Review Article

白藜芦醇在调节人类疾病中的microRNA中的作用:从癌症到炎症障碍

卷 28, 期 2, 2021

发表于: 12 December, 2019

页: [360 - 376] 页: 17

弟呕挨: 10.2174/0929867326666191212102407

价格: $65

摘要

癌症和炎症性疾病是世界范围内两个重要的公共卫生问题,具有重大的社会经济影响。尽管有一些努力,目前的治疗平台有严重的局限性。因此,开发新的治疗策略来治疗这些疾病是当务之急。除了目前的治疗方法外,天然化合物的利用也为癌症和炎症疾病的治疗开辟了新的视野。这些天然化合物既可以单独使用,也可以与标准的癌症治疗方式(如化疗、放疗和免疫治疗)联合使用。白藜芦醇是一种多酚化合物,存在于葡萄和其他食物中。研究发现,该药物具有广泛的药理作用,包括抗癌、抗炎、抗微生物和抗氧化活性。近年来,白藜芦醇的抗肿瘤和抗炎作用已成为临床和临床前研究的热点。越来越多的证据表明,白藜芦醇通过靶向多种细胞和分子机制发挥其治疗作用。在白藜芦醇调控的细胞和分子靶标中,microRNA (miRNAs)已成为关键靶标。miRNA是短的非编码RNA,起表观遗传调节作用。这些分子参与了癌症和炎症疾病的起始和进展的许多过程。在此,我们总结了在癌症和炎症疾病中直接/间接受白藜芦醇影响的各种miRNA。

关键词: 白藜芦醇,microRNA,癌症,治疗,非编码RNA,非癌症疾病。

[1]
Latruffe, N.; Rifler, J.P. Bioactive polyphenols from grapes and wine emphasized with resveratrol. Curr. Pharm. Des., 2013, 19(34), 6053-6063.
[http://dx.doi.org/10.2174/1381612811319340002] [PMID: 23448444]
[2]
Lin, H.Y.; Delmas, D.; Vang, O.; Hsieh, T.C.; Lin, S.; Cheng, G.Y.; Chiang, H.L.; Chen, C.E.; Tang, H.Y.; Crawford, D.R.; Whang-Peng, J.; Hwang, J.; Liu, L.F.; Wu, J.M. Mechanisms of ceramide-induced COX-2-dependent apoptosis in human ovarian cancer OVCAR-3 cells partially overlapped with resveratrol. J. Cell. Biochem., 2013, 114(8), 1940-1954.
[http://dx.doi.org/10.1002/jcb.24539] [PMID: 23495037]
[3]
Limagne, E.; Lançon, A.; Delmas, D.; Cherkaoui-Malki, M.; Latruffe, N. Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages. Nutrients, 2016, 8(5)E280
[http://dx.doi.org/10.3390/nu8050280] [PMID: 27187448]
[4]
Akbari, M.; Tamtaji, O.R.; Lankarani, K.B.; Tabrizi, R.; Dadgostar, E.; Kolahdooz, F.; Jamilian, M.; Mirzaei, H.; Asemi, Z. The Effects of Resveratrol Supplementation on Endothelial Function and Blood Pressures Among Patients with Metabolic Syndrome and Related Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. High Blood Press. Cardiovasc. Prev., 2019, 26(4), 305-319.
[http://dx.doi.org/10.1007/s40292-019-00324-6] [PMID: 31264084]
[5]
Davoodvandi, A.; Sahebnasagh, R.; Mardanshah, O.; Asemi, Z.; Nejati, M.; Shahrzad, M.K.; Mirzaei, H.R.; Mirzaei, H. Medicinal plants as natural polarizers of macrophages: Phytochemicals and Pharmacological effects. Curr. Pharm. Des., 2019.
[http://dx.doi.org/10.2174/1381612825666190829154934] [PMID: 31465276]
[6]
Honari, M.; Shafabakhsh, R.; Reiter, R.J.; Mirzaei, H.; Asemi, Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: focus on molecular mechanisms. Cancer Cell Int., 2019, 19, 180.
[http://dx.doi.org/10.1186/s12935-019-0906-y] [PMID: 31341423]
[7]
Mirzaei, H.R.; Sahebkar, A.; Salehi, R.; Nahand, J.S.; Karimi, E.; Jaafari, M.R.; Mirzaei, H. Boron neutron capture therapy: Moving toward targeted cancer therapy. J. Cancer Res. Ther., 2016, 12(2), 520-525.
[http://dx.doi.org/10.4103/0973-1482.176167] [PMID: 27461603]
[8]
Saadatpour, Z.; Rezaei, A.; Ebrahimnejad, H.; Baghaei, B.; Bjorklund, G.; Chartrand, M.; Sahebkar, A.; Morovati, H.; Mirzaei, H.R.; Mirzaei, H. Imaging techniques: new avenues in cancer gene and cell therapy. Cancer Gene Ther., 2017, 24(1), 1-5.
[http://dx.doi.org/10.1038/cgt.2016.61] [PMID: 27834357]
[9]
Saadatpour, Z.; Bjorklund, G.; Chirumbolo, S.; Alimohammadi, M.; Ehsani, H.; Ebrahiminejad, H.; Pourghadamyari, H.; Baghaei, B.; Mirzaei, H.R.; Sahebkar, A.; Mirzaei, H.; Keshavarzi, M. Molecular imaging and cancer gene therapy. Cancer Gene Ther., 2016.
[http://dx.doi.org/10.1038/cgt.2016.62] [PMID: 27857058]
[10]
Mirzaei, H.; Sahebkar, A.; Sichani, L.S.; Moridikia, A.; Nazari, S.; Sadri Nahand, J.; Salehi, H.; Stenvang, J.; Masoudifar, A.; Mirzaei, H.R.; Jaafari, M.R. Therapeutic application of multipotent stem cells. J. Cell. Physiol., 2018, 233(4), 2815-2823.
[http://dx.doi.org/10.1002/jcp.25990] [PMID: 28475219]
[11]
Mirzaei, H.R.; Mirzaei, H.; Lee, S.Y.; Hadjati, J.; Till, B.G. Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett., 2016, 380(2), 413-423.
[http://dx.doi.org/10.1016/j.canlet.2016.07.001] [PMID: 27392648]
[12]
Mirzaei, H.; Sahebkar, A.; Jaafari, M.R.; Hadjati, J.; Javanmard, S.H.; Mirzaei, H.R.; Salehi, R. PiggyBac as a novel vector in cancer gene therapy: current perspective. Cancer Gene Ther., 2016, 23(2-3), 45-47.
[http://dx.doi.org/10.1038/cgt.2015.68] [PMID: 26742580]
[13]
Mirzaei, H.; Salehi, H.; Oskuee, R.K.; Mohammadpour, A.; Mirzaei, H.R.; Sharifi, M.R.; Salarinia, R.; Darani, H.Y.; Mokhtari, M.; Masoudifar, A.; Sahebkar, A.; Salehi, R.; Jaafari, M.R. The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model. Cancer Lett., 2018, 419, 30-39.
[http://dx.doi.org/10.1016/j.canlet.2018.01.029] [PMID: 29331419]
[14]
Hesari, A.; Azizian, M.; Sheikhi, A.; Nesaei, A.; Sanaei, S.; Mahinparvar, N.; Derakhshani, M.; Hedayt, P.; Ghasemi, F.; Mirzaei, H. Chemopreventive and therapeutic potential of curcumin in esophageal cancer Current and future status., 2019, 144(6), 1215-1226.
[15]
Banikazemi, Z.; Haji, H.A.; Mohammadi, M.; Taheripak, G.; Iranifar, E.; Poursadeghiyan, M.; Moridikia, A.; Rashidi, B.; Taghizadeh, M.; Mirzaei, H. Diet and cancer prevention: Dietary compounds, dietary MicroRNAs, and dietary exosomes. 2018, 119(1), 185-196.
[16]
Mirzaei, H.; Masoudifar, A.; Sahebkar, A.; Zare, N.; Sadri Nahand, J.; Rashidi, B.; Mehrabian, E.; Mohammadi, M.; Mirzaei, H.R.; Jaafari, M.R.; Micro, R.N.A. MicroRNA: A novel target of curcumin in cancer therapy. J. Cell. Physiol., 2018, 233(4), 3004-3015.
[http://dx.doi.org/10.1002/jcp.26055] [PMID: 28617957]
[17]
Mirzaei, H.; Naseri, G.; Rezaee, R.; Mohammadi, M.; Banikazemi, Z.; Mirzaei, H.R.; Salehi, H.; Peyvandi, M.; Pawelek, J.M.; Sahebkar, A. Curcumin: A new candidate for melanoma therapy? Int. J. Cancer, 2016, 139(8), 1683-1695.
[http://dx.doi.org/10.1002/ijc.30224] [PMID: 27280688]
[18]
Latruffe, N.; Lançon, A.; Frazzi, R.; Aires, V.; Delmas, D.; Michaille, J.J.; Djouadi, F.; Bastin, J.; Cherkaoui-Malki, M. Exploring new ways of regulation by resveratrol involving miRNAs, with emphasis on inflammation. Ann. N. Y. Acad. Sci., 2015, 1348(1), 97-106.
[http://dx.doi.org/10.1111/nyas.12819] [PMID: 26190093]
[19]
Vahdat Lasemi, F.; Mahjoubin Tehran, M.; Aghaee-Bakhtiari, S.H.; Jalili, A.; Jaafari, M.R.; Sahebkar, A. Harnessing nucleic acid-based therapeutics for atherosclerotic cardiovascular disease: state of the art. Drug Discov. Today, 2019, 24(5), 1116-1131.
[http://dx.doi.org/10.1016/j.drudis.2019.04.007] [PMID: 30980904]
[20]
Karius, T.; Schnekenburger, M.; Dicato, M.; Diederich, M. MicroRNAs in cancer management and their modulation by dietary agents. Biochem. Pharmacol., 2012, 83(12), 1591-1601.
[http://dx.doi.org/10.1016/j.bcp.2012.02.004] [PMID: 22342289]
[21]
Lançon, A.; Kaminski, J.; Tili, E.; Michaille, J.J.; Latruffe, N. Control of MicroRNA expression as a new way for resveratrol to deliver its beneficial effects. J. Agric. Food Chem., 2012, 60(36), 8783-8789.
[http://dx.doi.org/10.1021/jf301479v] [PMID: 22571175]
[22]
Tili, E.; Michaille, J.J.; Alder, H.; Volinia, S.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem. Pharmacol., 2010, 80(12), 2057-2065.
[http://dx.doi.org/10.1016/j.bcp.2010.07.003] [PMID: 20637737]
[23]
Shenoy, A.; Blelloch, R.H. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat. Rev. Mol. Cell Biol., 2014, 15(9), 565-576.
[http://dx.doi.org/10.1038/nrm3854] [PMID: 25118717]
[24]
Lin, S.; Gregory, R.I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer, 2015, 15(6), 321-333.
[http://dx.doi.org/10.1038/nrc3932] [PMID: 25998712]
[25]
de Rie, D.; Abugessaisa, I.; Alam, T.; Arner, E.; Arner, P.; Ashoor, H.; Åström, G.; Babina, M.; Bertin, N.; Burroughs, A.M.; Carlisle, A.J.; Daub, C.O.; Detmar, M.; Deviatiiarov, R.; Fort, A.; Gebhard, C.; Goldowitz, D.; Guhl, S.; Ha, T.J.; Harshbarger, J.; Hasegawa, A.; Hashimoto, K.; Herlyn, M.; Heutink, P.; Hitchens, K.J.; Hon, C.C.; Huang, E.; Ishizu, Y.; Kai, C.; Kasukawa, T.; Klinken, P.; Lassmann, T.; Lecellier, C.H.; Lee, W.; Lizio, M.; Makeev, V.; Mathelier, A.; Medvedeva, Y.A.; Mejhert, N.; Mungall, C.J.; Noma, S.; Ohshima, M.; Okada-Hatakeyama, M.; Persson, H.; Rizzu, P.; Roudnicky, F.; Sætrom, P.; Sato, H.; Severin, J.; Shin, J.W.; Swoboda, R.K.; Tarui, H.; Toyoda, H.; Vitting-Seerup, K.; Winteringham, L.; Yamaguchi, Y.; Yasuzawa, K.; Yoneda, M.; Yumoto, N.; Zabierowski, S.; Zhang, P.G.; Wells, C.A.; Summers, K.M.; Kawaji, H.; Sandelin, A.; Rehli, M.; Hayashizaki, Y.; Carninci, P.; Forrest, A.R.R.; de Hoon, M.J.L. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat. Biotechnol., 2017, 35(9), 872-878.
[http://dx.doi.org/10.1038/nbt.3947] [PMID: 28829439]
[26]
O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne), 2018, 9, 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[27]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[28]
Denli, A.M.; Tops, B.B.; Plasterk, R.H.; Ketting, R.F.; Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex. Nature, 2004, 432(7014), 231-235.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[29]
Okada, C.; Yamashita, E.; Lee, S.J.; Shibata, S.; Katahira, J.; Nakagawa, A.; Yoneda, Y.; Tsukihara, T. A high-resolution structure of the pre-microRNA nuclear export machinery.Science, 2009, 326(5957), 1275-1279.
[http://dx.doi.org/10.1126/science.1178705] [PMID: 19965479]
[30]
Yoda, M.; Kawamata, T.; Paroo, Z.; Ye, X.; Iwasaki, S.; Liu, Q.; Tomari, Y. ATP-dependent human RISC assembly pathways. Nat. Struct. Mol. Biol., 2010, 17(1), 17-23.
[http://dx.doi.org/10.1038/nsmb.1733] [PMID: 19966796]
[31]
Meijer, H.A.; Smith, E.M.; Bushell, M. Portland Press Limited, 2014.
[32]
Khvorova, A.; Reynolds, A.; Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell, 2003, 115(2), 209-216.
[http://dx.doi.org/10.1016/S0092-8674(03)00801-8] [PMID: 14567918]
[33]
Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[34]
Babiarz, J.E.; Ruby, J.G.; Wang, Y.; Bartel, D.P.; Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev., 2008, 22(20), 2773-2785.
[http://dx.doi.org/10.1101/gad.1705308] [PMID: 18923076]
[35]
Xie, M.; Li, M.; Vilborg, A.; Lee, N.; Shu, M-D.; Yartseva, V.; Šestan, N.; Steitz, J.A. Mammalian 5′-capped microRNA precursors that generate a single microRNA. Cell, 2013, 155(7), 1568-1580.
[http://dx.doi.org/10.1016/j.cell.2013.11.027] [PMID: 24360278]
[36]
Yang, J-S.; Maurin, T.; Robine, N.; Rasmussen, K.D.; Jeffrey, K.L.; Chandwani, R.; Papapetrou, E.P.; Sadelain, M.; O’Carroll, D.; Lai, E.C. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA, 2010, 107(34), 15163-15168.
[http://dx.doi.org/10.1073/pnas.1006432107] [PMID: 20699384]
[37]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[38]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[39]
Hejmadi, M. Introduction to cancer biology; Bookboon, 2009.
[40]
Devi, K.P.; Rajavel, T.; Daglia, M.; Nabavi, S.F.; Bishayee, A.; Nabavi, S.M. Seminars in cancer biology; Elsevier, 2017, Vol. 46, pp. 146-157.
[41]
Khodadadi Kohlan, A.; Saidijam, M.; Amini, R.; Samadi, P.; Najafi, R. Induction of let-7e gene expression attenuates oncogenic phenotype in HCT-116 colorectal cancer cells through targeting of DCLK1 regulation. Life Sci., 2019, 228, 221-227.
[http://dx.doi.org/10.1016/j.lfs.2019.05.005] [PMID: 31075231]
[42]
Sethi, S.; Li, Y.; Sarkar, F.H. Regulating miRNA by natural agents as a new strategy for cancer treatment. Curr. Drug Targets, 2013, 14(10), 1167-1174.
[http://dx.doi.org/10.2174/13894501113149990189] [PMID: 23834152]
[43]
Nivelle, L.; Hubert, J.; Courot, E.; Jeandet, P.; Aziz, A.; Nuzillard, J-M.; Renault, J-H.; Clément, C.; Martiny, L.; Delmas, D.; Tarpin, M. Anti-cancer activity of resveratrol and derivatives produced by grapevine cell suspensions in a 14 L stirred bioreactor. Molecules, 2017, 22(3), 474.
[http://dx.doi.org/10.3390/molecules22030474] [PMID: 28300789]
[44]
Lakshminarasimhan, M.; Rauh, D.; Schutkowski, M.; Steegborn, C. Sirt1 activation by resveratrol is substrate sequence-selective. Aging (Albany NY), 2013, 5(3), 151-154.
[http://dx.doi.org/10.18632/aging.100542] [PMID: 23524286]
[45]
Liu, B.; Zhou, Z. Activation of SIRT1 by resveratrol requires lamin A. Aging (Albany NY), 2013, 5(2), 94-95.
[http://dx.doi.org/10.18632/aging.100532] [PMID: 23518473]
[46]
Timmers, S.; Auwerx, J.; Schrauwen, P. The journey of resveratrol from yeast to human.Aging (Albany NY), 2012, 4(3), 146-1158.
[http://dx.doi.org/10.18632/aging.100445] [PMID: 22436213]
[47]
Ren, Z.; Wang, L.; Cui, J.; Huoc, Z.; Xue, J.; Cui, H.; Mao, Q.; Yang, R. Resveratrol inhibits NF-kB signaling through suppression of p65 and IkappaB kinase activities. Pharmazie, 2013, 68(8), 689-694.
[PMID: 24020126]
[48]
Wu, F.; Cui, L. Resveratrol suppresses melanoma by inhibiting NF-κB/miR-221 and inducing TFG expression. Arch. Dermatol. Res., 2017, 309(10), 823-831.
[http://dx.doi.org/10.1007/s00403-017-1784-6] [PMID: 28936555]
[49]
Otsuka, K.; Yamamoto, Y.; Ochiya, T. Regulatory role of resveratrol, a microRNA-controlling compound, in HNRNPA1 expression, which is associated with poor prognosis in breast cancer. Oncotarget, 2018, 9(37), 24718-24730.
[http://dx.doi.org/10.18632/oncotarget.25339] [PMID: 29872500]
[50]
Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. science 2011, 331(6024), 1559-1564.
[51]
Yang, S-F.; Lee, W-J.; Tan, P.; Tang, C-H.; Hsiao, M.; Hsieh, F-K.; Chien, M-H. Upregulation of miR-328 and inhibition of CREB-DNA-binding activity are critical for resveratrol-mediated suppression of matrix metalloproteinase-2 and subsequent metastatic ability in human osteosarcomas.Oncotarget 2015, 6(5), 2736-2753.
[http://dx.doi.org/10.18632/oncotarget.3088] [PMID: 25605016]
[52]
Wong, R.S. Apoptosis in cancer: from pathogenesis to treatment. Journal of experimental & clinical cancer research. CR (East Lansing Mich.), 2011, 30, 87.
[53]
Kong, Y.; Chen, J.; Zhou, Z.; Xia, H.; Qiu, M-H.; Chen, C. Cucurbitacin E induces cell cycle G2/M phase arrest and apoptosis in triple negative breast cancer. PLoS One, 2014, 9(7)e103760
[http://dx.doi.org/10.1371/journal.pone.0103760] [PMID: 25072848]
[54]
Wang, Z.; Li, W.; Meng, X.; Jia, B. Resveratrol induces gastric cancer cell apoptosis via reactive oxygen species, but independent of sirtuin1. Clin. Exp. Pharmacol. Physiol., 2012, 39(3), 227-232.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05660.x] [PMID: 22211760]
[55]
Tan, T-W.; Tsai, H-R.; Lu, H-F.; Lin, H-L.; Tsou, M-F.; Lin, Y-T.; Tsai, H-Y.; Chen, Y-F.; Chung, J-G. Curcumin-induced cell cycle arrest and apoptosis in human acute promyelocytic leukemia HL-60 cells via MMP changes and caspase-3 activation. Anticancer Res., 2006, 26(6B), 4361-4371.
[PMID: 17201156]
[56]
Venkatadri, R.; Muni, T.; Iyer, A.K.; Yakisich, J.S.; Azad, N. Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death. Cell Death Dis., 2016, 7(2)e2104
[http://dx.doi.org/10.1038/cddis.2016.6] [PMID: 26890143]
[57]
Wang, G.; Dai, F.; Yu, K.; Jia, Z.; Zhang, A.; Huang, Q.; Kang, C.; Jiang, H.; Pu, P. Resveratrol inhibits glioma cell growth via targeting oncogenic microRNAs and multiple signaling pathways.Int. J. Oncol., 2015, 46(4), 1739-1747.
[http://dx.doi.org/10.3892/ijo.2015.2863] [PMID: 25646654]
[58]
Kumazaki, M.; Noguchi, S.; Yasui, Y.; Iwasaki, J.; Shinohara, H.; Yamada, N.; Akao, Y. Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J. Nutr. Biochem., 2013, 24(11), 1849-1858.
[http://dx.doi.org/10.1016/j.jnutbio.2013.04.006] [PMID: 23954321]
[59]
Du, M.; Zhang, Z.; Gao, T. Piceatannol induced apoptosis through up-regulation of microRNA-181a in melanoma cells. Biol. Res., 2017, 50(1), 36.
[http://dx.doi.org/10.1186/s40659-017-0141-8] [PMID: 29041990]
[60]
Wu, H.; Wang, Y.; Wu, C.; Yang, P.; Li, H.; Li, Z. Resveratrol induces cancer cell apoptosis through MiR-326/PKM2-mediated ER stress and mitochondrial fission. J. Agric. Food Chem., 2016, 64(49), 9356-9367.
[http://dx.doi.org/10.1021/acs.jafc.6b04549] [PMID: 27960279]
[61]
Karimi Dermani, F.; Saidijam, M.; Amini, R.; Mahdavinezhad, A.; Heydari, K.; Najafi, R. Resveratrol inhibits proliferation, invasion, and epithelial–mesenchymal transition by increasing miR‐200c expression in HCT‐116 colorectal cancer cells. J. Cell. Biochem., 2017, 118(6), 1547-1555.
[http://dx.doi.org/10.1002/jcb.25816] [PMID: 27918105]
[62]
Zhou, W.; Wang, S.; Ying, Y.; Zhou, R.; Mao, P. miR-196b/miR-1290 participate in the antitumor effect of resveratrol via regulation of IGFBP3 expression in acute lymphoblastic leukemia. Oncol. Rep., 2017, 37(2), 1075-1083.
[http://dx.doi.org/10.3892/or.2016.5321] [PMID: 28000876]
[63]
Dhar, S.; Kumar, A.; Rimando, A.M.; Zhang, X.; Levenson, A.S. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer. Oncotarget, 2015, 6(29), 27214-27226.
[http://dx.doi.org/10.18632/oncotarget.4877] [PMID: 26318586]
[64]
Ren, X.; Bai, X.; Zhang, X.; Li, Z.; Tang, L.; Zhao, X.; Li, Z.; Ren, Y.; Wei, S.; Wang, Q.; Liu, C.; Ji, J. Quantitative nuclear proteomics identifies that miR-137-mediated EZH2 reduction regulates resveratrol-induced apoptosis of neuroblastoma cells. Mol. Cell. Proteomics, 2015, 14(2), 316-328.
[http://dx.doi.org/10.1074/mcp.M114.041905] [PMID: 25505154]
[65]
Yan, B.; Cheng, L.; Jiang, Z.; Chen, K.; Zhou, C.; Sun, L.; Cao, J.; Qian, W.; Li, J.; Shan, T. Resveratrol Inhibits ROS-Promoted Activation and Glycolysis of Pancreatic Stellate Cells via Suppression of miR-21. Oxidative medicine and cellular longev.ity, 2018, 2018
[66]
Liu, P.; Liang, H.; Xia, Q.; Li, P.; Kong, H.; Lei, P.; Wang, S.; Tu, Z. Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clin. Transl. Oncol., 2013, 15(9), 741-746.
[http://dx.doi.org/10.1007/s12094-012-0999-4] [PMID: 23359184]
[67]
Shen, Y-A.; Lin, C-H.; Chi, W-H.; Wang, C-Y.; Hsieh, Y.T.; Wei, Y-H.; Chen, Y-J. Resveratrol impedes the stemness, epithelial-mesenchymal transition, and metabolic reprogramming of cancer stem cells in nasopharyngeal carcinoma through p53 activation.Evidence-based complementary and alternative medicine 2013 2013.
[http://dx.doi.org/10.1155/2013/590393]
[68]
Azimi, A.; Hagh, M.F.; Talebi, M.; Yousefi, B. Hossein pour feizi, A.A.; Baradaran, B.; Movassaghpour, A.A.; Shamsasenjan, K.; Khanzedeh, T.; Ghaderi, A.H.; Heydarabad, M.Z. Time-and concentration-dependent effects of resveratrol on miR 15a and miR16-1 expression and apoptosis in the CCRF-CEM acute lymphoblastic leukemia cell line. Asian Pac. J. Cancer Prev., 2015, 16(15), 6463-6468.
[http://dx.doi.org/10.7314/APJCP.2015.16.15.6463] [PMID: 26434860]
[69]
Han, Z.; Yang, Q.; Liu, B.; Wu, J.; Li, Y.; Yang, C.; Jiang, Y. MicroRNA-622 functions as a tumor suppressor by targeting K-Ras and enhancing the anticarcinogenic effect of resveratrol. Carcinogenesis, 2012, 33(1), 131-139.
[http://dx.doi.org/10.1093/carcin/bgr226] [PMID: 22016468]
[70]
Pan, J.; Shen, J.; Si, W.; Du, C.; Chen, D.; Xu, L.; Yao, M.; Fu, P.; Fan, W. Resveratrol promotes MICA/B expression and natural killer cell lysis of breast cancer cells by suppressing c-Myc/miR-17 pathway. Oncotarget, 2017, 8(39), 65743-65758.
[http://dx.doi.org/10.18632/oncotarget.19445] [PMID: 29029468]
[71]
Vislovukh, A.; Kratassiouk, G.; Porto, E.; Gralievska, N.; Beldiman, C.; Pinna, G.; El’skaya, A.; Harel-Bellan, A.; Negrutskii, B.; Groisman, I. Proto-oncogenic isoform A2 of eukaryotic translation elongation factor eEF1 is a target of miR-663 and miR-744. Br. J. Cancer, 2013, 108(11), 2304-2311.
[http://dx.doi.org/10.1038/bjc.2013.243] [PMID: 23695020]
[72]
Bae, S.; Lee, E-M.; Cha, H.J.; Kim, K.; Yoon, Y.; Lee, H.; Kim, J.; Kim, Y-J.; Lee, H.G.; Jeung, H-K.; Min, Y.H.; An, S. Resveratrol alters microRNA expression profiles in A549 human non-small cell lung cancer cells. Mol. Cells, 2011, 32(3), 243-249.
[http://dx.doi.org/10.1007/s10059-011-1037-z] [PMID: 21887509]
[73]
Wang, H.; Feng, H.; Zhang, Y. Resveratrol inhibits hypoxia-induced glioma cell migration and invasion by the p-STAT3/miR-34a axis. Neoplasma, 2016, 63(4), 532-539.
[http://dx.doi.org/10.4149/neo_2016_406] [PMID: 27268916]
[74]
Zhou, C.; Ding, J.; Wu, Y. Resveratrol induces apoptosis of bladder cancer cells via miR21 regulation of the Akt/Bcl2 signaling pathway. Mol. Med. Rep., 2014, 9(4), 1467-1473.
[http://dx.doi.org/10.3892/mmr.2014.1950] [PMID: 24535223]
[75]
Yu, Y.H.; Chen, H.A.; Chen, P.S.; Cheng, Y.J.; Hsu, W.H.; Chang, Y.W.; Chen, Y.H.; Jan, Y.; Hsiao, M.; Chang, T.Y.; Liu, Y.H.; Jeng, Y.M.; Wu, C.H.; Huang, M.T.; Su, Y.H.; Hung, M.C.; Chien, M.H.; Chen, C.Y.; Kuo, M.L.; Su, J.L. MiR-520h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol. Oncogene, 2013, 32(4), 431-443.
[http://dx.doi.org/10.1038/onc.2012.74] [PMID: 22410781]
[76]
Zhang, H.; Jia, R.; Wang, C.; Hu, T.; Wang, F. Piceatannol promotes apoptosis via up-regulation of microRNA-129 expression in colorectal cancer cell lines. Biochem. Biophys. Res. Commun., 2014, 452(3), 775-781.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.150] [PMID: 25218158]
[77]
Del Follo-Martinez, A.; Banerjee, N.; Li, X.; Safe, S.; Mertens-Talcott, S. Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutr. Cancer, 2013, 65(3), 494-504.
[http://dx.doi.org/10.1080/01635581.2012.725194] [PMID: 23530649]
[78]
Sheth, S.; Jajoo, S.; Kaur, T.; Mukherjea, D.; Sheehan, K.; Rybak, L.P.; Ramkumar, V. Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS One, 2012, 7(12)e51655
[http://dx.doi.org/10.1371/journal.pone.0051655] [PMID: 23272133]
[79]
Yang, S.; Li, W.; Sun, H.; Wu, B.; Ji, F.; Sun, T.; Chang, H.; Shen, P.; Wang, Y.; Zhou, D. Resveratrol elicits anti-colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo. BMC Cancer, 2015, 15(1), 969.
[http://dx.doi.org/10.1186/s12885-015-1958-6] [PMID: 26674205]
[80]
Qin, W.; Zhang, K.; Clarke, K.; Weiland, T.; Sauter, E.R. Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue. Nutr. Cancer, 2014, 66(2), 270-277.
[http://dx.doi.org/10.1080/01635581.2014.868910] [PMID: 24447120]
[81]
Saud, S.M.; Li, W.; Morris, N.L.; Matter, M.S.; Colburn, N.H.; Kim, Y.S.; Young, M.R. Resveratrol prevents tumorigenesis in mouse model of Kras activated sporadic colorectal cancer by suppressing oncogenic Kras expression. Carcinogenesis, 2014, 35(12), 2778-2786.
[http://dx.doi.org/10.1093/carcin/bgu209] [PMID: 25280562]
[82]
Hagiwara, K.; Kosaka, N.; Yoshioka, Y.; Takahashi, R.U.; Takeshita, F.; Ochiya, T. Stilbene derivatives promote Ago2-dependent tumour-suppressive microRNA activity. Sci. Rep., 2012, 2, 314.
[http://dx.doi.org/10.1038/srep00314] [PMID: 22423322]
[83]
Wang, C-J.; Guo, H-X.; Han, D-X.; Yu, Z-W.; Zheng, Y.; Jiang, H.; Gao, Y.; Yuan, B.; Zhang, J-B. Pituitary tissue-specific miR-7a-5p regulates FSH expression in rat anterior adenohypophyseal cells.PeerJ, 2019.7e6458.
[PMID: 30993031]
[84]
Jakob, M.; Mattes, L.M.; Küffer, S.; Unger, K.; Hess, J.; Bertlich, M.; Haubner, F.; Ihler, F.; Canis, M.; Weiss, B.G.; Kitz, J. MicroRNA expression patterns in oral squamous cell carcinoma: hsa-mir-99b-3p and hsa-mir-100-5p as novel prognostic markers for oral cancer. Head Neck, 2019, 41(10), 3499-3515.
[http://dx.doi.org/10.1002/hed.25866] [PMID: 31355988]
[85]
Soifer, H.S.; Rossi, J.J.; Saetrom, P. MicroRNAs in disease and potential therapeutic applications.Mol. Ther., 2007, 15(12), 2070-2079.
[http://dx.doi.org/10.1038/sj.mt.6300311] [PMID: 17878899]
[86]
Li, M.; Marin-Muller, C.; Bharadwaj, U.; Chow, K-H.; Yao, Q.; Chen, C. MicroRNAs: control and loss of control in human physiology and disease. World J. Surg., 2009, 33(4), 667-684.
[http://dx.doi.org/10.1007/s00268-008-9836-x] [PMID: 19030926]
[87]
Tili, E.; Michaille, J-J.; Adair, B.; Alder, H.; Limagne, E.; Taccioli, C.; Ferracin, M.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis, 2010, 31(9), 1561-1566.
[http://dx.doi.org/10.1093/carcin/bgq143] [PMID: 20622002]
[88]
Ghiringhelli, F.; Rebe, C.; Hichami, A.; Delmas, D. Immunomodulation and anti-inflammatory roles of polyphenols as anticancer agents.Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 2012, 12(8), 852-873.
[http://dx.doi.org/10.2174/187152012802650048]
[89]
Jin, H.; Zhang, H.; Ma, T.; Lan, H.; Feng, S.; Zhu, H.; Ji, Y. Resveratrol Protects Murine Chondrogenic ATDC5 Cells Against LPS-Induced Inflammatory Injury Through Up-Regulating MiR-146b. Cell. Physiol. Biochem., 2018, 47(3), 972-980.
[http://dx.doi.org/10.1159/000490141] [PMID: 29843156]
[90]
Alghetaa, H.; Mohammed, A.; Sultan, M.; Busbee, P.; Murphy, A.; Chatterjee, S.; Nagarkatti, M.; Nagarkatti, P. Resveratrol protects mice against SEB-induced acute lung injury and mortality by miR-193a modulation that targets TGF-β signalling. J. Cell. Mol. Med., 2018, 22(5), 2644-2655.
[http://dx.doi.org/10.1111/jcmm.13542] [PMID: 29512867]
[91]
Johnson, E.R.; Matthay, M.A. Acute lung injury: epidemiology, pathogenesis, and treatment. J. Aerosol Med. Pulm. Drug Deliv., 2010, 23(4), 243-252.
[http://dx.doi.org/10.1089/jamp.2009.0775] [PMID: 20073554]
[92]
Wang, Q.; Xu, J.; Rottinghaus, G.E.; Simonyi, A.; Lubahn, D.; Sun, G.Y.; Sun, A.Y. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res., 2002, 958(2), 439-447.
[http://dx.doi.org/10.1016/S0006-8993(02)03543-6] [PMID: 12470882]
[93]
Sun, A.Y.; Wang, Q.; Simonyi, A.; Sun, G.Y. Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol. Neurobiol., 2010, 41(2-3), 375-383.
[http://dx.doi.org/10.1007/s12035-010-8111-y] [PMID: 20306310]
[94]
Wang, Z-H.; Zhang, J-L.; Duan, Y-L.; Zhang, Q-S.; Li, G-F.; Zheng, D-L. MicroRNA-214 participates in the neuroprotective effect of Resveratrol via inhibiting α-synuclein expression in MPTP-induced Parkinson’s disease mouse. Biomed. Pharmacother., 2015, 74, 252-256.
[http://dx.doi.org/10.1016/j.biopha.2015.08.025] [PMID: 26349993]
[95]
Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; Geny, B.; Laakso, M.; Puigserver, P.; Auwerx, J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006, 127(6), 1109-1122.
[http://dx.doi.org/10.1016/j.cell.2006.11.013] [PMID: 17112576]
[96]
Rivera, L.; Morón, R.; Sánchez, M.; Zarzuelo, A.; Galisteo, M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring), 2008, 16(9), 2081-2087.
[http://dx.doi.org/10.1038/oby.2008.315] [PMID: 18551111]
[97]
Dal-Pan, A.; Blanc, S.; Aujard, F. Resveratrol suppresses body mass gain in a seasonal non-human primate model of obesity. BMC Physiol., 2010, 10(1), 11.
[http://dx.doi.org/10.1186/1472-6793-10-11] [PMID: 20569453]
[98]
Kim, J.Y.; Kim, E.H.; Park, S.S.; Lim, J.H.; Kwon, T.K.; Choi, K.S. Quercetin sensitizes human hepatoma cells to TRAIL-induced apoptosis via Sp1-mediated DR5 up-regulation and proteasome-mediated c-FLIPS down-regulation. J. Cell. Biochem., 2008, 105(6), 1386-1398.
[http://dx.doi.org/10.1002/jcb.21958] [PMID: 18980244]
[99]
Xie, H.; Lim, B.; Lodish, H.F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes, 2009, 58(5), 1050-1057.
[http://dx.doi.org/10.2337/db08-1299] [PMID: 19188425]
[100]
Gracia, A.; Miranda, J.; Fernández-Quintela, A.; Eseberri, I.; Garcia-Lacarte, M.; Milagro, F.I.; Martínez, J.A.; Aguirre, L.; Portillo, M.P. Involvement of miR-539-5p in the inhibition of de novo lipogenesis induced by resveratrol in white adipose tissue.Food Funct, 2016, 7(3), 1680-1688.
[http://dx.doi.org/10.1039/C5FO01090J] [PMID: 26952965]
[101]
Eseberri, I.; Lasa, A.; Miranda, J.; Gracia, A.; Portillo, M.P. Potential miRNA involvement in the anti-adipogenic effect of resveratrol and its metabolites. PLoS One, 2017, 12(9)e0184875
[http://dx.doi.org/10.1371/journal.pone.0184875] [PMID: 28953910]
[102]
Karuppagounder, S.S.; Pinto, J.T.; Xu, H.; Chen, H-L.; Beal, M.F.; Gibson, G.E. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem. Int., 2009, 54(2), 111-118.
[http://dx.doi.org/10.1016/j.neuint.2008.10.008] [PMID: 19041676]
[103]
Mizutani, K.; Ikeda, K.; Kawai, Y.; Yamori, Y. Resveratrol stimulates the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Biochem. Biophys. Res. Commun., 1998, 253(3), 859-863.
[http://dx.doi.org/10.1006/bbrc.1998.9870] [PMID: 9918820]
[104]
Guo, D.W.; Han, Y.X.; Cong, L.; Liang, D.; Tu, G.J. Resveratrol prevents osteoporosis in ovariectomized rats by regulating microRNA-338-3p. Mol. Med. Rep., 2015, 12(2), 2098-2106.
[http://dx.doi.org/10.3892/mmr.2015.3581] [PMID: 25845653]
[105]
Lukiw, W.J.; Zhao, Y.; Cui, J.G. An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J. Biol. Chem., 2008, 283(46), 31315-31322.
[http://dx.doi.org/10.1074/jbc.M805371200] [PMID: 18801740]
[106]
Aires, V.; Delmas, D.; Djouadi, F.; Bastin, J.; Cherkaoui-Malki, M.; Latruffe, N. Resveratrol-Induced Changes in MicroRNA Expression in Primary Human Fibroblasts Harboring Carnitine-Palmitoyl Transferase-2 Gene Mutation, Leading to Fatty Acid Oxidation Deficiency. Molecules, 2017, 23(1), 7.
[http://dx.doi.org/10.3390/molecules23010007] [PMID: 29271911]
[107]
Xin, Y.; Zhang, H.; Jia, Z.; Ding, X.; Sun, Y.; Wang, Q.; Xu, T. Resveratrol improves uric acid-induced pancreatic β-cells injury and dysfunction through regulation of miR-126. Biomed. Pharmacother., 2018, 102, 1120-1126.
[http://dx.doi.org/10.1016/j.biopha.2018.03.172] [PMID: 29710530]
[108]
Wang, X.; Zhang, Y. Resveratrol alleviates LPS-induced injury in human keratinocyte cell line HaCaT by upregulation of miR-17. Biochem. Biophys. Res. Commun. 2018, 501(1), 106-112.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.184] [PMID: 29704506]
[109]
Keshavarzi, M.; Darijani, M.; Momeni, F.; Moradi, P.; Ebrahimnejad, H.; Masoudifar, A.; Mirzaei, H. Molecular Imaging and Oral Cancer Diagnosis and Therapy. J. Cell. Biochem., 2017, 118(10), 3055-3060.
[http://dx.doi.org/10.1002/jcb.26042] [PMID: 28390191]
[110]
Yang, B.; Ma, S.; Wang, Y.B.; Xu, B.; Zhao, H.; He, Y.Y.; Li, C.W.; Zhang, J.; Cao, Y.K.; Feng, Q.Z. Resveratrol exerts protective effects on anoxia/reoxygenation injury in cardiomyocytes via miR-34a/Sirt1 signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(12), 2734-2741.
[PMID: 27383330]
[111]
Zhang, Y.; Lu, Y.; Ong’achwa, M.J.; Ge, L.; Qian, Y.; Chen, L.; Hu, X.; Li, F.; Wei, H.; Zhang, C. Resveratrol Inhibits the TGF-β1-Induced Proliferation of Cardiac Fibroblasts and Collagen Secretion by Downregulating miR-17 in Rat. BioMed research international, 2018 2018.
[112]
Zhang, Y.; Du, X.; Li, W.; Sang, H.; Qian, A.; Sun, L.; Li, X.; Li, C. Resveratrol improves endothelial progenitor cell function through miR-138 by targeting focal adhesion kinase (FAK) and promotes Thrombus resolution in vivo. Med. Sci. Monit., 2018, 24, 951-960.
[http://dx.doi.org/10.12659/MSM.906116] [PMID: 29447140]
[113]
Shen, J.; Xu, L.; Qu, C.; Sun, H.; Zhang, J. Resveratrol prevents cognitive deficits induced by chronic unpredictable mild stress: Sirt1/miR-134 signalling pathway regulates CREB/BDNF expression in hippocampus in vivo and in vitro. Behav. Brain Res., 2018, 349, 1-7.
[http://dx.doi.org/10.1016/j.bbr.2018.04.050] [PMID: 29715537]
[114]
Wang, J.; He, F.; Chen, L.; Li, Q.; Jin, S.; Zheng, H.; Lin, J.; Zhang, H.; Ma, S.; Mei, J.; Yu, J. Resveratrol inhibits pulmonary fibrosis by regulating miR-21 through MAPK/AP-1 pathways. Biomed. Pharmacother., 2018, 105, 37-44.
[http://dx.doi.org/10.1016/j.biopha.2018.05.104] [PMID: 29843043]
[115]
de Queiroz, K.B.; Dos Santos Fontes Pereira, T.; Araújo, M.S.S.; Gomez, R.S.; Coimbra, R.S. Resveratrol Acts anti-inflammatory and neuroprotective in an infant rat model of pneumococcal meningitis by modulating the hippocampal miRNome.Mol. Neurobiol., 2018, 55(12), 8869-8884.
[http://dx.doi.org/10.1007/s12035-018-1037-5] [PMID: 29611100]
[116]
Xu, X.H.; Ding, D.F.; Yong, H.J.; Dong, C.L.; You, N.; Ye, X.L.; Pan, M.L.; Ma, J.H.; You, Q.; Lu, Y.B. Resveratrol transcriptionally regulates miRNA-18a-5p expression ameliorating diabetic nephropathy via increasing autophagy. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(21), 4952-4965.
[PMID: 29164562]
[117]
Zeng, K.; Wang, Y.; Yang, N.; Wang, D.; Li, S.; Ming, J.; Wang, J.; Yu, X.; Song, Y.; Zhou, X.; Deng, B.; Wu, X.; Huang, L.; Yang, Y. Resveratrol inhibits diabetic-induced Müller cells apoptosis through microRNA-29b/specificity protein 1 pathway. Mol. Neurobiol., 2017, 54(6), 4000-4014.
[http://dx.doi.org/10.1007/s12035-016-9972-5] [PMID: 27311771]
[118]
Bian, H.; Shan, H.; Chen, T. Resveratrol ameliorates hypoxia/ischemia-induced brain injury in the neonatal rat via the miR-96/Bax axis. Childs Nerv. Syst., 2017, 33(11), 1937-1945.
[http://dx.doi.org/10.1007/s00381-017-3509-8] [PMID: 28721600]
[119]
Gracia, A.; Fernández-Quintela, A.; Miranda, J.; Eseberri, I.; González, M.; Portillo, M.P. Are mirna-103, mirna-107 and mirna-122 involved in the prevention of liver steatosis induced by resveratrol? Nutrients, 2017, 9(4), 360.
[http://dx.doi.org/10.3390/nu9040360] [PMID: 28375178]
[120]
Hibender, S.; Franken, R.; van Roomen, C.; Ter Braake, A.; van der Made, I.; Schermer, E.E.; Gunst, Q.; van den Hoff, M.J.; Lutgens, E.; Pinto, Y.M.; Groenink, M.; Zwinderman, A.H.; Mulder, B.J.; de Vries, C.J.; de Waard, V. Resveratrol inhibits aortic root dilatation in the Fbn1C1039G/+ Marfan mouse model. Arterioscler. Thromb. Vasc. Biol., 2016, 36(8), 1618-1626.
[http://dx.doi.org/10.1161/ATVBAHA.116.307841] [PMID: 27283746]
[121]
Kadhim, S.; Singh, N.P.; Zumbrun, E.E.; Cui, T.; Chatterjee, S.; Hofseth, L.; Abood, A.; Nagarkatti, P.; Nagarkatti, M. Resveratrol-mediated attenuation of Staphylococcus aureus enterotoxin B-induced acute liver injury is associated with regulation of microRNA and induction of Myeloid-derived Suppressor Cells. Front. Microbiol., 2018, 9, 2910.
[http://dx.doi.org/10.3389/fmicb.2018.02910] [PMID: 30619104]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy