Review Article

脂氧合酶抑制剂作为癌症化学预防:发现、最新进展和未来展望

卷 28, 期 6, 2021

发表于: 10 December, 2019

页: [1143 - 1175] 页: 33

弟呕挨: 10.2174/0929867326666191210104820

价格: $65

摘要

背景:白三烯(Leukotrienes, LTs)是脂氧合酶(LO)酶活性塑造的多不饱和脂肪酸(PUFA)代谢产物的生物活性基团,在炎症和过敏中起关键作用。通过体外细胞培养实验和动物肿瘤模型研究,越来越多的证据支持花生四烯酸(ACD)的异常代谢直接参与多种类型的人类癌症的发展,如肺癌、前列腺癌、胰腺癌和结直肠恶性肿瘤。一些独立的实验数据表明肿瘤细胞活力与LO基因表达,特别是5-脂氧合酶(5-LO)相关。与正常的5-LO细胞相比,过表达的5-LO细胞寿命更长,增殖更快,通过细胞外基质破坏更有效地入侵,并更强烈地激活抗凋亡信号机制。因此,一些组脂氧合酶抑制剂可能是有效的有希望的化学预防药物。 方法:对文献数据库进行了结构化的检索,检索同行评议的有关LO在癌症发病机制中的作用的研究文献。摘要综述了已筛选论文的特点,并重点讨论了新型抗癌抑制剂的发现方面的最新进展。 结果:收录和总结论文180余篇;主要是关于新设计和合成的5-LO抑制剂作为抗炎和抗癌药物。本文描述了酶的结构、5-LO途径、5-LO抑制剂的构效关系以及这些药物与一些最常见的人类癌症之间的相关性。在大多数情况下,双环氧化酶2/5-脂氧合酶(COX-2/5-LO)或双5-脂氧合酶/微体前列腺素E合酶-1 (5-LO/mPGES-1)抑制剂对其靶酶具有较强的抑制活性和抗增殖作用。5-脂氧合酶激活蛋白(FLAP)拮抗剂是一种新的5-LO活性调节剂。此外,还概述了12-脂氧合酶(12- LO)和15-脂氧合酶(15-LO)抑制剂作为化学预防药物的潜力,以扩大新的抗癌药物的发现范围。本文还介绍了一些具有抗lt活性的多肽和模拟肽。此外,本文还对脂氧合酶抑制剂的细胞毒性作用及其不良反应进行了讨论,并对一些新型天然产物的脂氧合酶抑制剂进行了综述。 结论:本文综述了具有抗癌活性的新型脂氧合酶抑制剂,以及有效抑制脂氧合酶的不同分子药理策略。这一发现证实了某些LO抑制剂可以作为有前途的化学预防药物。

关键词: 肿瘤,脂氧合酶抑制剂,构效关系(SAR),合成,多不饱和脂肪酸(PUFA),白三烯(LTs)

[1]
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860-867.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[2]
Maletzki, C.; Emmrich, J. Inflammation and immunity in the tumor environment. Dig. Dis., 2010, 28(4-5), 574-578.
[http://dx.doi.org/10.1159/000321062] [PMID: 21088404]
[3]
Gardian, K.; Durlik, M. LOX and LOXL2 in pancreatic cancer microenvironment. Eur. J. Cancer, 2016, 61, S90.
[http://dx.doi.org/10.1016/S0959-8049(16)61316-3]
[4]
Ghosh, J.; Myers, C.E. Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc. Natl. Acad. Sci. USA, 1998, 95(22), 13182-13187.
[http://dx.doi.org/10.1073/pnas.95.22.13182] [PMID: 9789062]
[5]
Zeltz, C.; Pasko, E.; Cox, T.R.; Navab, R.; Tsao, M-S. LOXL1 is regulated by integrin α11 and promotes non-small cell lung cancer tumorigenicity. Cancers (Basel), 2019, 11(5), 705.
[http://dx.doi.org/10.3390/cancers11050705] [PMID: 31121900]
[6]
da Silva, R.; Uno, M.; Marie, S.K.N.; Oba-Shinjo, S.M. LOX expression and functional analysis in astrocytomas and impact of IDH1 mutation. PLoS One, 2015, 10(3)e0119781
[http://dx.doi.org/10.1371/journal.pone.0119781] [PMID: 25790191]
[7]
Rao, C.V.; Janakiram, N.B.; Mohammed, A. Lipoxygenase and cyclooxygenase pathways and colorectal cancer prevention. Curr. Colorectal Cancer Rep., 2012, 8(4), 316-324.
[http://dx.doi.org/10.1007/s11888-012-0146-1] [PMID: 23293573]
[8]
Ikemoto, S.; Sugimura, K.; Kuratukuri, K.; Nakatani, T. Antitumor effects of lipoxygenase inhibitors on murine bladder cancer cell line (MBT-2). Anticancer Res., 2004, 24(2B), 733-736.
[PMID: 15161019]
[9]
Kalikawe, R.T.; Baba, Y.; Keisuke, M.; Taisuke, Y.; Kitano, Y.; Hiroshi, S.; Yukiharu, H.; Maasaki, I.; Yuji, M.; Naoya, Y.; Takatsugu, I.; Baba, H. Abstract 3328: association between LOX expression, LINE-1 DNA methylation and prognosis in esophageal cancer. Cancer Res., 2018, 78(13)(Suppl.), 3328.
[http://dx.doi.org/10.1158/1538-7445.AM2018-3328 ]
[10]
Tersey, S.A.; Bolanis, E.; Holman, T.R.; Maloney, D.J.; Nadler, J.L.; Mirmira, R.G. Minireview: 12-lipoxygenase and islet β-cell dysfunction in diabetes. Mol. Endocrinol., 2015, 29(6), 791-800.
[http://dx.doi.org/10.1210/me.2015-1041] [PMID: 25803446]
[11]
Czapski, G.A.; Czubowicz, K.; Strosznajder, J.B.; Strosznajder, R.P. The lipoxygenases: their regulation and implication in Alzheimer’s disease. Neurochem. Res., 2016, 41(1-2), 243-257.
[http://dx.doi.org/10.1007/s11064-015-1776-x] [PMID: 26677076]
[12]
Li, Y.; Maher, P.; Schubert, D. A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron, 1997, 19(2), 453-463.
[http://dx.doi.org/10.1016/S0896-6273(00)80953-8] [PMID: 9292733]
[13]
Luo, P.; Yan, M.; Frohlich, E.D.; Mehta, J.L.; Hu, C. Novel concepts in the genesis of hypertension: role of LOX-1. Cardiovasc. Drugs Ther., 2011, 25(5), 441-449.
[http://dx.doi.org/10.1007/s10557-011-6337-1] [PMID: 21912849]
[14]
Manev, R.; Manev, H. 5-Lipoxygenase as a putative link between cardiovascular and psychiatric disorders. Crit. Rev. Neurobiol., 2004, 16(1-2), 181-186.
[http://dx.doi.org/10.1615/CritRevNeurobiol.v16.i12.190] [PMID: 15581413]
[15]
Gillmor, S.A.; Villaseñor, A.; Fletterick, R.; Sigal, E.; Browner, M.F. The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity. Nat. Struct. Biol., 1997, 4(12), 1003-1009.
[http://dx.doi.org/10.1038/nsb1297-1003] [PMID: 9406550]
[16]
Hu, C.; Ma, S. Recent development of lipoxygenase inhibitors as anti-inflammatory agents. MedChemComm, 2017, 9(2), 212-225.
[http://dx.doi.org/10.1039/C7MD00390K] [PMID: 30108915]
[17]
Kuhn, H.; Saam, J.; Eibach, S.; Holzhütter, H-G.; Ivanov, I.; Walther, M. Structural biology of mammalian lipoxygenases: enzymatic consequences of targeted alterations of the protein structure. Biochem. Biophys. Res. Commun., 2005, 338(1), 93-101.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.238] [PMID: 16168952]
[18]
Gilbert, N.C.; Bartlett, S.G.; Waight, M.T.; Neau, D.B.; Boeglin, W.E.; Brash, A.R.; Newcomer, M.E. The structure of human 5-lipoxygenase. Science, 2011, 331(6014), 217-219.
[http://dx.doi.org/10.1126/science.1197203] [PMID: 21233389]
[19]
Gilbert, N.C.; Rui, Z.; Neau, D.B.; Waight, M.T.; Bartlett, S.G.; Boeglin, W.E.; Brash, A.R.; Newcomer, M.E. Conversion of human 5-lipoxygenase to a 15-lipoxygenase by a point mutation to mimic phosphorylation at Serine-663. FASEB J., 2012, 26(8), 3222-3229.
[http://dx.doi.org/10.1096/fj.12-205286] [PMID: 22516296]
[20]
Sinha, S.; Doble, M.; Manju, S.L. 5-Lipoxygenase as a drug target: a review on trends in inhibitors structural design, SAR and mechanism based approach. Bioorg. Med. Chem., 2019, 27(17), 3745-3759.
[http://dx.doi.org/10.1016/j.bmc.2019.06.040] [PMID: 31331653]
[21]
Gupta, S.P.; Gupta, J.K. Quantitative structure-activity relationship study on some 5-lipoxygenase inhibitors. J. Enzyme Inhib., 1990, 3(3), 179-188.
[http://dx.doi.org/10.3109/14756369009035835] [PMID: 2079634]
[22]
Neau, D.B.; Bender, G.; Boeglin, W.E.; Bartlett, S.G.; Brash, A.R.; Newcomer, M.E. Crystal structure of a lipoxygenase in complex with substrate: the arachidonic acid-binding site of 8R-lipoxygenase. J. Biol. Chem., 2014, 289(46), 31905-31913.
[http://dx.doi.org/10.1074/jbc.M114.599662] [PMID: 25231982]
[23]
Nunns, G.R.; Stringham, J.R.; Gamboni, F.; Moore, E.E.; Fragoso, M.; Stettler, G.R.; Silliman, C.C.; Banerjee, A. Trauma and hemorrhagic shock activate molecular association of 5-lipoxygenase and 5-lipoxygenase-activating protein in lung tissue. J. Surg. Res., 2018, 229, 262-270.
[http://dx.doi.org/10.1016/j.jss.2018.03.023] [PMID: 29936999]
[24]
Häfner, A-K.; Kahnt, A.S.; Steinhilber, D. Beyond leukotriene formation-The noncanonical functions of 5-lipoxy-genase. Prostaglandins Other Lipid Mediat., 2019, 142, 24-32.
[http://dx.doi.org/10.1016/j.prostaglandins.2019.03.003] [PMID: 30930090]
[25]
Garscha, U.; Romp, E.; Pace, S.; Rossi, A.; Temml, V.; Schuster, D.; König, S.; Gerstmeier, J.; Liening, S.; Werner, M.; Atze, H.; Wittmann, S.; Weinigel, C.; Rummler, S.; Scriba, G.K.; Sautebin, L.; Werz, O. Pharmacological profile and efficiency in vivo of diflapolin, the first dual inhibitor of 5-lipoxygenase-activating protein and soluble epoxide hydrolase. Sci. Rep., 2017, 7(1), 9398.
[http://dx.doi.org/10.1038/s41598-017-09795-w] [PMID: 28839250]
[26]
Steele, V.E.; Holmes, C.A.; Hawk, E.T.; Kopelovich, L.; Lubet, R.A.; Crowell, J.A.; Sigman, C.C.; Kelloff, G.J. Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol. Biomarkers Prev., 1999, 8(5), 467-483.
[PMID: 10350444]
[27]
Poeckel, D.; Funk, C.D. The 5-lipoxygenase/leukotriene pathway in preclinical models of cardiovascular disease. Cardiovasc. Res., 2010, 86(2), 243-253.
[http://dx.doi.org/10.1093/cvr/cvq016] [PMID: 20093252]
[28]
Sonnweber, T.; Pizzini, A.; Nairz, M.; Weiss, G.; Tancevski, I. Arachidonic acid metabolites in cardiovascular and metabolic diseases. Int. J. Mol. Sci., 2018, 19(11), 3285.
[http://dx.doi.org/10.3390/ijms19113285] [PMID: 30360467]
[29]
Manev, H.; Uz, T. 5-Lipoxygenase in the central nervous system: therapeutic implications. Curr. Med. Chem. Anti Inflamm. Anti Allergy Agents, 2002, 1(2), 115-121.
[http://dx.doi.org/10.2174/1568014023355980]
[30]
Monteiro, A.P.T.; Soledade, E.; Pinheiro, C.S.; Dellatorre-Teixeira, L.; Oliveira, G.P.; Oliveira, M.G.; Peters-Golden, M.; Rocco, P.R.; Benjamim, C.F.; Canetti, C. Pivotal role of the 5-lipoxygenase pathway in lung injury after experimental sepsis. Am. J. Respir. Cell Mol. Biol., 2014, 50(1), 87-95.
[http://dx.doi.org/10.1165/rcmb.2012-0525oc]] [PMID: 23947598]
[31]
Sarveswaran, S.; Thamilselvan, V.; Brodie, C.; Ghosh, J. Inhibition of 5-lipoxygenase triggers apoptosis in prostate cancer cells via down-regulation of protein kinase C-epsilon. Biochim. Biophys. Acta, 2011, 1813(12), 2108-2117.
[http://dx.doi.org/10.1016/j.bbamcr.2011.07.015] [PMID: 21824498]
[32]
Soriano-Hernández, A.D.; Galvan-Salazar, H.R.; Montes-Galindo, D.A.; Rodriguez-Hernandez, A.; Martinez-Martinez, R.; Guzman-Esquivel, J.; Valdez-Velazquez, L.L.; Baltazar-Rodriguez, L.M.; Espinoza-Gómez, F.; Rojas-Martinez, A.; Ortiz-Lopez, R.; Gonzalez-Alvarez, R.; Delgado-Enciso, I. Antitumor effect of meclofenamic acid on human androgen-independent prostate cancer: a preclinical evaluation. Int. Urol. Nephrol., 2012, 44(2), 471-477.
[http://dx.doi.org/10.1007/s11255-011-0012-0] [PMID: 21660425]
[33]
Sarveswaran, S.; Myers, C.E.; Ghosh, J. MK591, a leukotriene biosynthesis inhibitor, induces apoptosis in prostate cancer cells: synergistic action with LY294002, an inhibitor of phosphatidylinositol 3′-kinase. Cancer Lett., 2010, 291(2), 167-176.
[http://dx.doi.org/10.1016/j.canlet.2009.10.008] [PMID: 19906484]
[34]
Steinhilber, D.; Fischer, A.S.; Metzner, J.; Steinbrink, S.D.; Roos, J.; Ruthardt, M.; Maier, T.J. 5-lipoxygenase: underappreciated role of a pro-inflammatory enzyme in tumorigenesis. Front. Pharmacol., 2010, 1, 143.
[http://dx.doi.org/10.3389/fphar.2010.00143] [PMID: 21833182]
[35]
Magi, S.; Takemoto, Y.; Kobayashi, H.; Kasamatsu, M.; Akita, T.; Tanaka, A.; Takano, K.; Tashiro, E.; Igarashi, Y.; Imoto, M. 5-Lipoxygenase and cysteinyl leukotriene receptor 1 regulate epidermal growth factor-induced cell migration through Tiam1 upregulation and Rac1 activation. Cancer Sci., 2014, 105(3), 290-296.
[http://dx.doi.org/10.1111/cas.12340] [PMID: 24350867]
[36]
Bishayee, K.; Khuda-Bukhsh, A.R. 5-lipoxygenase antagonist therapy: a new approach towards targeted cancer chemotherapy. Acta Biochim. Biophys. Sin. (Shanghai), 2013, 45(9), 709-719.
[http://dx.doi.org/10.1093/abbs/gmt064] [PMID: 23752617]
[37]
Perron, M.P.; Landry, P.; Plante, I.; Provost, P. Detection of human dicer and argonaute 2 catalytic activity. Methods Mol. Biol., 2011, 725, 121-141.
[http://dx.doi.org/10.1007/978-1-61779-046-1_9]] [PMID: 21528451]
[38]
Didsbury, J.; Weber, R.F.; Bokoch, G.M.; Evans, T.; Snyderman, R. rac, a novel ras-related family of proteins that are botulinum toxin substrates. J. Biol. Chem., 1989, 264(28), 16378-16382.
[PMID: 2674130]
[39]
Ridley, A.J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol., 2006, 16(10), 522-529.
[http://dx.doi.org/10.1016/j.tcb.2006.08.006] [PMID: 16949823]
[40]
Yang, P.; Collin, P.; Madden, T.; Chan, D.; Sweeney-Gotsch, B.; McConkey, D.; Newman, R.A. Inhibition of proliferation of PC3 cells by the branched-chain fatty acid, 12-methyltetradecanoic acid, is associated with inhibition of 5-lipoxygenase. Prostate, 2003, 55(4), 281-291.
[http://dx.doi.org/10.1002/pros.10243] [PMID: 12712407]
[41]
Pham, H.; Vang, K.; Ziboh, V.A. Dietary γ-linolenate attenuates tumor growth in a rodent model of prostatic adenocarcinoma via suppression of elevated generation of PGE(2) and 5S-HETE. Prostaglandins Leukot. Essent. Fatty Acids, 2006, 74(4), 271-282.
[http://dx.doi.org/10.1016/j.plefa.2006.01.004] [PMID: 16567086]
[42]
Ochoa, J.J.; Farquharson, A.J.; Grant, I.; Moffat, L.E.; Heys, S.D.; Wahle, K.W. Conjugated linoleic acids (CLAs) decrease prostate cancer cell proliferation: different molecular mechanisms for cis-9, trans-11 and trans-10, cis-12 isomers. Carcinogenesis, 2004, 25(7), 1185-1191.
[http://dx.doi.org/10.1093/carcin/bgh116] [PMID: 14976130]
[43]
Avis, I.M.; Jett, M.; Boyle, T.; Vos, M.D.; Moody, T.; Treston, A.M.; Martínez, A.; Mulshine, J.L. Growth control of lung cancer by interruption of 5-lipoxygenase-mediated growth factor signaling. J. Clin. Invest., 1996, 97(3), 806-813.
[http://dx.doi.org/10.1172/JCI118480] [PMID: 8609238]
[44]
Moody, T.W.; Leyton, J.; Martinez, A.; Hong, S.; Malkinson, A.; Mulshine, J.L. Lipoxygenase inhibitors prevent lung carcinogenesis and inhibit non-small cell lung cancer growth. Exp. Lung Res., 1998, 24(4), 617-628.
[http://dx.doi.org/10.3109/01902149809087390] [PMID: 9659587]
[45]
Rioux, N.; Castonguay, A. Inhibitors of lipoxygenase: a new class of cancer chemopreventive agents. Carcinogenesis, 1998, 19(8), 1393-1400.
[http://dx.doi.org/10.1093/carcin/19.8.1393] [PMID: 9744535]
[46]
Schuller, H.M.; Tithof, P.K.; Williams, M.; Plummer, H., III The tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone is a β-adrenergic agonist and stimulates DNA synthesis in lung adenocarcinoma via β-adrenergic receptor-mediated release of arachidonic acid. Cancer Res., 1999, 59(18), 4510-4515.
[PMID: 10493497]
[47]
Ding, X-Z.; Iversen, P.; Cluck, M.W.; Knezetic, J.A.; Adrian, T.E. Lipoxygenase inhibitors abolish proliferation of human pancreatic cancer cells. Biochem. Biophys. Res. Commun., 1999, 261(1), 218-223.
[http://dx.doi.org/10.1006/bbrc.1999.1012] [PMID: 10405349]
[48]
Ding, X-Z.; Kuszynski, C.A.; El-Metwally, T.H.; Adrian, T.E. Lipoxygenase inhibition induced apoptosis, morphological changes, and carbonic anhydrase expression in human pancreatic cancer cells. Biochem. Biophys. Res. Commun., 1999, 266(2), 392-399.
[http://dx.doi.org/10.1006/bbrc.1999.1824] [PMID: 10600514]
[49]
Roebuck, B.D.; Longnecker, D.S.; Baumgartner, K.J.; Thron, C.D. Carcinogen-induced lesions in the rat pancreas: effects of varying levels of essential fatty acid. Cancer Res., 1985, 45(11 Pt 1), 5252-5256.
[PMID: 3876880]
[50]
Appel, M.J.; van Garderen-Hoetmer, A.; Woutersen, R.A. Effects of dietary linoleic acid on pancreatic carcinogenesis in rats and hamsters. Cancer Res., 1994, 54(8), 2113-2120.
[PMID: 8174115]
[51]
Hennig, R.; Ding, X-Z.; Tong, W-G.; Schneider, M.B.; Standop, J.; Friess, H.; Büchler, M.W.; Pour, P.M.; Adrian, T.E. 5-Lipoxygenase and leukotriene B(4) receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue. Am. J. Pathol., 2002, 161(2), 421-428.
[http://dx.doi.org/10.1016/S0002-9440(10)64198-3] [PMID: 12163367]
[52]
Hennig, R.; Grippo, P.; Ding, X-Z.; Rao, S.M.; Buchler, M.W.; Friess, H.; Talamonti, M.S.; Bell, R.H.; Adrian, T.E. 5-Lipoxygenase, a marker for early pancreatic intraepithelial neoplastic lesions. Cancer Res., 2005, 65(14), 6011-6016.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4090] [PMID: 16024599]
[53]
Chen, X.; Wang, S.; Wu, N.; Sood, S.; Wang, P.; Jin, Z.; Beer, D.G.; Giordano, T.J.; Lin, Y.; Shih, W.C.; Lubet, R.A.; Yang, C.S. Overexpression of 5-lipoxygenase in rat and human esophageal adenocarcinoma and inhibitory effects of zileuton and celecoxib on carcinogenesis. Clin. Cancer Res., 2004, 10(19), 6703-6709.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0838] [PMID: 15475461]
[54]
Li, N.; Sood, S.; Wang, S.; Fang, M.; Wang, P.; Sun, Z.; Yang, C.S.; Chen, X. Overexpression of 5-lipoxygenase and cyclooxygenase 2 in hamster and human oral cancer and chemopreventive effects of zileuton and celecoxib. Clin. Cancer Res., 2005, 11(5), 2089-2096.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1684] [PMID: 15756036]
[55]
Hostanska, K.; Daum, G.; Saller, R. Cytostatic and apoptosis-inducing activity of boswellic acids toward malignant cell lines in vitro. Anticancer Res., 2002, 22(5), 2853-2862.
[PMID: 12530009]
[56]
Poczobutt, J.M.; Nguyen, T.T.; Hanson, D.; Li, H.; Sippel, T.R.; Weiser-Evans, M.C.; Gijon, M.; Murphy, R.C.; Nemenoff, R.A. Deletion of 5-lipoxygenase in the tumor microenvironment promotes lung cancer progression and metastasis through regulating T cell recruitment. J. Immunol., 2016, 196(2), 891-901.
[http://dx.doi.org/10.4049/jimmunol.1501648] [PMID: 26663781]
[57]
Muscella, A.; Vetrugno, C.; Marsigliante, S. CCL20 promotes migration and invasiveness of human cancerous breast epithelial cells in primary culture. Mol. Carcinog., 2017, 56(11), 2461-2473.
[http://dx.doi.org/10.1002/mc.22693] [PMID: 28618084]
[58]
Tong, W-G.; Ding, X-Z.; Adrian, T.E. The mechanisms of lipoxygenase inhibitor-induced apoptosis in human breast cancer cells. Biochem. Biophys. Res. Commun., 2002, 296(4), 942-948.
[http://dx.doi.org/10.1016/S0006-291X(02)02014-4] [PMID: 12200139]
[59]
Foulquier, S.; Daskalopoulos, E.P.; Lluri, G.; Hermans, K.C.M.; Deb, A.; Blankesteijn, W.M. WNT signaling in cardiac and vascular disease. Pharmacol. Rev., 2018, 70(1), 68-141.
[http://dx.doi.org/10.1124/pr.117.013896] [PMID: 29247129]
[60]
Komiya, Y.; Habas, R. Wnt signal transduction pathways. Organogenesis, 2008, 4(2), 68-75.
[http://dx.doi.org/10.4161/org.4.2.5851] [PMID: 19279717]
[61]
Roos, J.; Grösch, S.; Werz, O.; Schröder, P.; Ziegler, S.; Fulda, S.; Paulus, P.; Urbschat, A.; Kühn, B.; Maucher, I.; Fettel, J.; Vorup-Jensen, T.; Piesche, M.; Matrone, C.; Steinhilber, D.; Parnham, M.J.; Maier, T.J. Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: a basis for novel drugs targeting cancer cells? Pharmacol. Ther., 2016, 157, 43-64.
[http://dx.doi.org/10.1016/j.pharmthera.2015.11.001] [PMID: 26549540]
[62]
Peifer, M.; Polakis, P. Wnt signaling in oncogenesis and embryogenesis--a look outside the nucleus. Science, 2000, 287(5458), 1606-1609.
[http://dx.doi.org/10.1126/science.287.5458.1606] [PMID: 10733430]
[63]
Giles, R.H.; van Es, J.H.; Clevers, H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta, 2003, 1653(1), 1-24.
[http://dx.doi.org/10.1016/s0304-419x(03)00005-2]] [PMID: 12781368]
[64]
Rubinfeld, B.; Souza, B.; Albert, I.; Müller, O.; Chamberlain, S.H.; Masiarz, F.R.; Munemitsu, S.; Polakis, P. Association of the APC gene product with beta-catenin. Science, 1993, 262(5140), 1731-1734.
[http://dx.doi.org/10.1126/science.8259518] [PMID: 8259518]
[65]
Costa, H.; Touma, J.; Davoudi, B.; Benard, M.; Sauer, T.; Geisler, J.; Vetvik, K.; Rahbar, A.; Söderberg-Naucler, C. Human cytomegalovirus infection is correlated with enhanced cyclooxygenase-2 and 5-lipoxygenase protein expression in breast cancer. J. Cancer Res. Clin. Oncol., 2019, 145(8), 2083-2095.
[http://dx.doi.org/10.1007/s00432-019-02946-8] [PMID: 31203442]
[66]
Ghosh, J. Targeting 5-lipoxygenase for prevention and treatment of cancer. Curr. Enzym. Inhib., 2008, 4(1), 18-28.
[http://dx.doi.org/10.2174/157340808783502540]
[67]
Steinhilber, D.; Hofmann, B. Recent advances in the search for novel 5-lipoxygenase inhibitors. Basic Clin. Pharmacol. Toxicol., 2014, 114(1), 70-77.
[http://dx.doi.org/10.1111/bcpt.12114] [PMID: 23953428]
[68]
Fischer, A.S.; Metzner, J.; Steinbrink, S.D.; Ulrich, S.; Angioni, C.; Geisslinger, G.; Steinhilber, D.; Maier, T.J. 5-Lipoxygenase inhibitors induce potent anti-proliferative and cytotoxic effects in human tumour cells independently of suppression of 5-lipoxygenase activity. Br. J. Pharmacol., 2010, 161(4), 936-949.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00915.x] [PMID: 20860670]
[69]
Moore, G.Y.; Pidgeon, G.P. Cross-talk between cancer cells and the tumour microenvironment: the role of the 5-lipoxygenase pathway. Int. J. Mol. Sci., 2017, 18(2), 236.
[http://dx.doi.org/10.3390/ijms18020236] [PMID: 28125014]
[70]
Mashima, R.; Okuyama, T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol., 2015, 6, 297-310.
[http://dx.doi.org/10.1016/j.redox.2015.08.006] [PMID: 26298204]
[71]
Tímár, J.; Rásó, E.; Fazakas, Z.S.; Silletti, S.; Raz, A.; Honn, K.V. Multiple use of a signal transduction pathway in tumor cell invasion. Anticancer Res., 1996, 16(6A), 3299-3306.
[PMID: 9042304]
[72]
Liu, B.; Maher, R.J.; Hannun, Y.A.; Porter, A.T.; Honn, K.V. 12(S)-HETE enhancement of prostate tumor cell invasion: selective role of PKC α. J. Natl. Cancer Inst., 1994, 86(15), 1145-1151.
[http://dx.doi.org/10.1093/jnci/86.15.1145] [PMID: 7518003]
[73]
Liu, Y-W.; Chen, B-K.; Chen, C-J.; Arakawa, T.; Yoshimoto, T.; Yamamoto, S.; Chang, W-C. Epidermal growth factor enhances transcription of human arachidonate 12-lipoxygenase in A431 cells. Biochim. Biophys. Acta, 1997, 1344(1), 38-46.
[http://dx.doi.org/10.1016/S0005-2760(96)00128-2] [PMID: 9022753]
[74]
Schade, U.F.; Ernst, M.; Reinke, M.; Wolter, D.T. Lipoxygenase inhibitors suppress formation of tumor necrosis factor in vitro and in vivo. Biochem. Biophys. Res. Commun., 1989, 159(2), 748-754.
[http://dx.doi.org/10.1016/0006-291X(89)90058-2] [PMID: 2494996]
[75]
Stenke, L.; Mansour, M.; Reizenstein, P.; Lindgren, J.A. Stimulation of human myelopoiesis by leukotrienes B4 and C4: interactions with granulocyte-macrophage colony-stimulating factor. Blood, 1993, 81(2), 352-356.
[http://dx.doi.org/10.1182/blood.V81.2.352.352] [PMID: 8380723]
[76]
Denzlinger, C.; Walther, J.; Wilmanns, W.; Gerhartz, H.H. Interleukin-3 enhances the endogenous leukotriene production. Blood, 1993, 81(7), 1975-1976.
[http://dx.doi.org/10.1182/blood.V81.7.1975b.1975b] [PMID: 8461485]
[77]
Honn, K.V.; Timár, J.; Rozhin, J.; Bazaz, R.; Sameni, M.; Ziegler, G.; Sloane, B.F. A lipoxygenase metabolite, 12-(S)-HETE, stimulates protein kinase C-mediated release of cathepsin B from malignant cells. Exp. Cell Res., 1994, 214(1), 120-130.
[http://dx.doi.org/10.1006/excr.1994.1240] [PMID: 7521840]
[78]
Tang, D.G.; Grossi, I.M.; Chen, Y.Q.; Diglio, C.A.; Honn, K.V. 12(S)-HETE promotes tumor-cell adhesion by increasing surface expression of α V β 3 integrins on endothelial cells. Int. J. Cancer, 1993, 54(1), 102-111.
[http://dx.doi.org/10.1002/ijc.2910540117] [PMID: 8478136]
[79]
Chopra, H.; Timar, J.; Chen, Y.Q.; Rong, X.H.; Grossi, I.M.; Fitzgerald, L.A.; Taylor, J.D.; Honn, K.V. The lipoxygenase metabolite 12(S)-HETE induces a cytoskeleton-dependent increase in surface expression of integrin α IIb β 3 on melanoma cells. Int. J. Cancer, 1991, 49(5), 774-786.
[http://dx.doi.org/10.1002/ijc.2910490524] [PMID: 1937964]
[80]
Huang, Z.; Xia, L.; Zhou, X.; Wei, C.; Mo, Q. ALOX12 inhibition sensitizes breast cancer to chemotherapy via AMPK activation and inhibition of lipid synthesis. Biochem. Biophys. Res. Commun., 2019, 514(1), 24-30.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.101] [PMID: 31014671]
[81]
Luo, Z.; Saha, A.K.; Xiang, X.; Ruderman, N.B. AMPK, the metabolic syndrome and cancer. Trends Pharmacol. Sci., 2005, 26(2), 69-76.
[http://dx.doi.org/10.1016/j.tips.2004.12.011] [PMID: 15681023]
[82]
Newcomer, M.E.; Brash, A.R. The structural basis for specificity in lipoxygenase catalysis. Protein Sci., 2015, 24(3), 298-309.
[http://dx.doi.org/10.1002/pro.2626] [PMID: 25524168]
[83]
Pergola, C.; Werz, O. 5-Lipoxygenase inhibitors: a review of recent developments and patents. Expert Opin. Ther. Pat., 2010, 20(3), 355-375.
[http://dx.doi.org/10.1517/13543771003602012] [PMID: 20180620]
[84]
Guo, Y.; Nie, D. Tumor-suppressing 15-lipoxygenase-2: time for prime time? Cell Cycle, 2014, 13(12), 1836-1837.
[http://dx.doi.org/10.4161/cc.29328] [PMID: 24865420]
[85]
Kim, J-S.; Baek, S.J.; Bottone, F.G. Jr.; Sali, T.; Eling, T.E. Overexpression of 15-lipoxygenase-1 induces growth arrest through phosphorylation of p53 in human colorectal cancer cells. Mol. Cancer Res., 2005, 3(9), 511-517.
[http://dx.doi.org/10.1158/1541-7786.MCR-05-0011] [PMID: 16179498]
[86]
Saboormaleki, S.; Sadeghian, H.; Bahrami, A.R.; Orafaie, A.; Matin, M.M. 7-Farnesyloxycoumarin exerts anti-cancer effects on a prostate cancer cell line by 15-LOX-1 inhibition. Arch. Iran Med., 2018, 21(6), 251-259.
[PMID: 29940744]
[87]
Hong, S.H.; Avis, I.; Vos, M.D.; Martínez, A.; Treston, A.M.; Mulshine, J.L. Relationship of arachidonic acid metabolizing enzyme expression in epithelial cancer cell lines to the growth effect of selective biochemical inhibitors. Cancer Res., 1999, 59(9), 2223-2228.
[PMID: 10232612]
[88]
Jiang, W.G.; Douglas-Jones, A.G.; Mansel, R.E. Aberrant expression of 5-lipoxygenase-activating protein (5-LOXAP) has prognostic and survival significance in patients with breast cancer. Prostaglandins Leukot. Essent. Fatty Acids, 2006, 74(2), 125-134.
[http://dx.doi.org/10.1016/j.plefa.2005.10.005] [PMID: 16364620]
[89]
Young, R.N. Inhibitors of 5-lipoxygenase: a therapeutic potential yet to be fully realized? Eur. J. Med. Chem., 1999, 34(9), 671-685.
[http://dx.doi.org/10.1016/S0223-5234(99)00225-1]
[90]
Chini, M.G.; De Simone, R.; Bruno, I.; Riccio, R.; Dehm, F.; Weinigel, C.; Barz, D.; Werz, O.; Bifulco, G. Design and synthesis of a second series of triazole-based compounds as potent dual mPGES-1 and 5-lipoxygenase inhibitors. Eur. J. Med. Chem., 2012, 54, 311-323.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.014] [PMID: 22683242]
[91]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[92]
Russell, R.I. Protective effects of the prostaglandins on the gastric mucosa. Am. J. Med., 1986, 81(2A), 2-4.
[http://dx.doi.org/10.1016/S0002-9343(86)80002-X] [PMID: 3463208]
[93]
Mahboubi Rabbani, S.M.I.; Zarghi, A. Selective COX-2 inhibitors as anticancer agents: a patent review (2014-2018). Expert Opin. Ther. Pat., 2019, 29(6), 407-427.
[http://dx.doi.org/10.1080/13543776.2019.1623880] [PMID: 31132889]
[94]
Dang, C.T.; Shapiro, C.L.; Hudis, C.A. Potential role of selective COX-2 inhibitors in cancer management. 2002 Oncology (Williston Park), 16(5)(Suppl. 4), 30-39.
[PMID: 12102578]
[95]
Zarghi, A.; Arfaei, S. Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran. J. Pharm. Res., 2011, 10(4), 655-683.
[PMID: 24250402]
[96]
Makhdoumi, P.; Zarghi, A.; Daraei, B.; Karimi, G. Evaluation of cytotoxicity effects of chalcone epoxide analogues as a selective COX-II inhibitor in the human liver carcinoma cell line. J. Pharmacopuncture, 2017, 20(3), 207-212.
[http://dx.doi.org/10.3831/KPI.2017.20.024] [PMID: 30087797]
[97]
Davies, G.; Martin, L-A.; Sacks, N.; Dowsett, M. Cyclooxygenase-2 (COX-2), aromatase and breast cancer: a possible role for COX-2 inhibitors in breast cancer chemoprevention. Ann. Oncol., 2002, 13(5), 669-678.
[http://dx.doi.org/10.1093/annonc/mdf125] [PMID: 12075734]
[98]
Ghodsi, R.; Azizi, E.; Grazia Ferlin, M.; Pezzi, V.; Zarghi, A. Design, synthesis and biological evaluation of 4-(imidazolylmethyl)-2-aryl-quinoline derivatives as aromatase inhibitors and anti-breast cancer agents. Lett. Drug Des. Discov., 2016, 13(1), 89-97.
[http://dx.doi.org/10.2174/1570180812666150611185605]
[99]
Pirahmadi, N.; Fazeli, M.; Zarghi, A.; Salimi, A.; Arefi, H.; Pourahmad, J. 4-(4-(Methylsulfonyl) phenyl)-3-phenoxy-1-phenylazetidin-2-one: a novel COX-2 inhibitor acting selectively and directly on cancerous B-lymphocyte mitochondria. Environ. Toxicol. Chem., 2015, 97(7), 908-921.
[http://dx.doi.org/10.1080/02772248.2015.1068985]
[100]
Ahmaditaba, M.A.; Tehrani, M.H.H.; Zarghi, A.; Shahosseini, S.; Hariri, S. Design and synthesis of novel tetrapeptide analogues as new cytotoxic agents. Trends Pept. Prot. Sci., 2017, 1(4), 167-176.
[http://dx.doi.org/10.22037/tpps.v1i4.17476]
[101]
Shahrasbi, M.; Azami Movahed, M.; Ghorban Dadras, O.; Daraei, B.; Zarghi, A. Design, synthesis and biological evaluation of new Imidazo [2, 1-B] thiazole derivatives as selective COX-2 inhibitors. Iran. J. Pharm. Res., 2018, 17(4), 1288-1296.
[PMID: 30568687]
[102]
Zarghi, A.; Arfaee, S.; Rao, P.N.; Knaus, E.E. Design, synthesis, and biological evaluation of 1,3-diarylprop-2-en-1-ones: a novel class of cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2006, 14(8), 2600-2605.
[http://dx.doi.org/10.1016/j.bmc.2005.11.041] [PMID: 16356730]
[103]
Irannejad, H.; Kebriaieezadeh, A.; Zarghi, A.; Montazer-Sadegh, F.; Shafiee, A.; Assadieskandar, A.; Amini, M. Synthesis, docking simulation, biological evaluations and 3D-QSAR study of 5-Aryl-6-(4-methylsulfonyl)-3-(metylthio)-1,2,4-triazine as selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2014, 22(2), 865-873.
[http://dx.doi.org/10.1016/j.bmc.2013.12.002] [PMID: 24361187]
[104]
Mirian, M.; Zarghi, A.; Sadeghi, S.; Tabaraki, P.; Tavallaee, M.; Dadrass, O.; Sadeghi-Aliabadi, H. Synthesis and cytotoxic evaluation of some novel sulfonamidederivativesagainst a few human cancer cells. Iran. J. Pharm. Res., 2011, 10(4), 741-748.
[PMID: 24250409]
[105]
Allameh, A.; Vansoun, E.Y.; Zarghi, A. Role of glutathione conjugation in protection of weanling rat liver against acetaminophen-induced hepatotoxicity. Mech. Ageing Dev., 1997, 95(1-2), 71-79.
[http://dx.doi.org/10.1016/S0047-6374(97)01862-9] [PMID: 9152962]
[106]
Zarghi, A.; Ghodsi, R. Design, synthesis, and biological evaluation of ketoprofen analogs as potent cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2010, 18(16), 5855-5860.
[http://dx.doi.org/10.1016/j.bmc.2010.06.094] [PMID: 20650641]
[107]
Pirahmadi, N.; Zarghi, A.; Salimi, A.; Arefi, H.; Pourahmad, J. β-lactam structured, 4-(4-(Methylsulfonyl) phenyl)-1-pentyl-3-phenoxyazetidin-2-one: selectively targets cancerous b lymphocyte mitochondria. Anticancer. Agents Med. Chem., 2017, 17(9), 1292-1301.
[http://dx.doi.org/10.2174/1871520617666170213144113] [PMID: 28270082]
[108]
Farzaneh, S.; Zeinalzadeh, E.; Daraei, B.; Shahhosseini, S.; Zarghi, A. New ferrocene compounds as selective cyclooxygenase (COX-2) inhibitors: design, synthesis, cytotoxicity and enzyme-inhibitory activity. Anticancer. Agents Med. Chem., 2018, 18(2), 295-301.
[http://dx.doi.org/10.2174/1871520617666171003145533] [PMID: 28971779]
[109]
Farzaneh, S.; Shahhosseini, S.; Arefi, H.; Daraei, B.; Esfahanizadeh, M.; Zarghi, A. Design, synthesis and biological evaluation of new 1,3-diphenyl-3- (phenylamino)propan-1-ones as selective cyclooxygenase (COX-2) inhibitors. Med. Chem., 2018, 14(7), 652-659.
[http://dx.doi.org/10.2174/1573406414666180525133221] [PMID: 29804536]
[110]
Celotti, F.; Laufer, S. Anti-inflammatory drugs: new multitarget compounds to face an old problem. The dual inhibition concept. Pharmacol. Res., 2001, 43(5), 429-436.
[http://dx.doi.org/10.1006/phrs.2000.0784] [PMID: 11394934]
[111]
El-Nagar, M.K.S.; Abdu-Allah, H.H.M.; Salem, O.I.A.; Kafafy, A.N.; Farghaly, H.S.M. Novel N-substituted 5-aminosalicylamides as dual inhibitors of cyclooxygenase and 5-lipoxygenase enzymes: Synthesis, biological evaluation and docking study. Bioorg. Chem., 2018, 78, 80-93.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.023] [PMID: 29550533]
[112]
Shrivastava, S.K.; Srivastava, P.; Bandresh, R.; Tripathi, P.N.; Tripathi, A. Design, synthesis, and biological evaluation of some novel indolizine derivatives as dual cyclooxygenase and lipoxygenase inhibitor for anti-inflammatory activity. Bioorg. Med. Chem., 2017, 25(16), 4424-4432.
[http://dx.doi.org/10.1016/j.bmc.2017.06.027] [PMID: 28669741]
[113]
Eleftheriou, P.; Geronikaki, A.; Hadjipavlou-Litina, D.; Vicini, P.; Filz, O.; Filimonov, D.; Poroikov, V.; Chaudhaery, S.S.; Roy, K.K.; Saxena, A.K. Fragment-based design, docking, synthesis, biological evaluation and structure-activity relationships of 2-benzo/benzisothiazolimino-5-aryliden-4-thiazolidinones as cycloxygenase/lipoxygenase inhibitors. Eur. J. Med. Chem., 2012, 47(1), 111-124.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.029] [PMID: 22119153]
[114]
Li, Z.; Wang, Z-C.; Li, X.; Abbas, M.; Wu, S-Y.; Ren, S-Z.; Liu, Q-X.; Liu, Y.; Chen, P-W.; Duan, Y-T.; Lv, P.C.; Zhu, H.L. Design, synthesis and evaluation of novel diaryl-1,5-diazoles derivatives bearing morpholine as potent dual COX-2/5-LOX inhibitors and antitumor agents. Eur. J. Med. Chem., 2019, 169, 168-184.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.008] [PMID: 30877972]
[115]
Cai, H.; Huang, X.; Xu, S.; Shen, H.; Zhang, P.; Huang, Y.; Jiang, J.; Sun, Y.; Jiang, B.; Wu, X.; Yao, H.; Xu, J. Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy. Eur. J. Med. Chem., 2016, 108, 89-103.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.013] [PMID: 26638042]
[116]
Yatam, S.; Gundla, R.; Jadav, S.S. reddy Pedavenkatagari, N.; Chimakurthy, J.; Kedam, T. Focused library design and synthesis of 2-mercapto benzothiazole linked 1, 2, 4-oxadiazoles as COX-2/5-LOX inhibitors. J. Mol. Struct., 2018, 1159, 193-204.
[http://dx.doi.org/10.1016/j.molstruc.2018.01.060]
[117]
Ghatak, S.; Vyas, A.; Misra, S.; O’Brien, P.; Zambre, A.; Fresco, V.M.; Markwald, R.R.; Swamy, K.V.; Afrasiabi, Z.; Choudhury, A.; Khetmalas, M.; Padhye, S. Novel di-tertiary-butyl phenylhydrazones as dual cyclooxygenase-2/5-lipoxygenase inhibitors: synthesis, COX/LOX inhibition, molecular modeling, and insights into their cytotoxicities. Bioorg. Med. Chem. Lett., 2014, 24(1), 317-324.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.015] [PMID: 24295787]
[118]
Shen, F-Q.; Wang, Z-C.; Wu, S-Y.; Ren, S-Z.; Man, R-J.; Wang, B-Z.; Zhu, H-L. Synthesis of novel hybrids of pyrazole and coumarin as dual inhibitors of COX-2 and 5-LOX. Bioorg. Med. Chem. Lett., 2017, 27(16), 3653-3660.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.020] [PMID: 28720504]
[119]
Lino, R.C.; da Silva, D.P.B.; Florentino, I.F.; da Silva, D.M.; Martins, J.L.R.; Batista, D.D.C.; Leite, K.C.S.; Villavicencio, B.; Vasconcelos, G.A.; Silva, A.L.P.; de Ávila, R.I.; Verli, H.; Valadares, M.C.; Gil, E.S.; Vaz, B.G.; Lião, L.M.; Menegatti, R.; Costa, E.A. Pharmacological evaluation and molecular docking of new di-tert-butylphenol compound, LQFM-091, a new dual 5-LOX/COX inhibitor. Eur. J. Pharm. Sci., 2017, 106, 231-243.
[http://dx.doi.org/10.1016/j.ejps.2017.06.006] [PMID: 28599988]
[120]
Misra, S.; Ghatak, S.; Patil, N.; Dandawate, P.; Ambike, V.; Adsule, S.; Unni, D.; Venkateswara Swamy, K.; Padhye, S. Novel dual cyclooxygenase and lipoxygenase inhibitors targeting hyaluronan-CD44v6 pathway and inducing cytotoxicity in colon cancer cells. Bioorg. Med. Chem., 2013, 21(9), 2551-2559.
[http://dx.doi.org/10.1016/j.bmc.2013.02.033] [PMID: 23517721]
[121]
Dufrusine, B.; Di Francesco, A.; Oddi, S.; Scipioni, L.; Angelucci, C.B.; D’Addario, C.; Serafini, M.; Häfner, A-K.; Steinhilber, D.; Maccarrone, M.; Dainese, E. Iron-dependent trafficking of 5-lipoxygenase and impact on human macrophage activation. Front. Immunol., 2019, 10, 1347.
[http://dx.doi.org/10.3389/fimmu.2019.01347] [PMID: 31316498]
[122]
Song, H.; Oh, S-R.; Lee, H-K.; Han, G.; Kim, J-H.; Chang, H.W.; Doh, K-E.; Rhee, H-K.; Choo, H-Y.P. Synthesis and evaluation of benzoxazole derivatives as 5-lipoxygenase inhibitors. Bioorg. Med. Chem., 2010, 18(21), 7580-7585.
[http://dx.doi.org/10.1016/j.bmc.2010.08.047] [PMID: 20870413]
[123]
Boudreau, L.H.; Lassalle-Claux, G.; Cormier, M.; Blanchard, S.; Doucet, M.S.; Surette, M.E.; Touaibia, M. New hydroxycinnamic acid esters as novel 5-lipoxygenase inhibitors that affect leukotriene biosynthesis. Mediators Inflamm., 2017, 20176904634
[http://dx.doi.org/10.1155/2017/6904634]] [PMID: 28680195]
[124]
Reddy, N.P.; Aparoy, P.; Reddy, T.C.M.; Achari, C.; Sridhar, P.R.; Reddanna, P. Design, synthesis, and biological evaluation of prenylated chalcones as 5-LOX inhibitors. Bioorg. Med. Chem., 2010, 18(16), 5807-5815.
[http://dx.doi.org/10.1016/j.bmc.2010.06.107] [PMID: 20667741]
[125]
Selka, A.; Doiron, J.A.; Lyons, P.; Dastous, S.; Chiasson, A.; Cormier, M.; Turcotte, S.; Surette, M.E.; Touaibia, M. Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells. Eur. J. Med. Chem., 2019, 179, 347-357.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.060] [PMID: 31260889]
[126]
Ribeiro, D.; Freitas, M.; Tomé, S.M.; Silva, A.M.; Porto, G.; Cabrita, E.J.; Marques, M.M.B.; Fernandes, E. Inhibition of LOX by flavonoids: a structure-activity relationship study. Eur. J. Med. Chem., 2014, 72, 137-145.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.030] [PMID: 24368208]
[127]
McMillan, R.M.; Walker, E.R. Designing therapeutically effective 5-lipoxygenase inhibitors. Trends Pharmacol. Sci., 1992, 13(8), 323-330.
[http://dx.doi.org/10.1016/0165-6147(92)90100-K] [PMID: 1413091]
[128]
Filosa, R.; Peduto, A.; Aparoy, P.; Schaible, A.M.; Luderer, S.; Krauth, V.; Petronzi, C.; Massa, A.; de Rosa, M.; Reddanna, P.; Werz, O. Discovery and biological evaluation of novel 1,4-benzoquinone and related resorcinol derivatives that inhibit 5-lipoxygenase. Eur. J. Med. Chem., 2013, 67, 269-279.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.039] [PMID: 23871907]
[129]
Sinha, S.; Doble, M.; Manju, S.L. Design, synthesis and identification of novel substituted 2-amino thiazole analogues as potential anti-inflammatory agents targeting 5-lipoxygenase. Eur. J. Med. Chem., 2018, 158, 34-50.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.098] [PMID: 30199704]
[130]
Peduto, A.; Scuotto, M.; Krauth, V.; Roviezzo, F.; Rossi, A.; Temml, V.; Esposito, V.; Stuppner, H.; Schuster, D.; D’Agostino, B.; Schiraldi, C.; de Rosa, M.; Werz, O.; Filosa, R. Optimization of benzoquinone and hydroquinone derivatives as potent inhibitors of human 5-lipoxygenase. Eur. J. Med. Chem., 2017, 127, 715-726.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.046] [PMID: 27836196]
[131]
De Lucia, D.; Lucio, O.M.; Musio, B.; Bender, A.; Listing, M.; Dennhardt, S.; Koeberle, A.; Garscha, U.; Rizzo, R.; Manfredini, S.; Werz, O.; Ley, S.V. Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors. Eur. J. Med. Chem., 2015, 101, 573-583.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.011] [PMID: 26197161]
[132]
Sivakumar, P.; Prabhakar, P.; Doble, M. Synthesis, antioxidant evaluation, and quantitative structure–activity relationship studies of chalcones. Med. Chem. Res., 2011, 20(4), 482-492.
[http://dx.doi.org/10.1007/s00044-010-9342-1]
[133]
Shang, E.; Liu, Y.; Wu, Y.; Zhu, W.; He, C.; Lai, L. Development of 3,5-dinitrobenzoate-based 5-lipoxygenase inhibitors. Bioorg. Med. Chem., 2014, 22(8), 2396-2402.
[http://dx.doi.org/10.1016/j.bmc.2014.03.008] [PMID: 24685113]
[134]
Peduto, A.; Bruno, F.; Dehm, F.; Krauth, V.; de Caprariis, P.; Weinigel, C.; Barz, D.; Massa, A.; De Rosa, M.; Werz, O.; Filosa, R. Further studies on ethyl 5-hydroxy-indole-3-carboxylate scaffold: design, synthesis and evaluation of 2-phenylthiomethyl-indole derivatives as efficient inhibitors of human 5-lipoxygenase. Eur. J. Med. Chem., 2014, 81, 492-498.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.033] [PMID: 24871899]
[135]
Srivastava, P.; Vyas, V.K.; Variya, B.; Patel, P.; Qureshi, G.; Ghate, M. Synthesis, anti-inflammatory, analgesic, 5-lipoxygenase (5-LOX) inhibition activities, and molecular docking study of 7-substituted coumarin derivatives. Bioorg. Chem., 2016, 67, 130-138.
[http://dx.doi.org/10.1016/j.bioorg.2016.06.004] [PMID: 27376460]
[136]
Pettersen, D.; Broddefalk, J.; Emtenäs, H.; Hayes, M.A.; Lemurell, M.; Swanson, M.; Ulander, J.; Whatling, C.; Amilon, C.; Ericsson, H.; Eriksson, A.W.; Granberg, K.; Plowright, A.T.; Shamovsky, I.; Dellsen, A.; Sundqvist, M.; Nagard, M.; Lindstedt, E-L. Discovery and early clinical development of an inhibitor of 5-lipoxygenase activating protein (AZD5718) for treatment of coronary artery disease. J. Med. Chem., 2019, 62(9), 4312-4324.
[http://dx.doi.org/10.1021/acs.jmedchem.8b02004] [PMID: 30869888]
[137]
Lemurell, M.; Ulander, J.; Emtenäs, H.; Winiwarter, S.; Broddefalk, J.; Swanson, M.; Hayes, M.A.; Prieto Garcia, L.; Westin Eriksson, A.; Meuller, J.; Cassel, J.; Saarinen, G.; Yuan, Z.Q.; Löfberg, C.; Karlsson, S.; Sundqvist, M.; Whatling, C. Novel chemical series of 5-lipoxygenase-activating protein inhibitors for treatment of coronary artery disease. J. Med. Chem., 2019, 62(9), 4325-4349.
[http://dx.doi.org/10.1021/acs.jmedchem.8b02012] [PMID: 30929436]
[138]
Griffiths, R.J.; Smith, M.A.; Roach, M.L.; Stock, J.L.; Stam, E.J.; Milici, A.J.; Scampoli, D.N.; Eskra, J.D.; Byrum, R.S.; Koller, B.H.; McNeish, J.D. Collagen-induced arthritis is reduced in 5-lipoxygenase-activating protein-deficient mice. J. Exp. Med., 1997, 185(6), 1123-1129.
[http://dx.doi.org/10.1084/jem.185.6.1123] [PMID: 9091585]
[139]
Garscha, U.; Voelker, S.; Pace, S.; Gerstmeier, J.; Emini, B.; Liening, S.; Rossi, A.; Weinigel, C.; Rummler, S.; Schubert, U.S.; Scriba, G.K.; Çelikoğlu, E.; Çalışkan, B.; Banoglu, E.; Sautebin, L.; Werz, O. BRP-187: A potent inhibitor of leukotriene biosynthesis that acts through impeding the dynamic 5-lipoxygenase/5-lipoxygenase-activating protein (FLAP) complex assembly. Biochem. Pharmacol., 2016, 119, 17-26.
[http://dx.doi.org/10.1016/j.bcp.2016.08.023] [PMID: 27592027]
[140]
Miller, D.K.; Gillard, J.W.; Vickers, P.J.; Sadowski, S.; Léveillé, C.; Mancini, J.A.; Charleson, P.; Dixon, R.A.; Ford-Hutchinson, A.W.; Fortin, R. Identification and isolation of a membrane protein necessary for leukotriene production. Nature, 1990, 343(6255), 278-281.
[http://dx.doi.org/10.1038/343278a0] [PMID: 2300172]
[141]
Rouzer, C.A.; Ford-Hutchinson, A.W.; Morton, H.E.; Gillard, J.W. MK886, a potent and specific leukotriene biosynthesis inhibitor blocks and reverses the membrane association of 5-lipoxygenase in ionophore-challenged leukocytes. J. Biol. Chem., 1990, 265(3), 1436-1442.
[PMID: 2104841]
[142]
Ménard, L.; Pilote, S.; Naccache, P.H.; Laviolette, M.; Borgeat, P. Inhibitory effects of MK-886 on arachidonic acid metabolism in human phagocytes. Br. J. Pharmacol., 1990, 100(1), 15-20.
[http://dx.doi.org/10.1111/j.1476-5381.1990.tb12044.x] [PMID: 2164857]
[143]
Shekhar, K.C.; Dhungana, R.K.; Aryal, V.; Giri, R. Concise synthesis of a potential 5-lipoxygenase activating protein (FLAP) inhibitor and its analogs through late-stage alkene dicarbofunctionalization. Org. Process Res. Dev., 2019, 23(8), 1686-1694.
[http://dx.doi.org/10.1021/acs.oprd.9b00199]
[144]
Maucher, I.V.; Rühl, M.; Kretschmer, S.B.; Hofmann, B.; Kühn, B.; Fettel, J.; Vogel, A.; Flügel, K.T.; Manolikakes, G.; Hellmuth, N.; Häfner, A.K.; Golghalyani, V.; Ball, A.K.; Piesche, M.; Matrone, C.; Geisslinger, G.; Parnham, M.J.; Karas, M.; Steinhilber, D.; Roos, J.; Maier, T.J. Michael acceptor containing drugs are a novel class of 5-lipoxygenase inhibitor targeting the surface cysteines C416 and C418. Biochem. Pharmacol., 2017, 125, 55-74.
[http://dx.doi.org/10.1016/j.bcp.2016.11.004] [PMID: 27823964]
[145]
Rival, S.G.; Boeriu, C.G.; Wichers, H.J. Caseins and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition. J. Agric. Food Chem., 2001, 49(1), 295-302.
[http://dx.doi.org/10.1021/jf0003911] [PMID: 11170591]
[146]
FitzGerald, R.J.; Murray, B.A.; Walsh, D.J. Hypotensive peptides from milk proteins. J. Nutr., 2004, 134(4), 980S-988S.
[http://dx.doi.org/10.1093/jn/134.4.980S] [PMID: 15051858]
[147]
Meisel, H. Biochemical properties of regulatory peptides derived from milk proteins. Biopolymers, 1997, 43(2), 119-128.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1997)43:2<119:AID-BIP4>3.0.CO;2-Y] [PMID: 9216247]
[148]
Cross, M.L.; Gill, H.S. Immunomodulatory properties of milk. Br. J. Nutr., 2000, 84(S1)(Suppl. 1), S81-S89.
[http://dx.doi.org/10.1017/S0007114500002294] [PMID: 11242451]
[149]
Teschemacher, H. Opioid receptor ligands derived from food proteins. Curr. Pharm. Des., 2003, 9(16), 1331-1344.
[http://dx.doi.org/10.2174/1381612033454856] [PMID: 12769741]
[150]
Schurink, M.; van Berkel, W.J.; Wichers, H.J.; Boeriu, C.G. Improvement of lipoxygenase inhibition by octapeptides. Peptides, 2007, 28(12), 2268-2275.
[http://dx.doi.org/10.1016/j.peptides.2007.09.018] [PMID: 17996330]
[151]
Prasher, P. Pooja; Singh, P. Lead modification: amino acid appended indoles as highly effective 5-LOX inhibitors. Bioorg. Med. Chem., 2014, 22(5), 1642-1648.
[http://dx.doi.org/10.1016/j.bmc.2014.01.027] [PMID: 24508141]
[152]
Singh, P.; Prasher, P.; Dhillon, P.; Bhatti, R. Indole based peptidomimetics as anti-inflammatory and anti-hyperalgesic agents: dual inhibition of 5-LOX and COX-2 enzymes. Eur. J. Med. Chem., 2015, 97, 104-123.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.044] [PMID: 25956953]
[153]
Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc., 1963, 85(14), 2149-2154.
[http://dx.doi.org/10.1021/ja00897a025]
[154]
Somvanshi, R.K.; Singh, A.K.; Saxena, M.; Mishra, B.; Dey, S. Development of novel peptide inhibitor of Lipoxygenase based on biochemical and BIAcore evidences. Biochim. Biophys. Acta, 2008, 1784(11), 1812-1817.
[http://dx.doi.org/10.1016/j.bbapap.2008.07.004] [PMID: 18691678]
[155]
Rotstein, A.; Lifshitz, A.; Kashman, Y. Isolation and antibacterial activity of acylphloroglucinols from Myrtus communis. Antimicrob. Agents Chemother., 1974, 6(5), 539-542.
[http://dx.doi.org/10.1128/AAC.6.5.539] [PMID: 15825301]
[156]
Meng, Q.; Li, B.X.; Xiao, X. Toward developing chemical modulators of Hsp60 as potential therapeutics. Front. Mol. Biosci., 2018, 5, 35.
[http://dx.doi.org/10.3389/fmolb.2018.00035] [PMID: 29732373]
[157]
Feisst, C.; Franke, L.; Appendino, G.; Werz, O. Identification of molecular targets of the oligomeric nonprenylated acylphloroglucinols from Myrtus communis and their implication as anti-inflammatory compounds. J. Pharmacol. Exp. Ther., 2005, 315(1), 389-396.
[http://dx.doi.org/10.1124/jpet.105.090720] [PMID: 16014754]
[158]
Koeberle, A.; Werz, O. Inhibitors of the microsomal prostaglandin E(2) synthase-1 as alternative to non steroidal anti-inflammatory drugs (NSAIDs)--a critical review. Curr. Med. Chem., 2009, 16(32), 4274-4296.
[http://dx.doi.org/10.2174/092986709789578178] [PMID: 19754418]
[159]
Müller, H.; Paul, M.; Hartmann, D.; Huch, V.; Blaesius, D.; Koeberle, A.; Werz, O.; Jauch, J. Total synthesis of myrtucommulone A. Angew. Chem. Int. Ed. Engl., 2010, 49(11), 2045-2049.
[http://dx.doi.org/10.1002/anie.200903906] [PMID: 20155764]
[160]
Wiechmann, K.; Müller, H.; Huch, V.; Hartmann, D.; Werz, O.; Jauch, J. Synthesis and biological evaluation of novel myrtucommulones and structural analogues that target mPGES-1 and 5-lipoxygenase. Eur. J. Med. Chem., 2015, 101, 133-149.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.001] [PMID: 26123643]
[161]
Koeberle, A.; Werz, O. Natural products as inhibitors of prostaglandin E2 and pro-inflammatory 5-lipoxygenase-derived lipid mediator biosynthesis. Biotechnol. Adv., 2018, 36(6), 1709-1723.
[http://dx.doi.org/10.1016/j.biotechadv.2018.02.010] [PMID: 29454981]
[162]
Koeberle, A.; Northoff, H.; Werz, O. Identification of 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 as functional targets of the anti-inflammatory and anti-carcinogenic garcinol. Biochem. Pharmacol., 2009, 77(9), 1513-1521.
[http://dx.doi.org/10.1016/j.bcp.2009.02.005] [PMID: 19426689]
[163]
Appendino, G.; Ottino, M.; Marquez, N.; Bianchi, F.; Giana, A.; Ballero, M.; Sterner, O.; Fiebich, B.L.; Munoz, E. Arzanol, an anti-inflammatory and anti-HIV-1 phloroglucinol α-Pyrone from Helichrysum italicum ssp. microphyllum. J. Nat. Prod., 2007, 70(4), 608-612.
[http://dx.doi.org/10.1021/np060581r] [PMID: 17315926]
[164]
Sala, A.; Recio, M.; Giner, R.M.; Máñez, S.; Tournier, H.; Schinella, G.; Ríos, J.L. Anti-inflammatory and antioxidant properties of Helichrysum italicum. J. Pharm. Pharmacol., 2002, 54(3), 365-371.
[http://dx.doi.org/10.1211/0022357021778600] [PMID: 11902802]
[165]
Albert, D.; Zündorf, I.; Dingermann, T.; Müller, W.E.; Steinhilber, D.; Werz, O. Hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase. Biochem. Pharmacol., 2002, 64(12), 1767-1775.
[http://dx.doi.org/10.1016/S0006-2952(02)01387-4] [PMID: 12445866]
[166]
Cabrelle, A.; Dell’Aica, I.; Melchiori, L.; Carraro, S.; Brunetta, E.; Niero, R.; Scquizzato, E.; D’Intino, G.; Calzà, L.; Garbisa, S.; Agostini, C. Hyperforin down-regulates effector function of activated T lymphocytes and shows efficacy against Th1-triggered CNS inflammatory-demyelinating disease. J. Leukoc. Biol., 2008, 83(1), 212-219.
[http://dx.doi.org/10.1189/jlb.0707469] [PMID: 17947392]
[167]
Dell’Aica, I.; Niero, R.; Piazza, F.; Cabrelle, A.; Sartor, L.; Colalto, C.; Brunetta, E.; Lorusso, G.; Benelli, R.; Albini, A.; Calabrese, F.; Agostini, C.; Garbisa, S. Hyperforin blocks neutrophil activation of matrix metalloproteinase-9, motility and recruitment, and restrains inflammation-triggered angiogenesis and lung fibrosis. J. Pharmacol. Exp. Ther., 2007, 321(2), 492-500.
[http://dx.doi.org/10.1124/jpet.106.116459] [PMID: 17289834]
[168]
Feisst, C.; Werz, O. Suppression of receptor-mediated Ca2+ mobilization and functional leukocyte responses by hyperforin. Biochem. Pharmacol., 2004, 67(8), 1531-1539.
[http://dx.doi.org/10.1016/j.bcp.2003.12.020] [PMID: 15041470]
[169]
Svouraki, A.; Garscha, U.; Kouloura, E.; Pace, S.; Pergola, C.; Krauth, V.; Rossi, A.; Sautebin, L.; Halabalaki, M.; Werz, O.; Gaboriaud-Kolar, N.; Skaltsounis, A.L. Evaluation of dual 5-lipoxygenase/microsomal prostaglandin E2 synthase-1 inhibitory effect of natural and synthetic acronychia-type isoprenylated acetophenones. J. Nat. Prod., 2017, 80(3), 699-706.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01008] [PMID: 28240894]
[170]
Forino, M.; Pace, S.; Chianese, G.; Santagostini, L.; Werner, M.; Weinigel, C.; Rummler, S.; Fico, G.; Werz, O.; Taglialatela-Scafati, O. Humudifucol and bioactive prenylated polyphenols from hops (Humulus lupulus cv. “Cascade”). J. Nat. Prod., 2016, 79(3), 590-597.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01052] [PMID: 26918635]
[171]
Koeberle, A.; Bauer, J.; Verhoff, M.; Hoffmann, M.; Northoff, H.; Werz, O. Green tea epigallocatechin-3-gallate inhibits microsomal prostaglandin E(2) synthase-1. Biochem. Biophys. Res. Commun., 2009, 388(2), 350-354.
[http://dx.doi.org/10.1016/j.bbrc.2009.08.005] [PMID: 19665000]
[172]
Prasad, S.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol. Adv., 2014, 32(6), 1053-1064.
[http://dx.doi.org/10.1016/j.biotechadv.2014.04.004] [PMID: 24793420]
[173]
Koeberle, A.; Northoff, H.; Werz, O. Curcumin blocks prostaglandin E2 biosynthesis through direct inhibition of the microsomal prostaglandin E2 synthase-1. Mol. Cancer Ther., 2009, 8(8), 2348-2355.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0290] [PMID: 19671757]
[174]
Poeckel, D.; Greiner, C.; Verhoff, M.; Rau, O.; Tausch, L.; Hörnig, C.; Steinhilber, D.; Schubert-Zsilavecz, M.; Werz, O. Carnosic acid and carnosol potently inhibit human 5-lipoxygenase and suppress pro-inflammatory responses of stimulated human polymorphonuclear leukocytes. Biochem. Pharmacol., 2008, 76(1), 91-97.
[http://dx.doi.org/10.1016/j.bcp.2008.04.013] [PMID: 18508031]
[175]
Werz, O.; Seegers, J.; Schaible, A.M.; Weinigel, C.; Barz, D.; Koeberle, A.; Allegrone, G.; Pollastro, F.; Zampieri, L.; Grassi, G. Cannflavins from hemp sprouts, a novel cannabinoid-free hemp food product, target microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase. PharmaNutrition, 2014, 2(3), 53-60.
[http://dx.doi.org/10.1016/j.phanu.2014.05.001]
[176]
Bauer, J.; Waltenberger, B.; Noha, S.M.; Schuster, D.; Rollinger, J.M.; Boustie, J.; Chollet, M.; Stuppner, H.; Werz, O. Discovery of depsides and depsidones from lichen as potent inhibitors of microsomal prostaglandin E2 synthase-1 using pharmacophore models. ChemMedChem, 2012, 7(12), 2077-2081.
[http://dx.doi.org/10.1002/cmdc.201200345] [PMID: 23109349]
[177]
Oettl, S.K.; Gerstmeier, J.; Khan, S.Y.; Wiechmann, K.; Bauer, J.; Atanasov, A.G.; Malainer, C.; Awad, E.M.; Uhrin, P.; Heiss, E.H.; Waltenberger, B.; Remias, D.; Breuss, J.M.; Boustie, J.; Dirsch, V.M.; Stuppner, H.; Werz, O.; Rollinger, J.M. Imbricaric acid and perlatolic acid: multi-targeting anti-inflammatory depsides from Cetrelia monachorum. PLoS One, 2013, 8(10)e76929
[http://dx.doi.org/10.1371/journal.pone.0076929] [PMID: 24130812]
[178]
Poojari, R. Embelin - a drug of antiquity: shifting the paradigm towards modern medicine. Expert Opin. Investig. Drugs, 2014, 23(3), 427-444.
[http://dx.doi.org/10.1517/13543784.2014.867016] [PMID: 24397264]
[179]
Schaible, A.M.; Traber, H.; Temml, V.; Noha, S.M.; Filosa, R.; Peduto, A.; Weinigel, C.; Barz, D.; Schuster, D.; Werz, O. Potent inhibition of human 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 by the anti-carcinogenic and anti-inflammatory agent embelin. Biochem. Pharmacol., 2013, 86(4), 476-486.
[http://dx.doi.org/10.1016/j.bcp.2013.04.015] [PMID: 23623753]
[180]
Siemoneit, U.; Koeberle, A.; Rossi, A.; Dehm, F.; Verhoff, M.; Reckel, S.; Maier, T.J.; Jauch, J.; Northoff, H.; Bernhard, F.; Doetsch, V.; Sautebin, L.; Werz, O. Inhibition of microsomal prostaglandin E2 synthase-1 as a molecular basis for the anti-inflammatory actions of boswellic acids from frankincense. Br. J. Pharmacol., 2011, 162(1), 147-162.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01020.x] [PMID: 20840544]
[181]
Siemoneit, U.; Pergola, C.; Jazzar, B.; Northoff, H.; Skarke, C.; Jauch, J.; Werz, O. On the interference of boswellic acids with 5-lipoxygenase: mechanistic studies in vitro and pharmacological relevance. Eur. J. Pharmacol., 2009, 606(1-3), 246-254.
[http://dx.doi.org/10.1016/j.ejphar.2009.01.044] [PMID: 19374837]
[182]
Chakraborty, K.; Salas, S. First report of antioxidant 1 H-benzochromenone from muricid gastropod Chicoreus ramosus as dual inhibitors of pro-inflammatory 5-lipoxy-genase and carbolytic enzymes. Nat. Prod. Res., 2019, 1-10.
[http://dx.doi.org/10.1080/14786419.2019.1647428] [PMID: 31507218]
[183]
Chakraborty, K.; Antony, T. First report of spiro-compounds from marine macroalga Gracilaria salicornia: prospective natural anti-inflammatory agents attenuate 5-lipoxygenase and cyclooxygenase-2. Nat. Prod. Res., 2019, 1-12.
[http://dx.doi.org/10.1080/14786419.2019.1608545] [PMID: 31109202]
[184]
Chakraborty, K.; Antony, T.; Joy, M. Prospective natural anti-inflammatory drimanes attenuating pro-inflammatory 5-lipoxygenase from marine macroalga Gracilaria salicornia. Algal Res., 2019, 40101472
[http://dx.doi.org/10.1016/j.algal.2019.101472]
[185]
Singh, A.K.; Singh, R.; Naz, F.; Chauhan, S.S.; Dinda, A.; Shukla, A.A.; Gill, K.; Kapoor, V.; Dey, S. Structure based design and synthesis of peptide inhibitor of human LOX-12: in vitro and in vivo analysis of a novel therapeutic agent for breast cancer. PLoS One, 2012, 7(2)e32521
[http://dx.doi.org/10.1371/journal.pone.0032521] [PMID: 22384268]
[186]
Afifi, O.S.; Shaaban, O.G.; Abd El Razik, H.A.; Shams El-Dine, S.E.A.; Ashour, F.A.; El-Tombary, A.A.; Abu-Serie, M.M. Synthesis and biological evaluation of purine-pyrazole hybrids incorporating thiazole, thiazolidinone or rhodanine moiety as 15-LOX inhibitors endowed with anticancer and antioxidant potential. Bioorg. Chem., 2019, 87, 821-837.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.076] [PMID: 30999135]
[187]
Averina, E.B.; Vasilenko, D.A.; Gracheva, Y.A.; Grishin, Y.K.; Radchenko, E.V.; Burmistrov, V.V.; Butov, G.M.; Neganova, M.E.; Serkova, T.P.; Redkozubova, O.M.; Shevtsova, E.F.; Milaeva, E.R.; Kuznetsova, T.S.; Zefirov, N.S. Synthesis and biological evaluation of novel 5-hydroxyl-aminoisoxazole derivatives as lipoxygenase inhibitors and metabolism enhancing agents. Bioorg. Med. Chem., 2016, 24(4), 712-720.
[http://dx.doi.org/10.1016/j.bmc.2015.12.040] [PMID: 26753816]
[188]
Chekir, S.; Debbabi, M.; Regazzetti, A.; Dargère, D.; Laprévote, O.; Ben Jannet, H.; Gharbi, R. Design, synthesis and biological evaluation of novel 1,2,3-triazole linked coumarinopyrazole conjugates as potent anticholinesterase, anti-5-lipoxygenase, anti-tyrosinase and anti-cancer agents. Bioorg. Chem., 2018, 80, 189-194.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.005] [PMID: 29940340]
[189]
Stable-5-Lipoxygenase. PDB ID: 3O8Y. Available at: https://www.rcsb.org/structure/3O8Y(Accessed on September 20th, 2019).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy