胞分析 荧光定量显微镜

卷 20, 期 6, 2020

页: [488 - 493] 页: 6

弟呕挨: 10.2174/1566524020666191216125825

价格: $65

conference banner
摘要

背景:G蛋白偶联受体(GPCR)代表最大的表面蛋白家族,并参与关键生理过程的调节。 GPCR的特征在于七个跨膜结构域,一个胞外N端和一个胞内C端。这些受体对其配体的细胞反应在很大程度上取决于它们的表面表达和激活后行为,包括表达,脱敏和再敏化。 目的:建立定量荧光显微镜检测法,研究β2-肾上腺素能受体的表达和脱敏。 方法:设计β2-肾上腺素能受体cDNA,将HA标签置于细胞外N端,将GFP标签置于细胞内C端。 GFP荧光可作为细胞总表达的量度;而用CY3结合的抗HA抗体染色而不渗透细胞则代表β2-AR的表面表达。量化图像并使用图像处理软件确定每个细胞的CY3(表面)和GFP(总)荧光量。 结果:该方法灵敏,可同时测量β2-AR的表面和总表达。 结论:描述了一种基于单细胞定量免疫荧光测量β2-AR表面和总表达的高精度方法。该方法可用于确定激动剂诱导的脱敏和再敏化过程,以及受体动力学,例如β2-肾上腺素能受体的胞吞作用和胞吐作用,并且基本上可用于任何其他GPCR。

关键词: G蛋白偶联受体,受体脱敏,定量免疫荧光,荧光显微镜,C末端,显微镜检测。

[1]
Ribas C, Penela P, Murga C, et al. The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta 2007; 1768(4): 913-22.
[http://dx.doi.org/10.1016/j.bbamem.2006.09.019] [PMID: 17084806]
[2]
Salazar NC, Chen J, Rockman HA. Cardiac GPCRs: GPCR signaling in healthy and failing hearts. Biochim Biophys Acta 2007; 1768(4): 1006-18.
[http://dx.doi.org/10.1016/j.bbamem.2007.02.010] [PMID: 17376402]
[3]
Williams C, Hill SJ. GPCR signaling: understanding the pathway to successful drug discovery. Methods Mol Biol 2009; 552: 39-50.
[http://dx.doi.org/10.1007/978-1-60327-317-6_3] [PMID: 19513640]
[4]
Borroto-Escuela DO, Carlsson J, Ambrogini P, et al. Understanding the role of GPCR Heteroreceptor complexes in modulating the brain networks in health and disease. Front Cell Neurosci 2017; 11: 37.
[http://dx.doi.org/10.3389/fncel.2017.00037] [PMID: 28270751]
[5]
Gurevich VV, Gurevich EV. GPCR signaling regulation: the role of grks and arrestins. Front Pharmacol 2019; 10: 125.
[http://dx.doi.org/10.3389/fphar.2019.00125] [PMID: 30837883]
[6]
Harris DM, Cohn HI, Pesant S, Eckhart AD. GPCR signalling in hypertension: role of GRKs. Clin Sci (Lond) 2008; 115(3): 79-89.
[http://dx.doi.org/10.1042/CS20070442] [PMID: 18593382]
[7]
Nebigil CG, Désaubry L. The role of GPCR signaling in cardiac epithelial to mesenchymal transformation (EMT). Trends Cardiovasc Med 2019; 29(4): 200-4.
[http://dx.doi.org/10.1016/j.tcm.2018.08.007] [PMID: 30172578]
[8]
Wang D. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity. Immunopharmacol Immunotoxicol 2018; 40(3): 187-92.
[http://dx.doi.org/10.1080/08923973.2018.1434792] [PMID: 29433403]
[9]
Mohammad S. GPR40 Agonists for the treatment of type 2 diabetes mellitus: benefits and challenges. Curr Drug Targets 2016; 17(11): 1292-300.
[http://dx.doi.org/10.2174/1389450117666151209122702] [PMID: 26648068]
[10]
Mohammad S. Role of free fatty acid receptor 2 (FFAR2) in the regulation of metabolic homeostasis. Curr Drug Targets 2015; 16(7): 771-5.
[http://dx.doi.org/10.2174/1389450116666150408103557] [PMID: 25850624]
[11]
Mohammad S, Ramos LS, Buck J, Levin LR, Rubino F, McGraw TE. Gastric inhibitory peptide controls adipose insulin sensitivity via activation of cAMP-response element-binding protein and p110β isoform of phosphatidylinositol 3-kinase. J Biol Chem 2011; 286(50): 43062-70.
[http://dx.doi.org/10.1074/jbc.M111.289009] [PMID: 22027830]
[12]
Stoddart LA, Kilpatrick LE, Briddon SJ, Hill SJ. Probing the pharmacology of G protein-coupled receptors with fluorescent ligands. Neuropharmacology 2015; 98: 48-57.
[http://dx.doi.org/10.1016/j.neuropharm.2015.04.033] [PMID: 25979488]
[13]
Kypreos M, Banerjee T, Mukherjee D. G protein-coupled receptors--potential roles in clinical pharmacology. Cardiovasc Hematol Agents Med Chem 2014; 12(1): 29-33.
[http://dx.doi.org/10.2174/187152571201141201093751] [PMID: 25470151]
[14]
Solinski HJ, Gudermann T, Breit A. Pharmacology and signaling of MAS-related G protein-coupled receptors. Pharmacol Rev 2014; 66(3): 570-97.
[http://dx.doi.org/10.1124/pr.113.008425] [PMID: 24867890]
[15]
Summers RJ. Molecular pharmacology of G protein-coupled receptors. Editorial Br J Pharmacol 2010; 159(5): 983-5. [Editorial].
[http://dx.doi.org/10.1111/j.1476-5381.2010.00695.x] [PMID: 20388130]
[16]
Gilchrist A. Modulating G-protein-coupled receptors: from traditional pharmacology to allosterics. Trends Pharmacol Sci 2007; 28(8): 431-7.
[http://dx.doi.org/10.1016/j.tips.2007.06.012] [PMID: 17644194]
[17]
Abbracchio MP, Burnstock G, Boeynaems JM, et al. International union of pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 2006; 58(3): 281-341.
[http://dx.doi.org/10.1124/pr.58.3.3] [PMID: 16968944]
[18]
Granell S, Mohammad S, Ramanagoudr-Bhojappa R, Baldini G. Obesity-linked variants of melanocortin-4 receptor are misfolded in the endoplasmic reticulum and can be rescued to the cell surface by a chemical chaperone. Mol Endocrinol 2010; 24(9): 1805-21.
[http://dx.doi.org/10.1210/me.2010-0071] [PMID: 20631012]
[19]
Mohammad S, Baldini G, Granell S, Narducci P, Martelli AM, Baldini G. Constitutive traffic of melanocortin-4 receptor in Neuro2A cells and immortalized hypothalamic neurons. J Biol Chem 2007; 282(7): 4963-74.
[http://dx.doi.org/10.1074/jbc.M608283200] [PMID: 17166828]
[20]
Lobingier BT, von Zastrow M. When trafficking and signaling mix: How subcellular location shapes G protein-coupled receptor activation of heterotrimeric G proteins. Traffic 2019; 20(2): 130-6.
[http://dx.doi.org/10.1111/tra.12634] [PMID: 30578610]
[21]
Kang DS, Tian X, Benovic JL. Role of β-arrestins and arrestin domain-containing proteins in G protein-coupled receptor trafficking. Curr Opin Cell Biol 2014; 27: 63-71.
[http://dx.doi.org/10.1016/j.ceb.2013.11.005] [PMID: 24680432]
[22]
Margus H, Padari K, Pooga M. Insights into cell entry and intracellular trafficking of peptide and protein drugs provided by electron microscopy. Adv Drug Deliv Rev 2013; 65(8): 1031-8.
[http://dx.doi.org/10.1016/j.addr.2013.04.013] [PMID: 23624037]
[23]
Enns C. Overview of protein trafficking in the secretory and endocytic pathways. In: urr Protoc Cell Biol. 2001.
[24]
Xu ZQ, Zhang X, Scott L. Regulation of G protein-coupled receptor trafficking. Acta Physiol (Oxf) 2007; 190(1): 39-45.
[http://dx.doi.org/10.1111/j.1365-201X.2007.01695.x] [PMID: 17428231]
[25]
Schwartz AL. Cell biology of intracellular protein trafficking. Annu Rev Immunol 1990; 8: 195-229.
[http://dx.doi.org/10.1146/annurev.iy.08.040190.001211] [PMID: 2160830]
[26]
Kumagai H, Ikeda Y, Motozawa Y, et al. Quantitative measurement of GPCR endocytosis via pulse-chase covalent labeling. PLoS One 2015; 10(5)e0129394
[http://dx.doi.org/10.1371/journal.pone.0129394] [PMID: 26020647]
[27]
Navratilova I, Besnard J, Hopkins AL. Screening for GPCR ligands using surface plasmon resonance. ACS Med Chem Lett 2011; 2(7): 549-54.
[http://dx.doi.org/10.1021/ml2000017] [PMID: 21765967]
[28]
Hislop JN, von Zastrow M. Analysis of GPCR localization and trafficking. Methods Mol Biol 2011; 746: 425-40.
[http://dx.doi.org/10.1007/978-1-61779-126-0_25] [PMID: 21607873]
[29]
Xu X, Brzostowski JA, Jin T. Monitoring dynamic GPCR signaling events using fluorescence microscopy, FRET imaging, and single-molecule imaging. Methods Mol Biol 2009; 571: 371-83.
[http://dx.doi.org/10.1007/978-1-60761-198-1_25] [PMID: 19763980]
[30]
Sorkin A, Duex JE. Quantitative analysis of endocytosis and turnover of epidermal growth factor (EGF) and EGF receptor In: Curr Protoc Cell Biol. 2010.
[31]
Gabriel L, Stevens Z, Melikian H. Measuring plasma membrane protein endocytic rates by reversible biotinylation. J Vis Exp 2009; 2009(34)e1669
[http://dx.doi.org/10.3791/1669]
[32]
Nevins AM, Marchese A. Detecting cell surface expression of the g protein-coupled receptor CXCR4. Methods Mol Biol 2018; 1722: 151-64.
[http://dx.doi.org/10.1007/978-1-4939-7553-2_10] [PMID: 29264804]
[33]
Kelly E, Bailey CP, Henderson G. Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 2008; 153(Suppl. 1): S379-88.
[http://dx.doi.org/10.1038/sj.bjp.0707604] [PMID: 18059321]
[34]
Pennock RL, Hentges ST. Desensitization-resistant and -sensitive GPCR-mediated inhibition of GABA release occurs by Ca2+-dependent and -independent mechanisms at a hypothalamic synapse. J Neurophysiol 2016; 115(5): 2376-88.
[http://dx.doi.org/10.1152/jn.00535.2015] [PMID: 26912590]
[35]
Rajagopal S, Shenoy SK. GPCR desensitization: Acute and prolonged phases. Cell Signal 2018; 41: 9-16.
[http://dx.doi.org/10.1016/j.cellsig.2017.01.024] [PMID: 28137506]
[36]
Charlton SJ. Agonist efficacy and receptor desensitization: from partial truths to a fuller picture. Br J Pharmacol 2009; 158(1): 165-8.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00352.x] [PMID: 19719779]
[37]
Kohout TA, Lefkowitz RJ. Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol 2003; 63(1): 9-18.
[http://dx.doi.org/10.1124/mol.63.1.9] [PMID: 12488531]
[38]
Mohammad S, Patel RT, Bruno J, Panhwar MS, Wen J, McGraw TE. A naturally occurring GIP receptor variant undergoes enhanced agonist-induced desensitization, which impairs GIP control of adipose insulin sensitivity. Mol Cell Biol 2014; 34(19): 3618-29.
[http://dx.doi.org/10.1128/MCB.00256-14] [PMID: 25047836]
[39]
Halls ML, Canals M. Genetically encoded FRET biosensors to illuminate compartmentalised GPCR signalling. Trends Pharmacol Sci 2018; 39(2): 148-57.
[http://dx.doi.org/10.1016/j.tips.2017.09.005] [PMID: 29054309]
[40]
Hein L, Ishii K, Coughlin SR, Kobilka BK. Intracellular targeting and trafficking of thrombin receptors. A novel mechanism for resensitization of a G protein-coupled receptor. J Biol Chem 1994; 269(44): 27719-26.
[PMID: 7961693]
[41]
Ho TT, Nguyen JT, Liu J, et al. Method for rapid optimization of recombinant GPCR protein expression and stability using virus-like particles. Protein Expr Purif 2017; 133: 41-9.
[http://dx.doi.org/10.1016/j.pep.2017.03.002] [PMID: 28263854]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy