Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Electrodeposition of Polysaccharide and Protein Hydrogels for Biomedical Applications

Author(s): Yang Zou, Yuye Zhong, Houbin Li, Fuyuan Ding* and Xiaowen Shi*

Volume 27, Issue 16, 2020

Page: [2610 - 2630] Pages: 21

DOI: 10.2174/0929867326666191212163955

Price: $65

Abstract

In the last few decades, polysaccharide and protein hydrogels have attracted significant attentions and been applied in various engineering fields. Polysaccharide and protein hydrogels with appealing physical and biological features have been produced to meet different biomedical applications for their excellent properties related to biodegradability, biocompatibility, nontoxicity, and stimuli responsiveness. Numerous methods, such as chemical crosslinking, photo crosslinking, graft polymerization, hydrophobic interaction, polyelectrolyte complexation and electrodeposition have been employed to prepare polysaccharide and protein hydrogels. Electrodeposition is a facile way to produce different polysaccharide and protein hydrogels with the advantages of temporal and spatial controllability. This paper reviews the recent progress in the electrodeposition of different polysaccharide and protein hydrogels. The strategies of pH induced assembly, Ca2+ crosslinking, metal ions induced assembly, oxidation induced assembly derived from electrochemical methods were discussed. Pure, binary blend and ternary blend polysaccharide and protein hydrogels with multiple functionalities prepared by electrodeposition were summarized. In addition, we have reviewed the applications of these hydrogels in drug delivery, tissue engineering and wound dressing.

Keywords: Electrodeposition, hydrogel, chitosan, silk, biomedicine, protein hydrogels, polysaccharide hydrogels.

[1]
Balakrishnan, B.; Banerjee, R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem. Rev., 2011, 111(8), 4453-4474.
[http://dx.doi.org/10.1021/cr100123h] [PMID: 21417222]
[2]
Matricardi, P.; Di Meo, C.; Coviello, T.; Hennink, W.E.; Alhaique, F. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv. Drug Deliv. Rev., 2013, 65(9), 1172-1187.
[http://dx.doi.org/10.1016/j.addr.2013.04.002] [PMID: 23603210]
[3]
Gong, C.; Qi, T.; Wei, X.; Qu, Y.; Wu, Q.; Luo, F.; Qian, Z. Thermosensitive polymeric hydrogels as drug delivery systems. Curr. Med. Chem., 2013, 20(1), 79-94.
[http://dx.doi.org/10.2174/0929867311302010009] [PMID: 23092130]
[4]
Van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules, 2011, 12(5), 1387-1408.
[http://dx.doi.org/10.1021/bm200083n] [PMID: 21388145]
[5]
Kapoor, S.; Kundu, S.C. Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater., 2016, 31, 17-32.
[http://dx.doi.org/10.1016/j.actbio.2015.11.034] [PMID: 26602821]
[6]
Hamedi, H.; Moradi, S.; Hudson, S.M.; Tonelli, A.E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr. Polym., 2018, 199, 445-460.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.114] [PMID: 30143150]
[7]
Kim, E.; Xiong, Y.; Cheng, Y.; Wu, H.C.; Liu, Y.; Morrow, B.H.; Ben Yoav, H.; Ghodssi, R.; Rubloff, G.W.; Shen, J.N.; Bentley, W.E.; Shi, X.W.; Payne, G.F. Chitosan to connect biology to electronics: fabricating the bio-device interface and communicating across this interface. Polymers (Basel), 2015, 7(1), 1-46.
[http://dx.doi.org/10.3390/polym7010001]
[8]
Maerten, C.; Jierry, L.; Schaaf, P.; Boulmedais, F. Review of electrochemically triggered macromolecular film buildup processes and their biomedical applications. ACS Appl. Mater. Interfaces, 2017, 9(34), 28117-28138.
[http://dx.doi.org/10.1021/acsami.7b06319] [PMID: 28762716]
[9]
Seuss, S.; Boccaccini, A.R. Electrophoretic deposition of biological macromolecules, drugs, and cells. Biomacromolecules, 2013, 14(10), 3355-3369.
[http://dx.doi.org/10.1021/bm401021b] [PMID: 24001091]
[10]
Boccaccini, A.R.; Dickerson, J.H. Electrophoretic deposition: fundamentals and applications. J. Phys. Chem. B, 2013, 117(6), 1501.
[http://dx.doi.org/10.1021/jp211212y] [PMID: 23406342]
[11]
Wang, H.; Qian, J.; Ding, F. Recent advances in engineered chitosan-based nanogels for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(34), 6986-7007.
[http://dx.doi.org/10.1039/C7TB01624G]
[12]
Ding, F.; Deng, H.; Du, Y.; Shi, X.; Wang, Q. Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale, 2014, 6(16), 9477-9493.
[http://dx.doi.org/10.1039/C4NR02814G] [PMID: 25000536]
[13]
Wu, L.Q.; Gadre, A.P.; Yi, H.M.; Kastantin, M.J.; Rubloff, G.W.; Bentley, W.E.; Payne, G.F.; Ghodssi, R. Voltage-dependent assembly of the polysaccharide chitosan onto an electrode surface. Langmuir, 2002, 18(22), 8620-8625.
[http://dx.doi.org/10.1021/la020381p]
[14]
Strand, S.P.; Tømmeraas, K.; Vårum, K.M.; Østgaard, K. Electrophoretic light scattering studies of chitosans with different degrees of N-acetylation. Biomacromolecules, 2001, 2(4), 1310-1314.
[http://dx.doi.org/10.1021/bm015598x] [PMID: 11777408]
[15]
Fernandes, R.; Wu, L.Q.; Chen, T.H.; Yi, H.M.; Rubloff, G.W.; Ghodssi, R.; Bentley, W.E.; Payne, G.F. Electrochemically induced deposition of a polysaccharide hydrogel onto a patterned surface. Langmuir, 2003, 19(10), 4058-4062.
[http://dx.doi.org/10.1021/la027052h]
[16]
Altomare, L.; Draghi, L.; Chiesa, R.; De Nardo, L. Morphology tuning of chitosan films via electrochemical deposition. Mater. Lett., 2012, 78, 18-21.
[http://dx.doi.org/10.1016/j.matlet.2012.03.035]
[17]
Liu, Y.; Zhang, B.; Gray, K.M.; Cheng, Y.; Kim, E.; Rubloff, G.W.; Bentley, W.E.; Wang, Q.; Payne, G.F. Electrodeposition of a weak polyelectrolyte hydrogel: remarkable effects of salt on kinetics, structure and properties. Soft Matter, 2013, 9(9), 2703-2710.
[http://dx.doi.org/10.1039/c3sm27581g]
[18]
Cheng, Y.; Luo, X.; Betz, J.; Buckhout-White, S.; Bekdash, O.; Payne, G.F.; Bentley, W.E.; Rubloff, G.W. In situ quantitative visualization and characterization of chitosan electrodeposition with paired sidewall electrodes. Soft Matter, 2010, 6(14), 3177-3183.
[http://dx.doi.org/10.1039/c0sm00124d]
[19]
Zhitomirsky, I.; Hashambhoy, A. Chitosan-mediated electrosynthesis of organic-inorganic nanocomposites. J. Mater. Process. Technol., 2007, 191(1-3), 68-72.
[http://dx.doi.org/10.1016/j.jmatprotec.2007.03.043]
[20]
Simchi, A.; Pishbin, F.; Boccaccini, A.R. Electrophoretic deposition of chitosan. Mater. Lett., 2009, 63(26), 2253-2256.
[http://dx.doi.org/10.1016/j.matlet.2009.07.046]
[21]
Inoue, S.; Tanaka, K.; Arisaka, F.; Kimura, S.; Ohtomo, K.; Mizuno, S. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J. Biol. Chem., 2000, 275(51), 40517-40528.
[http://dx.doi.org/10.1074/jbc.M006897200] [PMID: 10986287]
[22]
Zhou, C.Z.; Confalonieri, F.; Jacquet, M.; Perasso, R.; Li, Z.G.; Janin, J. Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins, 2001, 44(2), 119-122.
[http://dx.doi.org/10.1002/prot.1078] [PMID: 11391774]
[23]
Zhuang, J.; Lin, S.; Dong, L.; Cheng, K.; Weng, W. Magnetically assisted electrodeposition of aligned collagen coatings. ACS Biomater. Sci. Eng., 2018, 4(5), 1528-1535.
[http://dx.doi.org/10.1021/acsbiomaterials.7b01038]
[24]
Tozar, A.; Karahan, I.H. A comprehensive study on electrophoretic deposition of a novel type of collagen and hexagonal boron nitride reinforced hydroxyapatite/chitosan biocomposite coating. Appl. Surf. Sci., 2018, 452, 322-336.
[http://dx.doi.org/10.1016/j.apsusc.2018.04.241]
[25]
Ma, R.; Epand, R.F.; Zhitomirsky, I. Electrodeposition of hyaluronic acid and hyaluronic acid-bovine serum albumin films from aqueous solutions. Colloids Surf. B Biointerfaces, 2010, 77(2), 279-285.
[http://dx.doi.org/10.1016/j.colsurfb.2010.02.002] [PMID: 20188528]
[26]
Cheng, Y.; Luo, X.L.; Betz, J.; Payne, G.F.; Bentley, W.E.; Rubloff, G.W. Mechanism of anodic electrodeposition of calcium alginate. Soft Matter, 2011, 7(12), 5677-5684.
[http://dx.doi.org/10.1039/c1sm05210a]
[27]
Liu, X.; Liu, H.; Qu, X.; Lei, M.; Zhang, C.; Hong, H.; Payne, G.F.; Liu, C. Electrical signals triggered controllable formation of calcium-alginate film for wound treatment. J. Mater. Sci. Mater. Med., 2017, 28(10), 146.
[http://dx.doi.org/10.1007/s10856-017-5956-x] [PMID: 28823088]
[28]
Lee, K.Y.; Mooney, D.J. Alginate: properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[29]
Braccini, I.; Pérez, S. Molecular basis of C(2+)-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules, 2001, 2(4), 1089-1096.
[http://dx.doi.org/10.1021/bm010008g] [PMID: 11777378]
[30]
Cheng, Y.; Tsao, C.Y.; Wu, H.C.; Luo, X.; Terrell, J.L.; Betz, J.; Payne, G.F.; Bentley, W.E.; Rubloff, G.W. Electroaddressing functionalized polysaccharides as model biofilms for interrogating cell signaling. Adv. Funct. Mater., 2012, 22(3), 519-528.
[http://dx.doi.org/10.1002/adfm.201101963]
[31]
Betz, J.F.; Cheng, Y.; Tsao, C.Y.; Zargar, A.; Wu, H.C.; Luo, X.; Payne, G.F.; Bentley, W.E.; Rubloff, G.W. Optically clear alginate hydrogels for spatially controlled cell entrapment and culture at microfluidic electrode surfaces. Lab Chip, 2013, 13(10), 1854-1858.
[http://dx.doi.org/10.1039/c3lc50079a] [PMID: 23559159]
[32]
Huang, S.H.; Chu, H.T.; Liou, Y.M.; Huang, K.S. Light-addressable electrodeposition of magnetically-guided cells encapsulated in alginate hydrogels for three-dimensional cell patterning. Micromachines (Basel), 2014, 5(4), 1173-1187.
[http://dx.doi.org/10.3390/mi5041173]
[33]
Shang, W.; Liu, Y.; Wan, W.; Hu, C.; Liu, Z.; Wong, C.T.; Fukuda, T.; Shen, Y. Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation. Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation., 2017, 9(2), 025-032.
[http://dx.doi.org/10.1088/1758-5090/aa6ed8] [PMID: 28436920]
[34]
Taira, N.; Ino, K.; Robert, J.; Shiku, H. Electrochemical printing of calcium alginate/gelatin hydrogel. Electrochim. Acta, 2018, 281, 429-436.
[http://dx.doi.org/10.1016/j.electacta.2018.05.124]
[35]
Ding, F.; Qian, X.; Zhang, Q.; Wu, H.; Liu, Y.; Xiao, L.; Deng, H.; Du, Y.; Shi, X. Electrochemically induced reversible formation of carboxymethyl chitin hydrogel and tunable protein release. New J. Chem., 2015, 39(2), 1253-1259.
[http://dx.doi.org/10.1039/C4NJ01704H]
[36]
Jin, Z.; Güven, G.; Bocharova, V.; Halámek, J.; Tokarev, I.; Minko, S.; Melman, A.; Mandler, D.; Katz, E. Electrochemically controlled drug-mimicking protein release from iron-alginate thin-films associated with an electrode. ACS Appl. Mater. Interfaces, 2012, 4(1), 466-475.
[http://dx.doi.org/10.1021/am201578m] [PMID: 22200073]
[37]
Geng, Z.; Wang, X.; Guo, X.; Zhang, Z.; Chen, Y.; Wang, Y. Electrodeposition of chitosan based on coordination with metal ions in situ-generated by electrochemical oxidation. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(19), 3331-3338.
[http://dx.doi.org/10.1039/C6TB00336B]
[38]
Ding, F.; Shi, X.; Jiang, Z.; Liu, L.; Cai, J.; Li, Z.; Chen, S.; Du, Y. Electrochemically stimulated drug release from dual stimuli responsive chitin hydrogel. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(12), 1729-1737.
[http://dx.doi.org/10.1039/c3tb00517h]
[39]
Gray, K.M.; Liba, B.D.; Wang, Y.; Cheng, Y.; Rubloff, G.W.; Bentley, W.E.; Montembault, A.; Royaud, I.; David, L.; Payne, G.F. Electrodeposition of a biopolymeric hydrogel: potential for one-step protein electroaddressing. Biomacromolecules, 2012, 13(4), 1181-1189.
[http://dx.doi.org/10.1021/bm3001155] [PMID: 22414205]
[40]
Cheng, Y.; Gray, K.M.; David, L.; Royaud, I.; Payne, G.F.; Rubloff, G.W. Characterization of the cathodic electrodeposition of semicrystalline chitosan hydrogel. Mater. Lett., 2012, 87, 97-100.
[http://dx.doi.org/10.1016/j.matlet.2012.07.075]
[41]
Zhang, X.; He, J. Hydrogen-bonding-supported self-healing antifogging thin films. Sci. Rep., 2015, 5, 9227.
[http://dx.doi.org/10.1038/srep09227] [PMID: 25784188]
[42]
Heydarian, S.; Ranjbar, Z.; Rastegar, S. Electrophoretic deposition behavior of chitosan biopolymer as a function of solvent type. Polym. Plast. Technol. Eng., 2015, 54(11), 1193-1200.
[http://dx.doi.org/10.1080/03602559.2014.1003226]
[43]
Gebhardt, F.; Seuss, S.; Turhan, M.C.; Hornberger, H.; Virtanen, S.; Boccaccini, A.R. Characterization of electrophoretic chitosan coatings on stainless steel. Mater. Lett., 2012, 66(1), 302-304.
[http://dx.doi.org/10.1016/j.matlet.2011.08.088]
[44]
Wang, Y.J.; Lo, T.Y.; Wu, C.H.; Liu, D.M. Electrophoretic coating of amphiphilic chitosan colloids on regulating cellular behaviour. J.R. Soc. Interface, 2013, 10(86), , 0411.
[http://dx.doi.org/10.1098/rsif.2013.0411]
[45]
Sorkhi, L.; Farrokhi Rad, M.; Shahrabi, T. Electrophoretic deposition of chitosan in different alcohols. J. Coat. Technol. Res., 2014, 11(5), 739-746.
[http://dx.doi.org/10.1007/s11998-014-9578-7]
[46]
Yang, C.C.; Lin, C.C.; Liao, J.W.; Yen, S.K. Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater. Sci. Eng. C, 2013, 33(4), 2203-2212.
[http://dx.doi.org/10.1016/j.msec.2013.01.038] [PMID: 23498249]
[47]
Shi, X.; Wu, H.; Li, Y.; Wei, X.; Du, Y. Electrical signals guided entrapment and controlled release of antibiotics on titanium surface. J. Biomed. Mater. Res. A, 2013, 101(5), 1373-1378.
[http://dx.doi.org/10.1002/jbm.a.34432] [PMID: 23077102]
[48]
Wu, L.Q.; Yi, H.M.; Li, S.; Rubloff, G.W.; Bentley, W.E.; Ghodssi, R.; Payne, G.F. Spatially selective deposition of a reactive polysaccharide layer onto a patterned template. Langmuir, 2003, 19(3), 519-524.
[http://dx.doi.org/10.1021/la026518t]
[49]
Bai, Y.H.; Xu, J.J.; Chen, H.Y. Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes. Biosens. Bioelectron., 2009, 24(10), 2985-2990.
[http://dx.doi.org/10.1016/j.bios.2009.03.008] [PMID: 19345085]
[50]
Thinakaran, S.; Loordhuswamy, A.M.; Viswanathan, N.; Rengaswami, G.D.V. Electro-induced coating of chitosan on centrifugal spun matrix - a hybrid composite for biomedical applications. Polym. Plast. Technol. Eng., 2013, 52(10), 991-996.
[http://dx.doi.org/10.1080/03602559.2013.763379]
[51]
Chen, L.; Liu, K.; Ye, J.R.; Shen, Q. Controlled formation of surface hydrophilicity enhanced chitosan film by layer-by-layer electro-assembly. Mater. Sci. Eng. C, 2015, 56, 518-521.
[http://dx.doi.org/10.1016/j.msec.2015.07.021] [PMID: 26249622]
[52]
Wei, X.Q.; Payne, G.F.; Shi, X.W.; Du, Y. Electrodeposition of a biopolymeric hydrogel in track-etched micropores. Soft Matter, 2013, 9(7), 2131.
[http://dx.doi.org/10.1039/c2sm26898a]
[53]
Yan, K.; Ding, F.; Bentley, W.E.; Deng, H.; Du, Y.; Payne, G.F.; Shi, X.W. Coding for hydrogel organization through signal guided self-assembly. Soft Matter, 2014, 10(3), 465-469.
[http://dx.doi.org/10.1039/C3SM52405A] [PMID: 24652449]
[54]
Fusco, S.; Chatzipirpiridis, G.; Sivaraman, K.M.; Ergeneman, O.; Nelson, B.J.; Pané, S. Chitosan electrodeposition for microrobotic drug delivery. Adv. Healthc. Mater., 2013, 2(7), 1037-1044.
[http://dx.doi.org/10.1002/adhm.201200409] [PMID: 23355508]
[55]
Zhao, Y.; Liu, H.; Wang, Z.; Zhang, Q.; Li, Y.; Tian, W.; Tong, Z.; Wang, Y.; Huselstein, C.; Shi, X.; Chen, Y. Electrodeposition to construct mechanically robust chitosan-based multi-channel conduits. Colloids Surf. B Biointerfaces, 2018, 163, 412-418.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.002] [PMID: 29408165]
[56]
Shi, X.W.; Tsao, C.Y.; Yang, X.H.; Liu, Y.; Dykstra, P.; Rubloff, G.W.; Ghodssi, R.; Bentley, W.E.; Payne, G.F. Electroaddressing of cell populations by co-deposition with calcium alginate hydrogels. Adv. Funct. Mater., 2009, 19(13), 2074-2080.
[http://dx.doi.org/10.1002/adfm.200900026]
[57]
Cheng, Y.; Luo, X.; Tsao, C.Y.; Wu, H.C.; Betz, J.; Payne, G.F.; Bentley, W.E.; Rubloff, G.W. Biocompatible multi-address 3D cell assembly in microfluidic devices using spatially programmable gel formation. Lab Chip, 2011, 11(14), 2316-2318.
[http://dx.doi.org/10.1039/c1lc20306a] [PMID: 21629950]
[58]
Ozawa, F.; Ino, K.; Takahashi, Y.; Shiku, H.; Matsue, T. Electrodeposition of alginate gels for construction of vascular-like structures. J. Biosci. Bioeng., 2013, 115(4), 459-461.
[http://dx.doi.org/10.1016/j.jbiosc.2012.10.014] [PMID: 23219023]
[59]
Kojic, N.; Panzer, M.J.; Leisk, G.G.; Raja, W.K.; Kojic, M.; Kaplan, D.L. Ion electrodiffusion governs silk electrogelation. Soft Matter, 2012, 8(26), 2897-2905.
[http://dx.doi.org/10.1039/c2sm25783a] [PMID: 22822409]
[60]
Rammensee, S.; Slotta, U.; Scheibel, T.; Bausch, A.R. Assembly mechanism of recombinant spider silk proteins. Proc. Natl. Acad. Sci. USA, 2008, 105(18), 6590-6595.
[http://dx.doi.org/10.1073/pnas.0709246105] [PMID: 18445655]
[61]
Jin, H.J.; Kaplan, D.L. Mechanism of silk processing in insects and spiders. Nature, 2003, 424(6952), 1057-1061.
[http://dx.doi.org/10.1038/nature01809] [PMID: 12944968]
[62]
Lu, Q.; Huang, Y.; Li, M.; Zuo, B.; Lu, S.; Wang, J.; Zhu, H.; Kaplan, D.L. Silk fibroin electrogelation mechanisms. Acta Biomater., 2011, 7(6), 2394-2400.
[http://dx.doi.org/10.1016/j.actbio.2011.02.032] [PMID: 21345387]
[63]
Wang, S.D.; Zhang, K.Q. Electrogelation and rapid prototyping of Bombyx mori silk fibroin. Mater. Lett., 2016, 169, 5-9.
[http://dx.doi.org/10.1016/j.matlet.2016.01.079]
[64]
Bressner, J.E.; Marelli, B.; Qin, G.; Klinker, L.E.; Zhang, Y.; Kaplan, D.L.; Omenetto, F.G. Rapid fabrication of silk films with controlled architectures via electrogelation. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(31), 4983-4987.
[http://dx.doi.org/10.1039/C4TB00833B]
[65]
Lin, Y.; Xia, X.; Shang, K.; Elia, R.; Huang, W.; Cebe, P.; Leisk, G.; Omenetto, F.; Kaplan, D.L. Tuning chemical and physical cross-links in silk electrogels for morphological analysis and mechanical reinforcement. Biomacromolecules, 2013, 14(8), 2629-2635.
[http://dx.doi.org/10.1021/bm4004892] [PMID: 23859710]
[66]
Zhang, Z.; Qu, Y.; Li, X.; Zhang, S.; Wei, Q.; Shi, Y.; Chen, L. Electrophoretic deposition of tetracycline modified silk fibroin coatings for functionalization of titanium surfaces. Appl. Surf. Sci., 2014, 303, 255-262.
[http://dx.doi.org/10.1016/j.apsusc.2014.02.160]
[67]
Li, Y.; Zhitomirsky, I. Electrodeposition of biopolymer-glucose oxidase composites. Surf. Eng., 2011, 27(9), 698-704.
[http://dx.doi.org/10.1179/1743294411Y.0000000033]
[68]
Qi, P.; Wan, Y.; Zhang, D. Impedimetric biosensor based on cell-mediated bioimprinted films for bacterial detection. Biosens. Bioelectron., 2013, 39(1), 282-288.
[http://dx.doi.org/10.1016/j.bios.2012.07.078] [PMID: 22917919]
[69]
Ordikhani, F.; Tamjid, E.; Simchi, A. Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant-associated infections. Mater. Sci. Eng. C, 2014, 41, 240-248.
[http://dx.doi.org/10.1016/j.msec.2014.04.036] [PMID: 24907757]
[70]
Huang, Y.; Peng, G.; Chen, B.; Yong, P.; Yao, N.; Yang, L.; Pirraco, R.P.; Reis, R.L.; Chen, J. Preparation and characteristics of the sulfonated chitosan derivatives electrodeposited onto 316l stainless steel surface. J. Biomater. Sci. Polym. Ed., 2018, 29(3), 236-256.
[http://dx.doi.org/10.1080/09205063.2017.1409047] [PMID: 29171792]
[71]
Elia, R.; Michelson, C.D.; Perera, A.L.; Brunner, T.F.; Harsono, M.; Leisk, G.G.; Kugel, G.; Kaplan, D.L. Electrodeposited silk coatings for bone implants. J. Biomed. Mater. Res. B Appl. Biomater., 2015, 103(8), 1602-1609.
[http://dx.doi.org/10.1002/jbm.b.33351] [PMID: 25545462]
[72]
Kaya, S.; Boccaccini, A.R. Electrophoretic deposition of zein coatings. J. Coat. Technol. Res., 2017, 14(3), 683-689.
[http://dx.doi.org/10.1007/s11998-016-9885-2]
[73]
Peng, X.; Liu, Y.; Bentley, W.E.; Payne, G.F. Electrochemical fabrication of functional gelatin-based bioelectronic interface. Biomacromolecules, 2016, 17(2), 558-563.
[http://dx.doi.org/10.1021/acs.biomac.5b01491] [PMID: 26752426]
[74]
Ozawa, F.; Ino, K.; Arai, T.; Ramón-Azcón, J.; Takahashi, Y.; Shiku, H.; Matsue, T. Alginate gel microwell arrays using electrodeposition for three-dimensional cell culture. Lab Chip, 2013, 13(15), 3128-3135.
[http://dx.doi.org/10.1039/c3lc50455g] [PMID: 23764965]
[75]
Wang, Y.; Zhang, Z.; Wang, M.; Guo, C.; Liu, H.; Zeng, H.; Duan, X.; Zhou, Y.; Tang, Z. Direct electrodeposition of carboxymethyl cellulose based on coordination deposition method. Cellulose, 2017, 25(1), 105-115.
[http://dx.doi.org/10.1007/s10570-017-1580-7]
[76]
Qu, X.; Liu, H.; Zhang, C.; Lei, Y.; Lei, M.; Xu, M.; Jin, D.; Li, P.; Yin, M.; Payne, G.F.; Liu, C. Electrofabrication of functional materials: Chloramine-based antimicrobial film for infectious wound treatment. Acta Biomater., 2018, 73, 190-203.
[http://dx.doi.org/10.1016/j.actbio.2018.02.028] [PMID: 29505893]
[77]
Cassani, D.A.D.; Altomare, L.; De Nardo, L.; Variola, F. Physicochemical and nanomechanical investigation of electrodeposited chitosan:PEO blends. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(13), 2641-2650.
[http://dx.doi.org/10.1039/C4TB02044H]
[78]
Kong, Z.; Yu, M.; Cheng, K.; Weng, W.; Wang, H.; Lin, J.; Du, P.; Han, G. Incorporation of chitosan nanospheres into thin mineralized collagen coatings for improving the antibacterial effect. Colloids Surf. B Biointerfaces, 2013, 111, 536-541.
[http://dx.doi.org/10.1016/j.colsurfb.2013.07.006] [PMID: 23893027]
[79]
Huang, D.; Ma, K.; Cai, X.; Yang, X.; Hu, Y.; Huang, P.; Wang, F.; Jiang, T.; Wang, Y. Evaluation of antibacterial, angiogenic, and osteogenic activities of green synthesized gap-bridging copper-doped nanocomposite coatings. Int. J. Nanomedicine, 2017, 12, 7483-7500.
[http://dx.doi.org/10.2147/IJN.S141272] [PMID: 29066895]
[80]
Jiang, T.; Zhang, Z.; Zhou, Y.; Liu, Y.; Wang, Z.; Tong, H.; Shen, X.; Wang, Y. Surface functionalization of titanium with chitosan/gelatin via electrophoretic deposition: characterization and cell behavior. Biomacromolecules, 2010, 11(5), 1254-1260.
[http://dx.doi.org/10.1021/bm100050d] [PMID: 20361762]
[81]
Ma, K.; Cai, X.; Zhou, Y.; Zhang, Z.; Jiang, T.; Wang, Y. Osteogenetic property of a biodegradable three-dimensional macroporous hydrogel coating on titanium implants fabricated via EPD. Biomed. Mater., 2014, 9(1), 015008
[http://dx.doi.org/10.1088/1748-6041/9/1/015008] [PMID: 24448607]
[82]
Patel, K.D.; Singh, R.K.; Lee, E.J.; Han, C.M.; Won, J.E.; Knowles, J.C.; Kim, H.W. Tailoring solubility and drug release from electrophoretic deposited chitosan-gelatin films on titanium. Surf. Coat. Tech., 2014, 242, 232-236.
[http://dx.doi.org/10.1016/j.surfcoat.2013.11.049]
[83]
Qi, H.; Chen, Q.; Ren, H.; Wu, X.; Liu, X.; Lu, T. Electrophoretic deposition of dexamethasone-loaded gelatin nanospheres/chitosan coating and its dual function in anti-inflammation and osteogenesis. Colloids Surf. B Biointerfaces, 2018, 169, 249-256.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.029] [PMID: 29783150]
[84]
Song, J.; Chen, Q.; Zhang, Y.; Diba, M.; Kolwijck, E.; Shao, J.; Jansen, J.A.; Yang, F.; Boccaccini, A.R.; Leeuwenburgh, S.C.G. Electrophoretic deposition of chitosan coatings modified with gelatin nanospheres to tune the release of antibiotics. ACS Appl. Mater. Interfaces, 2016, 8(22), 13785-13792.
[http://dx.doi.org/10.1021/acsami.6b03454] [PMID: 27167424]
[85]
Wang, F.; Huang, P.; Huang, D.; Hu, Y.; Ma, K.; Cai, X.; Jiang, T. Preparation and functionalization of acetylsalicylic acid loaded chitosan/gelatin membranes from ethanol-based suspensions via electrophoretic deposition. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(15), 2304-2314.
[http://dx.doi.org/10.1039/C7TB03033A]
[86]
Zhang, Z.; Cheng, X.; Yao, Y.; Luo, J.; Tang, Q.; Wu, H.; Lin, S.; Han, C.; Wei, Q.; Chen, L. Electrophoretic deposition of chitosan/gelatin coatings with controlled porous surface topography to enhance initial osteoblast adhesive responses. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(47), 7584-7595.
[http://dx.doi.org/10.1039/C6TB02122K]
[87]
Ding, F.; Nie, Z.; Deng, H.; Xiao, L.; Du, Y.; Shi, X. Antibacterial hydrogel coating by electrophoretic co-deposition of chitosan/alkynyl chitosan. Carbohydr. Polym., 2013, 98(2), 1547-1552.
[http://dx.doi.org/10.1016/j.carbpol.2013.07.042] [PMID: 24053838]
[88]
Ma, R.; Zhitomirsky, I. Electrophoretic deposition of chitosan-albumin and alginate-albumin films. Surf. Eng., 2011, 27(1), 51-56.
[http://dx.doi.org/10.1179/026708410X12506870724271]
[89]
Wang, Z.; Zhang, X.; Gu, J.; Yang, H.; Nie, J.; Ma, G. Electrodeposition of alginate/chitosan layer-by-layer composite coatings on titanium substrates. Carbohydr. Polym., 2014, 103, 38-45.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.007] [PMID: 24528698]
[90]
Dange-Delbaere, C.; Buron, C.C.; Euvrard, M.; Filiatre, C. Stability and cathodic electrophoretic deposition of polystyrene particles pre-coated with chitosan-alginate multilayer. Colloids Surf. A Physicochem. Eng. Asp., 2016, 493, 1-8.
[http://dx.doi.org/10.1016/j.colsurfa.2016.01.003]
[91]
Zhang, Z.; Jiang, T.; Ma, K.; Cai, X.; Zhou, Y.; Wang, Y. Low temperature electrophoretic deposition of porous chitosan/silk fibroin composite coating for titanium biofunctionalization. J. Mater. Chem., 2011, 21(21), 7705-7713.
[http://dx.doi.org/10.1039/c0jm04164e]
[92]
Sharma, S.; Soni, V.P.; Bellare, J.R. Chitosan reinforced apatite-wollastonite coating by electrophoretic deposition on titanium implants. J. Mater. Sci. Mater. Med., 2009, 20(7), 1427-1436.
[http://dx.doi.org/10.1007/s10856-009-3712-6] [PMID: 19253015]
[93]
Park, K.H.; Kim, S.J.; Hwang, M.J.; Song, H.J.; Park, Y.J. Pulse electrodeposition of hydroxyapatite/chitosan coatings on titanium substrate for dental implant. Colloid Polym. Sci., 2017, 295(10), 1843-1849.
[http://dx.doi.org/10.1007/s00396-017-4166-x]
[94]
Sharma, S.; Patil, D.J.; Soni, V.P.; Sarkate, L.B.; Khandekar, G.S.; Bellare, J.R. Bone healing performance of electrophoretically deposited apatite-wollastonite/chitosan coating on titanium implants in rabbit tibiae. J. Tissue Eng. Regen. Med., 2009, 3(7), 501-511.
[http://dx.doi.org/10.1002/term.186] [PMID: 19621346]
[95]
Sharma, S.; Soni, V.P.; Bellare, J.R. Electrophoretic deposition of nanobiocomposites for orthopedic applications: influence of current density and coating duration. J. Mater. Sci. Mater. Med., 2009, 20(Suppl. 1), S93-S100.
[http://dx.doi.org/10.1007/s10856-008-3490-6] [PMID: 18600432]
[96]
Zhang, J.; Dai, C.S.; Wei, J.; Wen, Z.H. Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate. Appl. Surf. Sci., 2012, 261, 276-286.
[http://dx.doi.org/10.1016/j.apsusc.2012.08.001]
[97]
Hahn, B.D.; Park, D.S.; Choi, J.J.; Ryu, J.; Yoon, W.H.; Choi, J.H.; Kim, H.E.; Kim, S.G. Aerosol deposition of hydroxyapatite-chitosan composite coatings on biodegradable magnesium alloy. Surf. Coat. Tech., 2011, 205(8-9), 3112-3118.
[http://dx.doi.org/10.1016/j.surfcoat.2010.11.029]
[98]
Ionita, D.; Vardaki, M.; Stan, M.S.; Dinischiotu, A.; Demetrescu, I. Enhance stability and in vitro cell response to a bioinspired coating on Zr alloy with increasing chitosan content. J. Bionics Eng., 2017, 14(3), 459-467.
[http://dx.doi.org/10.1016/S1672-6529(16)60411-0]
[99]
Jugowiec, D.; Lukaszczyk, A.; Cieniek, L.; Kowalski, K.; Rumian, L.; Pietryga, K.; Kot, M.; Pamula, E.; Moskalewicz, T. Influence of the electrophoretic deposition route on the microstructure and properties of nano-hydroxyapatite/chitosan coatings on the Ti-13Nb-13Zr alloy. Surf. Coat. Tech., 2017, 324, 64-79.
[http://dx.doi.org/10.1016/j.surfcoat.2017.05.056]
[100]
Moskalewicz, T.; Kot, M.; Seuss, S.; Kedzierska, A.; Czyrska Filemonowicz, A.; Boccaccini, A.R. Electrophoretic deposition and characterization of Ha/chitosan nanocomposite coatings on ti6al7nb alloy. Met. Mater. Int., 2015, 21(1), 96-103.
[http://dx.doi.org/10.1007/s12540-015-1011-y]
[101]
Tang, S.; Tian, B.; Guo, Y.J.; Zhu, Z.A.; Guo, Y.P. Chitosan/carbonated hydroxyapatite composite coatings: Fabrication, structure and biocompatibility. Surf. Coat. Tech., 2014, 251, 210-216.
[http://dx.doi.org/10.1016/j.surfcoat.2014.04.028]
[102]
Mahmoodi, S.; Sorkhi, L.; Farrokhi Rad, M.; Shahrabi, T. Electrophoretic deposition of hydroxyapatite-chitosan nanocomposite coatings in different alcohols. Surf. Coat. Tech., 2013, 216, 106-114.
[http://dx.doi.org/10.1016/j.surfcoat.2012.11.032]
[103]
Al-Rashidy, Z.M.; Farag, M.M.; Ghany, N.A.A.; Ibrahim, A.M.; Abdel-Fattah, W.I. Orthopaedic bioactive glass/chitosan composites coated 316L stainless steel by green electrophoretic co-deposition. Surf. Coat. Tech., 2018, 334, 479-490.
[http://dx.doi.org/10.1016/j.surfcoat.2017.11.052]
[104]
Heise, S.; Hoehlinger, M.; Torres Hernandez, Y.; Pavon Palacio, J.J.; Rodriquez Ortiz, J.A.; Wagener, V.; Virtanen, S.; Boccaccini, A.R. Electrophoretic deposition and characterization of chitosan/bioactive glass composite coatings on Mg alloy substrates. Electrochim. Acta, 2017, 232, 456-464.
[http://dx.doi.org/10.1016/j.electacta.2017.02.081]
[105]
Hoehlinger, M.; Heise, S.; Wagener, V.; Boccaccini, A.R.; Virtanen, S. Developing surface pre-treatments for electrophoretic deposition of biofunctional chitosan-bioactive glass coatings on a WE43 magnesium alloy. Appl. Surf. Sci., 2017, 405, 441-448.
[http://dx.doi.org/10.1016/j.apsusc.2017.02.049]
[106]
Hong, W.; Guo, F.; Chen, J.; Wang, X.; Zhao, X.; Xiao, P. Bioactive glass-chitosan composite coatings on PEEK: Effects of surface wettability and roughness on the interfacial fracture resistance and in vitro cell response. Appl. Surf. Sci., 2018, 440, 514-523.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.183]
[107]
Jugowiec, D.; Lukaszczyk, A.; Cieniek, L.; Kot, M.; Reczynska, K.; Cholewa-Kowalska, K.; Pamula, E.; Moskalewicz, T. Electrophoretic, deposition and characterization of composite chitosan-based coatings incorporating bioglass and sol-gel glass particles on the Ti-13Nb-13Zr alloy. Surf. Coat. Tech., 2017, 319, 33-46.
[http://dx.doi.org/10.1016/j.surfcoat.2017.03.067]
[108]
Mehdipour, M.; Afshar, A. A study of the electrophoretic deposition of bioactive glass-chitosan composite coating. Ceram. Int., 2012, 38(1), 471-476.
[http://dx.doi.org/10.1016/j.ceramint.2011.07.029]
[109]
Ordikhani, F.; Simchi, A. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential. Appl. Surf. Sci., 2014, 317, 56-66.
[http://dx.doi.org/10.1016/j.apsusc.2014.07.197]
[110]
Patel, K.D.; El-Fiqi, A.; Lee, H-Y.; Singh, R.K.; Kim, D-A.; Lee, H-H.; Kim, H-W. Chitosan-nanobioactive glass electrophoretic coatings with bone regenerative and drug delivering potential. J. Mater. Chem., 2012, 22(47), 24945-24956.
[http://dx.doi.org/10.1039/c2jm33830k]
[111]
Pishbin, F.; Mouriño, V.; Flor, S.; Kreppel, S.; Salih, V.; Ryan, M.P.; Boccaccini, A.R. Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants. ACS Appl. Mater. Interfaces, 2014, 6(11), 8796-8806.
[http://dx.doi.org/10.1021/am5014166] [PMID: 24827466]
[112]
Pishbin, F.; Simchi, A.; Ryan, M.P.; Boccaccini, A.R. A study of the electrophoretic deposition of Bioglass (R) suspensions using the Taguchi experimental design approach. J. Eur. Ceram. Soc., 2010, 30(14), 2963-2970.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2010.03.004]
[113]
Pishbin, F.; Simchi, A.; Ryan, M.P.; Boccaccini, A.R. Electrophoretic deposition of chitosan/45S5 Bioglass (R) composite coatings for orthopaedic applications. Surf. Coat. Tech., 2011, 205(23-24), 5260-5268.
[http://dx.doi.org/10.1016/j.surfcoat.2011.05.026]
[114]
Seuss, S.; Lehmann, M.; Boccaccini, A.R. Alternating current electrophoretic deposition of antibacterial bioactive glass-chitosan composite coatings. Int. J. Mol. Sci., 2014, 15(7), 12231-12242.
[http://dx.doi.org/10.3390/ijms150712231] [PMID: 25007822]
[115]
Turdean, G.L.; Fort, I.C.; Simon, V. In vitro short-time stability of a bioactive glass-chitosan composite coating evaluated by using electrochemical methods. Electrochim. Acta, 2015, 182, 707-714.
[http://dx.doi.org/10.1016/j.electacta.2015.09.132]
[116]
Wagener, V.; Boccaccini, A.R.; Virtanen, S. Protein-adsorption and Ca-phosphate formation on chitosan-bioactive glass composite coatings. Appl. Surf. Sci., 2017, 416, 454-460.
[http://dx.doi.org/10.1016/j.apsusc.2017.04.051]
[117]
Zhou, J.; Cai, X.; Cheng, K.; Weng, W.; Song, C.; Du, P.; Shen, G.; Han, G. Release behaviors of drug loaded chitosan/calcium phosphate coatings on titanium. Thin Solid Films, 2011, 519(15), 4658-4662.
[http://dx.doi.org/10.1016/j.tsf.2011.01.012]
[118]
Lu, X.; Leng, Y.; Zhang, Q. Electrochemical deposition of octacalcium phosphate micro-fiber/chitosan composite coatings on titanium substrates. Surf. Coat. Tech., 2008, 202(13), 3142-3147.
[http://dx.doi.org/10.1016/j.surfcoat.2007.11.024]
[119]
Shao, Z.; Xia, J.; Zhang, Y.; Jiang, H.; Li, G. Preparation of calcium phosphate/chitosan membranes by electrochemical deposition technique. Mater. Manuf. Process., 2016, 31(1), 53-61.
[http://dx.doi.org/10.1080/10426914.2015.1037920]
[120]
Wu, C.; Wen, Z.; Dai, C.; Lu, Y.; Yang, F. Fabrication of calcium phosphate/chitosan coatings on AZ91D magnesium alloy with a novel method. Surf. Coat. Tech., 2010, 204(20), 3336-3347.
[http://dx.doi.org/10.1016/j.surfcoat.2010.03.045]
[121]
Molaei, A.; Amadeh, A.; Yari, M.; Reza Afshar, M. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate. Mater. Sci. Eng. C, 2016, 59, 740-747.
[http://dx.doi.org/10.1016/j.msec.2015.10.073] [PMID: 26652428]
[122]
Zhao, P.; Liu, Y.; Xiao, L.; Deng, H.; Du, Y.; Shi, X. Electrochemical deposition to construct a nature inspired multilayer chitosan/layered double hydroxides hybrid gel for stimuli responsive release of protein. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(38), 7577-7584.
[http://dx.doi.org/10.1039/C5TB01056J]
[123]
Zhao, P.; Zhao, Y.; Xiao, L.; Deng, H.; Du, Y.; Chen, Y.; Shi, X. Electrodeposition to construct free-standing chitosan/layered double hydroxides hydro-membrane for electrically triggered protein release. Colloids Surf. B Biointerfaces, 2017, 158, 474-479.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.024] [PMID: 28735219]
[124]
Patel, M.K.; Ali, M.A.; Zafaryab, M.; Agrawal, V.V.; Rizvi, M.M.A.; Ansari, Z.A.; Ansari, S.G.; Malhotra, B.D. Biocompatible nanostructured magnesium oxide-chitosan platform for genosensing application. Biosens. Bioelectron., 2013, 45, 181-188.
[http://dx.doi.org/10.1016/j.bios.2012.12.055] [PMID: 23500361]
[125]
Kamil Reza, K.; Singh, N.; Yadav, S.K.; Singh, M.K.; Biradar, A.M. Pearl shaped highly sensitive Mn3O4 nanocomposite interface for biosensor applications. Biosens. Bioelectron., 2014, 62, 47-51.
[http://dx.doi.org/10.1016/j.bios.2014.06.013] [PMID: 24976150]
[126]
Das, M.; Dhand, C.; Sumana, G.; Srivastava, A.K.; Nagarajan, R.; Nain, L.; Iwamoto, M.; Manaka, T.; Malhotra, B.D. Electrophoretic fabrication of chitosan-zirconium-oxide nanobiocomposite platform for nucleic acid detection. Biomacromolecules, 2011, 12(3), 540-547.
[http://dx.doi.org/10.1021/bm1013074] [PMID: 21218766]
[127]
Solanki, S.; Pandey, C.M.; Soni, A.; Sumana, G.; Biradar, A.M. An amperometric bienzymatic biosensor for the triglyceride tributyrin using an indium tin oxide electrode coated with electrophoretically deposited chitosan-wrapped nanozirconia. Mikrochim. Acta, 2016, 183(1), 167-176.
[http://dx.doi.org/10.1007/s00604-015-1618-1]
[128]
Yang, S.; Zheng, Y.; Zhang, X.; Ding, S.; Li, L.; Zha, W. Molecularly imprinted electrochemical sensor based on the synergic effect of nanoporous gold and copper nanoparticles for the determination of cysteine. J. Solid State Electrochem., 2016, 20(7), 2037-2044.
[http://dx.doi.org/10.1007/s10008-016-3213-8]
[129]
Kayan, D.B.; Kocak, D. Enhanced catalytic activity of ppy-coated pencil electrode in the presence of chitosan and Au nanoparticles for hydrogen evolution reaction. J. Solid State Electrochem., 2017, 21(10), 2791-2798.
[http://dx.doi.org/10.1007/s10008-017-3605-4]
[130]
Wang, Q.; Zheng, J.; Zhang, H. A novel formaldehyde sensor containing AgPd alloy nanoparticles electrodeposited on an ionic liquid-chitosan composite film. J. Electroanal. Chem. (Lausanne Switz.), 2012, 674, 1-6.
[http://dx.doi.org/10.1016/j.jelechem.2012.02.009]
[131]
Li, P.; Zhang, X.; Xu, R.; Wang, W.; Liu, X.; Yeung, K.W.K.; Chu, P.K. Electrochemically deposited chitosan/Ag complex coatings on biomedical NiTi alloy for antibacterial application. Surf. Coat. Tech., 2013, 232, 370-375.
[http://dx.doi.org/10.1016/j.surfcoat.2013.05.037]
[132]
Karbowniczek, J.; Cordero-Arias, L.; Virtanen, S.; Misra, S.K.; Valsami-Jones, E.; Tuchscherr, L.; Rutkowski, B.; Górecki, K.; Bała, P.; Czyrska-Filemonowicz, A.; Boccaccini, A.R. Electrophoretic deposition of organic/inorganic composite coatings containing ZnO nanoparticles exhibiting antibacterial properties. Mater. Sci. Eng. C, 2017, 77, 780-789.
[http://dx.doi.org/10.1016/j.msec.2017.03.180] [PMID: 28532093]
[133]
Cordero-Arias, L.; Cabanas-Polo, S.; Gao, H.; Gilabert, J.; Sanchez, E.; Roether, J.A.; Schubert, D.W.; Virtanen, S.; Boccaccini, A.R. Electrophoretic deposition of nanostructured-TiO2/chitosan composite coatings on stainless steel. RSC Advances, 2013, 3(28), 11247-11254.
[http://dx.doi.org/10.1039/c3ra40535d]
[134]
Singh, R.K.; Awasthi, S.; Dhayalan, A.; Ferreira, J.M.F.; Kannan, S. Deposition, structure, physical and invitro characteristics of Ag-doped β-Ca3(PO4)2/chitosan hybrid composite coatings on Titanium metal. Mater. Sci. Eng. C, 2016, 62, 692-701.
[http://dx.doi.org/10.1016/j.msec.2016.02.013] [PMID: 26952474]
[135]
Wu, Z.; Feng, W.; Feng, Y.; Liu, Q.; Xu, X.; Sekino, T.; Fujii, A.; Ozaki, M. Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties. Carbon, 2007, 45(6), 1212-1218.
[http://dx.doi.org/10.1016/j.carbon.2007.02.013]
[136]
Jia, F.L.; Gong, J.M.; Wong, K.W.; Du, R.X. Simple co-electrodeposition of functionalized multi-walled carbon nanotubes/chitosan composite coating on mainspring for enhanced modulus of elasticity. Nanotechnology, 2009, 20(1), 015701
[http://dx.doi.org/10.1088/0957-4484/20/1/015701] [PMID: 19417260]
[137]
Nawrotek, K.; Tylman, M.; Decherchi, P.; Marqueste, T.; Rudnicka, K.; Gatkowska, J.; Wieczorek, M. Assessment of degradation and biocompatibility of electrodeposited chitosan and chitosan-carbon nanotube tubular implants. J. Biomed. Mater. Res. A, 2016, 104(11), 2701-2711.
[http://dx.doi.org/10.1002/jbm.a.35812] [PMID: 27325550]
[138]
Annamalai, S.K.; Palani, B.; Pillai, K.C. Highly stable and redox active nano copper species stabilized functionalized-multiwalled carbon nanotube/chitosan modified electrode for efficient hydrogen peroxide detection. Colloids Surf. A Physicochem. Eng. Asp., 2012, 395, 207-216.
[http://dx.doi.org/10.1016/j.colsurfa.2011.12.032]
[139]
Ozhukil Kollath, V.; Chen, Q.; Mullens, S.; Luyten, J.; Traina, K.; Boccaccini, A.R.; Cloots, R. Electrophoretic deposition of hydroxyapatite and hydroxyapatite-alginate on rapid prototyped 3D Ti6Al4V scaffolds. J. Mater. Sci., 2015, 51(5), 2338-2346.
[http://dx.doi.org/10.1007/s10853-015-9543-6]
[140]
Chen, Q.; de Larraya, U.P.; Garmendia, N.; Lasheras-Zubiate, M.; Cordero-Arias, L.; Virtanen, S.; Boccaccini, A.R. Electrophoretic deposition of cellulose nanocrystals (CNs) and CNs/alginate nanocomposite coatings and free standing membranes. Colloids Surf. B Biointerfaces, 2014, 118, 41-48.
[http://dx.doi.org/10.1016/j.colsurfb.2014.03.022] [PMID: 24727117]
[141]
Yang, X.; Kim, E.; Liu, Y.; Shi, X.W.; Rubloff, G.W.; Ghodssi, R.; Bentley, W.E.; Pancer, Z.; Payne, G.F. In-film bioprocessing and immunoanalysis with electroaddressable stimuli-responsive polysaccharides. Adv. Funct. Mater., 2010, 20(10), 1645-1652.
[http://dx.doi.org/10.1002/adfm.200902092]
[142]
Sun, F.; Zhitomirsky, I. Electrodeposition of hyaluronic acid and composite films. Surf. Eng., 2009, 25(8), 621-627.
[http://dx.doi.org/10.1179/026708408X343573]
[143]
Molaei, A.; Yari, M.; Afshar, M.R. Modification of electrophoretic deposition of chitosan-bioactive glass-hydroxyapatite nanocomposite coatings for orthopedic applications by changing voltage and deposition time. Ceram. Int., 2015, 41(10), 14537-14544.
[http://dx.doi.org/10.1016/j.ceramint.2015.07.170]
[144]
Molaei, A.; Yari, M.; Afshar, M.R. Investigation of halloysite nanotube content on electrophoretic deposition (EPD) of chitosan-bioglass-hydroxyapatite-halloysite nanotube nanocomposites films in surface engineering. Appl. Clay Sci., 2017, 135, 75-81.
[http://dx.doi.org/10.1016/j.clay.2016.09.008]
[145]
Pang, X.; Casagrande, T.; Zhitomirsky, I. Electrophoretic deposition of hydroxyapatite-CaSiO3-chitosan composite coatings. J. Colloid Interface Sci., 2009, 330(2), 323-329.
[http://dx.doi.org/10.1016/j.jcis.2008.10.070] [PMID: 19012892]
[146]
Shi, Y.Y.; Li, M.; Liu, Q.; Jia, Z.J.; Xu, X.C.; Cheng, Y.; Zheng, Y.F. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate. J. Mater. Sci. Mater. Med., 2016, 27(3), 48.
[http://dx.doi.org/10.1007/s10856-015-5634-9] [PMID: 26758895]
[147]
Suo, L.; Jiang, N.; Wang, Y.; Wang, P.; Chen, J.; Pei, X.; Wang, J.; Wan, Q. The enhancement of osseointegration using a graphene oxide/chitosan/hydroxyapatite composite coating on titanium fabricated by electrophoretic deposition. J. Biomed. Mater. Res. B Appl. Biomater., 2019, 107(3), 635-645.
[PMID: 29802685]
[148]
Farrokhi-Rad, M.; Shahrabi, T.; Mahmoodi, S.; Khanmohammadi, S. Electrophoretic deposition of hydroxyapatite-chitosan-CNTs nanocomposite coatings. Ceram. Int., 2017, 43(5), 4663-4669.
[http://dx.doi.org/10.1016/j.ceramint.2016.12.139]
[149]
Pang, X.; Zhitomirsky, I. Electrodeposition of hydroxyapatite-silver-chitosan nanocomposite coatings. Surf. Coat. Tech., 2008, 202(16), 3815-3821.
[http://dx.doi.org/10.1016/j.surfcoat.2008.01.022]
[150]
Sun, F.; Pang, X.; Zhitomirsky, I. Electrophoretic deposition of composite hydroxyapatite-chitosan-heparin coatings. J. Mater. Process. Technol., 2009, 209(3), 1597-1606.
[http://dx.doi.org/10.1016/j.jmatprotec.2008.04.007]
[151]
Sun, B.; Zhang, M.; Shen, J.; He, Z.; Fatehi, P.; Ni, Y. Applications of cellulose-based materials in sustained drug delivery systems. Curr. Med. Chem., 2019, 26(14), 2485-2501.
[http://dx.doi.org/10.2174/0929867324666170705143308] [PMID: 28685683]
[152]
Ding, F.; Fu, J.; Tao, C.; Yu, Y.; He, X.; Gao, Y.; Zhang, Y. Recent advances of chitosan and its derivatives in biomedical applications. Curr. Med. Chem., 2019, 26, 1-22.
[http://dx.doi.org/10.2174/0929867326666190405151538] [PMID: 30961477]
[153]
Dilnawaz, F. Polymeric biomaterial and lipid based nanoparticles for oral drug delivery. Curr. Med. Chem., 2017, 24(22), 2423-2438.
[http://dx.doi.org/10.2174/0929867323666161028160004] [PMID: 27804879]
[154]
Zhang, L.; Peng, X.; Zhong, L.; Chua, W.; Xiang, Z.; Sun, R. Lignocellulosic biomass derived functional materials: synthesis and applications in biomedical engineering. Curr. Med. Chem., 2019, 26(14), 2456-2474.
[http://dx.doi.org/10.2174/0929867324666170918122125] [PMID: 28925867]
[155]
Cao, J.; Li, X.; Tian, H. Metal-Organic Framework (MOF)-based drug delivery. Curr. Med. Chem., 2019, 26, 1-21.
[http://dx.doi.org/10.2174/0929867326666190618152518] [PMID: 31215374]
[156]
Oshiro-Junior, J.A.; Alves, R.C.; Hanck-Silva, G.; Sato, M.R.; Rodero, C.; Eloy, J.O.; Chorilli, M. Stimuli-responsive drug delivery nanocarriers in the treatment of breast cancer. Curr. Med. Chem., 2018, 25, 1-19.
[http://dx.doi.org/10.2174/0929867325666181009120610] [PMID: 30306849]
[157]
Dutra, G.V.S.; Neto, W.S.; Dutra, J.P.S.; Machado, F. Implantable medical devices and tissue engineering: An overview of manufacturing processes and the use of polymeric matrices for manufacturing and coating their surfaces. Curr. Med. Chem., 2018, 25, 1-8.
[http://dx.doi.org/10.2174/0929867325666180914110119] [PMID: 30215330]
[158]
Chen, Q.; Li, W.; Yao, Q.; Liang, R.; Pérez-Garcia, R.; Munoz, J.; Boccaccini, A.R. Multilayered drug delivery coatings composed of daidzein-loaded PHBV microspheres embedded in a biodegradable polymer matrix by electrophoretic deposition. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(29), 5035-5045.
[http://dx.doi.org/10.1039/C6TB00113K]
[159]
Chen, Q.; Li, W.; Goudouri, O.M.; Ding, Y.; Cabanas-Polo, S.; Boccaccini, A.R. Electrophoretic deposition of antibiotic loaded PHBV microsphere-alginate composite coating with controlled delivery potential. Colloids Surf. B Biointerfaces, 2015, 130, 199-206.
[http://dx.doi.org/10.1016/j.colsurfb.2015.04.009] [PMID: 25921640]
[160]
Ma, K.; Huang, D.; Cai, J.; Cai, X.; Gong, L.; Huang, P.; Wang, Y.; Jiang, T. Surface functionalization with strontium-containing nanocomposite coatings via EPD. Colloids Surf. B Biointerfaces, 2016, 146, 97-106.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.036] [PMID: 27262259]
[161]
Ma, K.; Gong, L.; Cai, X.; Huang, P.; Cai, J.; Huang, D.; Jiang, T. A green single-step procedure to synthesize Ag-containing nanocomposite coatings with low cytotoxicity and efficient antibacterial properties. Int. J. Nanomedicine, 2017, 12, 3665-3679.
[http://dx.doi.org/10.2147/IJN.S130857] [PMID: 28553106]
[162]
Guo, X.; Xu, D.; Zhao, Y.; Gao, H.; Shi, X.; Cai, J.; Deng, H.; Chen, Y.; Du, Y. Electroassembly of chitin nanoparticles to construct freestanding hydrogels and high porous aerogels for wound healing. ACS Appl. Mater. Interfaces, 2019, 11(38), 34766-34776.
[http://dx.doi.org/10.1021/acsami.9b13063] [PMID: 31429547]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy