Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Revision of the Regioselectivity of the Beirut Reaction of Monosubstituted Benzofuroxans with Benzoylacetonitrile. 6-Substituted quinoxaline-2-carbonitrile 1,4- dioxides: Structural Characterization and Estimation of Anticancer Activity and Hypoxia Selectivity

Author(s): Galina I. Buravchenko, Alexander M. Scherbakov, Alexander А. Korlukov, Pavel V. Dorovatovskii and Andrey E. Shchekotikhin*

Volume 17, Issue 1, 2020

Page: [29 - 39] Pages: 11

DOI: 10.2174/1570179416666191210100754

Price: $65

Abstract

Background: Quinoxaline 1,4-dioxides have a broad range of biological activity that causes a growing interest in their derivatives for drug discovery. Recent studies demonstrated that quinoxaline 1,4- dioxides have a promising anticancer activity and good hypoxia-selectivity.

Objective: The preparation, isolation, structure characterization, and screening for anticancer activity of the first representatives of 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides have been described.

Materials and Methods: A series of 7- and 6-halogeno-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides was synthesized by the Beirut reaction. The cytotoxicity was assessed by MTT test (72 h incubation) in normoxia (21% O2) and hypoxia (1% O2) conditions.

Results: We found that during the Beirut reaction between a benzofuroxan bearing an electron withdrawing group and benzoylacetonitrile in the presence of triethylamine, in addition to well-known 7-substituted quinoxaline-2-carbonitrile 1,4-dioxides 7-11a, the 6-isomers 7-11b are formed. Moreover, the yield of the 6- isomers increased with the increase in the electron-withdrawing character of the substituent. For benzofuroxans with CO2Me and CF3 groups, 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides 10-11b were the major products. Despite similarities in physicochemical and spectroscopic properties, the obtained isomers exhibit considerable differences in their anticancer activity and hypoxia selectivity.

Conclusion: Substituents and their electronic effects play a key role in the formation of 7- and 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides in the Beirut reaction and in the cytotoxicity properties of the obtained isomers.

Keywords: 6(7)-substituted-3-phenylquinoxaline-2-carbonitrile 1, 4-dioxides, structural isomers, CIGAR-HMBC method, X-ray structural analysis, antiproliferative activity, hypoxia-selective cytotoxins, Beirut reaction.

Graphical Abstract

[1]
Carta, A.; Corona, P.; Loriga, M. Quinoxaline 1,4-dioxide: A versatile scaffold endowed with manifold activities. Curr. Med. Chem., 2005, 12(19), 2259-2272.Available at.
[http://dx.doi.org/10.2174/0929867054864831] [PMID: 16178784]
[2]
Suter, W.; Rosselet, A.; Knüsel, F. Mode of action of quindoxin and substituted quinoxaline-di-N-oxides on Escherichia coli. Antimicrob. Agents Chemother.,, 1978, 13(5), 770-783.Available at .
[http://dx.doi.org/10.1128/AAC.13.5.770.] [PMID: 352264]
[3]
Witte, W. Medical consequences of antibiotic use in agriculture. Science, 1998, 279(5353), 996-997.
[http://dx.doi.org/10.1126/science.279.5353.996] [PMID: 9490487]
[4]
Wang, X.; Zhou, W.; Ihsan, A.; Chen, D.; Cheng, G.; Hao, H.; Liu, Z.; Wang, Y.; Yuan, Z. Assessment of thirteen-week subchronic oral toxicity of cyadox in Beagle dogs. Regul. Toxicol. Pharmacol, 2015, 73(2), 652-659.Available at .
[http://dx.doi.org/10.1016/j.yrtph.2015.09.023] [PMID: 26408151]
[5]
Li, D.; Dai, C.; Yang, X.; Wang, F.; Yu, X.; Xiao, X.; Tang, S. Critical role of p21 on olaquindox-induced mitochondrial apoptosis and S-phase arrest involves activation of PI3K/AKT and inhibition of Nrf2/HO-1pathway. Food Chem. Toxicol.,, 2017, 108(Pt A), 148-160.Available at .
[http://dx.doi.org/10.1016/j.fct.2017.07.054.] [PMID: 28757460]
[6]
Guo, W.; Hao, H.; Dai, M.; Wang, Y.; Huang, L.; Peng, D. Development of quinoxaline 1,4-dioxides resistance in Escherihia coli and molecular change under resistance selection. PLoS One,, 2012., 7e4322
[7]
Le, T.; Zhu, L.; Shu, L.; Zhang, L. Simultaneous determination of five quinoxaline-1,4-dioxides in animal feeds using an immunochromatographic strip. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2016, 33(2), 244-251.
[PMID: 26666867]
[8]
Liu, Q.; Lei, Z.; Zhou, K.; Yu, H.; Liu, S.; Sun, Q.; Wang, X.; Dai, M.; Yuan, Z. N-O reduction and ROS-mediated AKT/FOXO1 and AKT/P53 pathways were involved in growth promotion and cytotoxicity of Cyadox. Chem. Res. Toxicol.,, 2018, 31(11), 1219-1229.Available at .
[http://dx.doi.org/ 10.1021/acs.chemrestox.8b00194.] [PMID: 30265530]
[9]
Dai, C.; Tang, S.; Li, D.; Zhao, K.; Xiao, X. Curcumin attenuates quinocetone-induced oxidative stress and genotoxicity in human hepatocyte L02 cells. Toxicol. Mech. Methods., 2015, 25(4), 340-346.Available at .
[http://dx.doi.org/ 10.3109/15376516.2015.1045659.] [PMID: 25996037]
[10]
Gupta, R.R. Topics in heterocyclic chemistry Bioactive Heterocycles V; Springer; , 2007. Available at .
[http://dx.doi.org/ 10.1007/978-3-540-73404-8]
[11]
Carta, A.; Loriga, M.; Paglietti, G.; Mattana, A.; Fiori, P.L.; Mollicotti, P.; Sechi, L.; Zanetti, S. Synthesis, anti-mycobacterial, anti-trichomonas and anti-candida in vitro activities of 2-substituted-6,7-difluoro-3-methylquinoxaline 1,4-dioxides. Eur. J. Med. Chem.,, 2004, 39(2), 195-203.Available at .
[http://dx.doi.org/ 10.1016/j.ejmech.2003.11.008.] [PMID: 14987828]
[12]
Murthy, Y.L.N.; Mani, P.; Govindh, B.; Diwakar, B.S.; Karthikeyan, N.; Rao, T.R. Synthesis and characterization of 2,3-diphenylquinoxaline 1,4-di-N-oxide derivatives and study of their antimicrobial activities. Res. J. Pharm. Biol. Chem. Sci., 2011, 2, 553-560.
[13]
Carta, A.; Paglietti, G.; Rahbar Nikookar, M.E.; Sanna, P.; Sechi, L.; Zanetti, S. Novel substituted quinoxaline 1,4-dioxides with in vitro antimycobacterial and anticandida activity. Eur. J. Med. Chem., 2002, 37(5), 355-366.Available at .
[http://dx.doi.org/10.1016/S0223-5234(02)01346-6] [PMID: 12008050]
[14]
McIlwain, H.J. Bacterial inhibition by metabolite analogues. Part V. Reactions and antibacterial properties of p-diazine di-N-oxides. J. Chem. Soc., 1943, 322-325.Available at .
[http://dx.doi.org/10.1039/jr9430000322]
[15]
Vieira, M.; Pinheiro, C.; Fernandes, R.; Noronha, J.P.; Prudêncio, C. Antimicrobial activity of quinoxaline 1,4-dioxide with 2- and 3-substituted derivatives. Microbiol. Res., 2014, 169(4), 287-293.Available at .
[http://dx.doi.org/10.1016/j.micres.2013.06.015] [PMID: 23928379]
[16]
Xin, Z.J.; Liang, J.P.; Li, X.H.; Tao, L.; Lu, X.H. Synthesis and antibacterial activity of some new quinoxaline-1,4-dioxide derivatives. Adv. Mat. Res., 2013, 634, 1376-1379.Available at .
[http://dx.doi.org/10.4028/www.scientific.net/AMR.634-638.1376]
[17]
Cheng, G.; Li, B.; Wang, C.; Zhang, H.; Liang, G.; Weng, Z.; Hao, H.; Wang, X.; Liu, Z.; Dai, M.; Wang, Y.; Yuan, Z. Systematic and molecular basis of the antibacterial action of quinoxaline 1,4-di-N-oxides against Escherichia coli. PLoS One, 2015, 10(8),e0136450.Available at .
[http://dx.doi.org/10.1371/journal.pone.0136450] [PMID: 26296207]
[18]
Singh, D.P.; Deivedi, S.K.; Hashim, S.R.; Singhal, R.G. Synthesis and antimicrobial activity of some new quinoxaline derivatives. Pharmaceuticals (Basel), 2010, 3(8), 2416-2425.Available at .
[http://dx.doi.org/10.3390/ph3082416.] [PMID: 27713361]
[19]
Jaso, A.; Zarranz, B.; Aldana, I.; Monge, A. Synthesis of new quinoxaline-2-carboxylate 1,4-dioxide derivatives as anti-Mycobacterium tuberculosis agents. J. Med. Chem., 2005, 48(6), 2019-2025.Available at .
[http://dx.doi.org/10.1021/jm049952w] [PMID: 15771444]
[20]
Keri, R.S.; Pandule, S.S.; Budagumpi, S.; Nagaraja, B.M. Quinoxaline and quinoxaline-1,4-di-N-oxides: An emerging class of antimycobacterials. Arch. Pharm. (Weinheim), 2018, 351(5),e1700325.Available at .
[http://dx.doi.org/10.1002/ardp.201700325] [PMID: 29611626]
[21]
Ekins, S.; Madrid, P.B.; Sarker, M.; Li, S-G.; Mittal, N.; Kumar, P.; Wang, X.; Stratton, T.P.; Zimmerman, M.; Talcott, C.; Bourbon, P.; Travers, M.; Yadav, M.; Freundlich, J.S. Combining metabolite-based pharmacophores with bayesian machine learning models for mycobacterium tuberculosis drug discovery. PLoS One, 2015, 10(10),e0141076.Available at .
[http://dx.doi.org/10.1371/journal.pone.0141076] [PMID: 26517557]
[22]
Vicente, E.; Villar, R.; Pérez-Silanes, S.; Aldana, I.; Goldman, R.C.; Mong, A. Quinoxaline 1,4-di-N-oxide and the potential for treating tuberculosis. Infect. Disord. Drug Targets,, 2011, 11(2), 196-204.Available at .
[http://dx.doi.org/10.2174/187152611795589735] [PMID: 21470099]
[23]
Urquiola, C.; Vieites, M.; Torre, M.H.; Cabrera, M.; Lavaggi, M.L.; Cerecetto, H.; González, M.; Cerain, A.L.; Monge, A.; Smircich, P.; Garat, B.; Gambino, D. Cytotoxic palladium complexes of bioreductive quinoxaline N1,N4-dioxide prodrugs. Bioorg. Med. Chem., 2009, 17(4), 1623-1629.Available at .
[http://dx.doi.org/10.1016/j.bmc.2008.12.064.] [PMID: 19162490]
[24]
Burguete, A.; Pontiki, E.; Hadjipavlou-Litina, D.; Ancizu, S.; Villar, R.; Solano, B.; Moreno, E.; Torres, E.; Pérez, S.; Aldana, I.; Monge, A. Synthesis and biological evaluation of new quinoxaline derivatives as antioxidant and anti-inflammatory agents. Chem. Biol. Drug Des.,, 2011, 77(4), 255-267.Available at .
[http://dx.doi.org/10.1111/j.1747-0285.2011.01076.x.] [PMID: 21244639]
[25]
Hofmann, B.; Steinhilber, D. 5-Lipoxygenase inhibitors: A review of recent patents (2010-2012). Expert Opin. Ther. Pat., 2013, 23(7), 895-909.Available at .
[http://dx.doi.org/10.1517/13543776.2013.791678.] [PMID: 23600432]
[26]
Pereira, J.A.; Pessoa, A.M.; Cordeiro, M.N.; Fernandes, R.; Prudêncio, C.; Noronha, J.P.; Vieira, M. Quinoxaline, its derivatives and applications: A State of the Art review. Eur. J. Med. Chem.,, 2015, 97, 664-672.Available at .
[http://dx.doi.org/10.1016/j.ejmech.2014.06.058.] [PMID: 25011559]
[27]
Marin, A.; Moreira Lima, L.; Solano, B.; Vicente, E.; Pérez Silanes, S.; Maurel, S.; Sauvain, M.; Aldana, I.; Monge, A.; Deharo, E. Antiplasmodial structure-activity relationship of 3-trifluoromethyl-2-arylcarbonylquinoxaline 1,4-di-N-oxide derivatives. Exp. Parasitol., 2008, 118(1), 25-31.Available at .
[http://dx.doi.org/10.1016/j.exppara.2007.05.009.] [PMID: 17612525]
[28]
Brizuela, M.; Huang, H.M.; Smith, C.; Burgio, G.; Foote, S.J.; McMorran, B.J. Treatment of erythrocytes with the 2-cys peroxiredoxin inhibitor, Conoidin A, prevents the growth of Plasmodium falciparum and enhances parasite sensitivity to chloroquine. PLoS One,, 2014, 9(4),e92411.Available at .
[http://dx.doi.org/10.1371/journal.pone.0092411.] [PMID: 24699133]
[29]
Bonilla-Ramirez, L.; Rios, A.; Quiliano, M.; Ramirez-Calderon, G.; Beltrán-Hortelano, I.; Franetich, J.F.; Corcuera, L.; Bordessoulles, M.; Vettorazzi, A.; López de Cerain, A.; Aldana, I.; Mazier, D.; Pabón, A.; Galiano, S. Novel antimalarial chloroquine- and primaquine-quinoxaline 1,4-di-N-oxide hybrids: Design, synthesis, Plasmodium life cycle stage profile, and preliminary toxicity studies. Eur. J. Med. Chem.,, 2018, 158, 68-81.Available at .
[http://dx.doi.org/10.1016/j.ejmech.2018.08.063.] [PMID: 30199706]
[30]
Torres, E.; Moreno-Viguri, E.; Galiano, S.; Devarapally, G.; Crawford, P.W.; Azqueta, A.; Arbillaga, L.; Varela, J.; Birriel, E.; Di Maio, R.; Cerecetto, H.; González, M.; Aldana, I.; Monge, A.; Pérez-Silanes, S. S. Novel quinoxaline 1,4-di-N-oxide derivatives as new potential antichagasic agents. Eur. J. Med. Chem.,, 2013, 66, 324-334.Available at .
[http://dx.doi.org/10.1016/j.ejmech.2013.04.065.] [PMID: 23811257]
[31]
Gerpe, A.; Boiani, L.; Hernández, P.; Sortino, M.; Zacchino, S.; González, M.; Cerecetto, H. Naftifine-analogues as anti-Trypanosoma cruzi agents. Eur. J. Med. Chem.,, 2010, 45(6), 2154-2164.Available at .
[http://dx.doi.org/10.1016/j.ejmech.2010.01.052.] [PMID: 20163894]
[32]
Villalobos-Rocha, J.C.; Sánchez-Torres, L.; Nogueda-Torres, B.; Segura-Cabrera, A.; García-Pérez, C.A.; Bocanegra-García, V.; Palos, I.; Monge, A.; Rivera, G. Anti-Trypanosoma cruzi and anti-leishmanial activity by quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives. Parasitol. Res., 2014, 113(6), 2027-2035.
[http://dx.doi.org/10.1007/s00436-014-3850-8] [PMID: 24691716]
[33]
Barea, C.; Pabón, A.; Pérez-Silanes, S.; Galiano, S.; Gonzalez, G.; Monge, A.; Deharo, E.; Aldana, I. New amide derivatives of quinoxaline 1,4-di-Noxide with leishmanicidal and antiplasmodial activities Molecules,, 2013, 18(4), 4718-4727.Available at .
[http://dx.doi.org/10.3390/molecules18044718.] [PMID: 23609622]
[34]
Duque-Montaño, B.E.; Gómez-Caro, L.C.; Sanchez-Sanchez, M.; Monge, A.; Hernández-Baltazar, E.; Rivera, G.; Torres-Angeles, O. Synthesis and in vitro evaluation of new ethyl and methyl quinoxaline-7-carboxylate 1,4-di- N-oxide against Entamoeba histolytica. Bioorg. Med. Chem.,, 2013, 21(15), 4550-4558.Availble at.
[http://dx.doi.org/10.1016/j.bmc.2013.05.036.] [PMID: 23787289]
[35]
Jones, W.R.; Landquist, J.K.; Stewart, G.T. Synthetic amoebicides. II. The anti-amoebic action of quinoxaline-1:4-dioxide and some derivatives. Br. J. Pharmacol. Chemother.,, 1953, 8(3), 286-289.Availble at.
[http://dx.doi.org/10.1111/j.1476-5381.1953.tb00796.x.] [PMID: 13093948]
[36]
Das, U.; Pati, H.N.; Panda, A.K.; De Clercq, E.; Balzarini, J.; Molnár, J.; Baráth, Z.; Ocsovszki, I.; Kawase, M.; Zhou, L.; Sakagami, H.; Dimmock, J.R. 2-(3-Aryl-2-propenoyl)-3-methylquinoxaline-1,4-dioxides: A novel cluster of tumor-specific cytotoxins which reverse multidrug resistance. Bioorg. Med. Chem.,, 2009, 17(11), 3909-3915.Availble at.
[http://dx.doi.org/10.1016/j.bmc.2009.04.021.] [PMID: 19427790]
[37]
Ismail, M.M.; Amin, K.M.; Noaman, E.; Soliman, D.H.; Ammar, Y.A. New quinoxaline 1, 4-di-N-oxides: anticancer and hypoxia-selective therapeutic agents. Eur. J. Med. Chem., 2010, 45(7), 2733-2738.Availble at:.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.052.] [PMID: 20236735]
[38]
Vieites, M.; Noblía, P.; Torre, M.H.; Cerecetto, H.; Laura Lavaggi, M.; Costa-Filho, A.J.; Azqueta, A.; de Cerain, A.L.; Monge, A.; Parajón-Costa, B.; González, M.; Gambino, D. Selective hypoxia-cytotoxins based on vanadyl complexes with 3-aminoquinoxaline-2-carbonitrile-N1,N4-dioxide derivatives. J. Inorg. Biochem., 2006, 100(8), 1358-1367.Availble at.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.03.012.] [PMID: 16698084]
[39]
Gali-Muhtasib, H.U.; Haddadin, M.J.; Rahhal, D.N.; Younes, I.H. Quinoxaline 1,4-dioxides as anticancer and hypoxia-selective drugs. Oncol. Rep.,, 2001, 8(3), 679-684.Availble at.
[http://dx.doi.org/10.3892/or.8.3.679.] [PMID: 11295102]
[40]
Gali-Muhtasib, H.U.; Diab-Assaf, M.; Haddadin, M.J. Quinoxaline 1,4-dioxides induce G2/M cell cycle arrest and apoptosis in human colon cancer cells. Cancer Chemother. Pharmacol.,, 2005, 55(4), 369-378.Availble at.
[http://dx.doi.org/10.1007/s00280-004-0907-x.] [PMID: 15538569]
[41]
Yin, J.; Glaser, R.; Gates, K.S. On the reaction mechanism of tirapazamine reduction chemistry: Unimolecular N-OH homolysis, stepwise dehydration,or triazene ring-opening. Chem. Res. Toxicol.,, 2012, 25(3), 634-645.Availble at.
[http://dx.doi.org/10.1021/tx200546u.] [PMID: 22390168]
[42]
Evans, J.W.; Chernikova, S.B.; Kachnic, L.A.; Banath, J.P.; Sordet, O.; Delahoussaye, Y.M.; Treszezamsky, A.; Chon, B.H.; Feng, Z.; Gu, Y.; Wilson, W.R.; Pommier, Y.; Olive, P.L.; Powell, S.N.; Brown, J.M. Homologous recombination is the principal pathway for the repair of DNA damage induced by tirapazamine in mammalian cells. Cancer Res.,, 2008, 68(1), 257-265.Availble at.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4497.] [PMID: 18172318]
[43]
Delahoussaye, Y.M.; Evans, J.W.; Brown, J.M. Metabolism of tirapazamine by multiple reductases in the nucleus. Biochem. Pharmacol.,, 2001, 62(9), 1201-1209.Availble at.
[http://dx.doi.org/10.1016/S0006-2952(01)00784-5.] [PMID: 11705453]
[44]
Hunter, F.W.; Young, R.J.; Shalev, Z.; Vellanki, R.N.; Wang, J.; Gu, Y.; Joshi, N.; Sreebhavan, S.; Weinreb, I.; Goldstein, D.P.; Moffat, J.; Ketela, T.; Brown, K.R.; Koritzinsky, M.; Solomon, B.; Rischin, D.; Wilson, W.R.; Wouters, B.G. Identification of P450 oxidoreductase as a major determinant of sensitivity to hypoxia-activated prodrugs. Cancer Res.,, 2015, 75(19), 4211-4223.Availble at.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1107.] [PMID: 26297733]
[45]
Diab-Assef, M.; Haddadin, M.J.; Yared, P.; Assaad, C.; Gali-Muhtasib, H.U. Quinoxaline 1,4-dioxides: Hypoxia-selective therapeutic agents. Mol.Carcinog.,, 2002, 33(4), 198-205.Availble at.
[http://dx.doi.org/10.1002/mc.10036.] [PMID: 11933073]
[46]
Muz, B.; de la Puente, P.; Azab, F.; Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia(Auckl.),, 2015, 3, 83-92.Availble at.
[http://dx.doi.org/10.2147/HP.S93413.] [PMID: 27774485]
[47]
Jun, J.C.; Rathore, A.; Younas, H.; Gilkes, D.; Polotsky, V.Y. Hypoxia-inducible factors and cancer. Curr. Sleep Med. Rep.,, 2017, 3(1), 1-10.Availble at.
[http://dx.doi.org/10.1007/s40675-017-0062-7.] [PMID: 28944164]
[48]
Scherbakov, A.M.; Lobanova, Y.S.; Shatskaya, V.A.; Krasil’nikov, M.A. The breast cancer cells response to chronic hypoxia involves the opposite regulation of NF-kB and estrogen receptor signaling. Steroids.,, 2009, 74(6), 535-542.Availble at.
[http://dx.doi.org/10.1016/j.steroids.2009.02.003.] [PMID: 19428442]
[49]
Peng, J.; Wang, X.; Ran, L.; Song, J.; Luo, R.; Wang, Y. Hypoxia-inducible factor 1α regulates the transforming growth factor β1/SMAD family member 3 pathway to promote breast cancer progression. J. Breast Cancer,, 2018, 21(3), 259-266.Availble at.
[http://dx.doi.org/10.4048/jbc.2018.21.e42.] [PMID: 30275854]
[50]
Manoochehri Khoshinani, H.; Afshar, S.; Najafi, R. Hypoxia: A Double-edged sword in cancer therapy. Cancer Invest., 2016, 34(10), 536-545.
[http://dx.doi.org/10.1080/07357907.2016.1245317] [PMID: 27824512]
[51]
Rey, S.; Schito, L.; Wouters, B.G.; Eliasof, S.; Kerbel, R.S. Targeting hypoxia-inducible factors for antiangiogenic cancer therapy. Trends Cancer,, 2017, 3(7), 529-541.Availble at.
[http://dx.doi.org/10.1016/j.trecan.2017.05.002.] [PMID: 28718406]
[52]
Gershtein, E.S.; Scherbakov, A.M.; Anurova, O.A.; Krasilńikov, M.A.; Kushlinsky, N.E. Phosphorylated Akt1 in human breast cancer measured by direct sandwich enzyme-linked immunosorbent assay: Correlation with clinicopathological features and tumor VEGF-signaling system component levels. Int. J. Biol. Markers,, 2006, 21(1), 12-19.Availble at.
[http://dx.doi.org/10.1177/172460080602100103.] [PMID: 16711509]
[53]
Di Desidero, T.; Orlandi, P.; Fioravanti, A.; Alì, G.; Cremolini, C.; Loupakis, F.; Gentile, D.; Banchi, M.; Cucchiara, F.; Antoniotti, C.; Masi, G.; Fontanini, G.; Falcone, A.; Bocci, G. Chemotherapeutic and antiangiogenic drugs beyond tumor progression in colon cancer: Evaluation of the effects of switched schedules and related pharmacodynamics. Biochem. Pharmacol.,, 2019, 164, 94-105.Availble at.
[http://dx.doi.org/10.1016/j.bcp.2019.04.001.] [PMID: 30953637]
[54]
Scherbakov, A.M.; Lobanova, Y.S.; Shatskaya, V.A.; Onopchenko, O.V.; Gershtein, E.S.; Krasil’nikov, M.A. Activation of mitogenic pathways and sensitization to estrogen-induced apoptosis: Two independent characteristics of tamoxifen-resistant breast cancer cells? Breast Cancer Res. Treat.,, 2006, 100(1), 1-11.Availble at.
[http://dx.doi.org/10.1007/s10549-005-9075-x.] [PMID: 16990991]
[55]
Scherbakov, A.M.; Gershtein, E.S.; Korotkova, E.A.; Ovchinnikova, L.K.; Ovsii, O.G.; Ermilova, V.D.; Gens, G.P.; Kushlinskii, N.E. Regulatory proteins of epithelial-mesenchymal transition and some components of VEGF signaling pathway in breast cancer. Bull. Exp. Biol. Med.,, 2016, 160(6), 802-806.Availble at.
[http://dx.doi.org/10.1007/s10517-016-3314-5.] [PMID: 27165081]
[56]
Peng, K.; Bai, Y.; Zhu, Q.; Hu, B.; Xu, Y. Targeting VEGF-neuropilin interactions: A promising antitumor strategy. Drug Discov. Today,, 2019, 24(2), 656-664.Availble at.
[http://dx.doi.org/10.1016/j.drudis.2018.10.004.] [PMID: 30315890]
[57]
Shcherbakov, A.M.; Gershteĭn, E.S.; Anurova, O.A.; Kushlinskiĭ, N.E. Vascular endothelial growth factor and two types of its receptors in breast cancer. Vopr. Onkol., 2005, 51(3), 317-321.
[PMID: 16279095]
[58]
Weng, Q.; Zhang, J.; Cao, J.; Xia, Q.; Wang, D.; Hu, Y.; Sheng, R.; Wu, H.; Zhu, D.; Zhu, H.; He, Q.; Yang, B. Q39, a quinoxaline 1,4-Di-N-oxide derivative, inhibits hypoxia-inducible factor-1α expression and the Akt/mTOR/4E-BP1 signaling pathway in human hepatoma cells. Invest. New Drugs,, 2011, 29(6), 1177-1187.Availble at.
[http://dx.doi.org/10.1007/s10637-010-9462-y.] [PMID: 20524035]
[59]
Nagasawa, H.; Mikamo, N.; Nakajima, Y.; Matsumoto, H.; Uto, Y.; Hori, H. Antiangiogenic hypoxic cytotoxin TX-402 inhibits hypoxia-inducible factor 1 signaling pathway. Anticancer Res., 2003, 23(6a), 4427-4434.
[PMID: 14666730]
[60]
Miyake, K.; Nishioka, M.; Imura, S.; Batmunkh, E.; Uto, Y.; Nagasawa, H.; Hori, H.; Shimada, M. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1α targeted gene expression. Exp. Cell Res.,, 2012, 318(13), 1554-1563.Availble at.
[http://dx.doi.org/10.1016/j.yexcr.2012.03.013.] [PMID: 22472348]
[61]
Ghattass, K.; El-Sitt, S.; Zibara, K.; Rayes, S.; Haddadin, M.J.; El-Sabban, M.; Gali-Muhtasib, H. The quinoxaline di-N-oxide DCQ blocks breast cancer metastasis in vitro and in vivo by targeting the hypoxia inducible factor-1 pathway. Mol. Cancer,, 2014, 13, 12.Availble at.
[http://dx.doi.org/10.1186/1476-4598-13-12.] [PMID: 24461075]
[62]
Hu, Y.; Xia, Q.; Shangguan, S.; Liu, X.; Hu, Y.; Sheng, R. Synthesis and biological evaluation of 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives as hypoxic selective anti-tumor agents. Molecules,, 2012, 17(8), 9683-9696.Availble at.
[http://dx.doi.org/10.3390/molecules17089683.] [PMID: 22890172]
[63]
Scherbakov, A.M.; Borunov, A.M.; Buravchenko, G.I.; Andreeva, O.E.; Kudryavtsev, I.A.; Dezhenkova, L.G.; Shchekotikhin, A.E. Novel quinoxaline-2-carbonitrile 1,4-dioxide derivatives suppress HIF-1α activity and circumvent MDR in cancer cells. Cancer Invest.,, 2018, 36(3), 199-209.Availble at.
[http://dx.doi.org/10.1080/07357907.2018.1453072.] [PMID: 29624460]
[64]
Ortega, M.A.; Morancho, M.J.; Martínez-Crespo, F.J.; Sainz, Y.; Montoya, M.E.; López de Ceráin, A.; Monge, A. New quinoxalinecarbonitrile 1,4-di-N-oxide derivatives as hypoxic-cytotoxic agents. Eur. J. Med. Chem.,, 2000, 35(1), 21-30.Availble at.
[http://dx.doi.org/10.1016/S0223-5234(00)00112-4.] [PMID: 10733600]
[65]
Haddadin, M.; Issidorides, C. Application of benzofurozan oxide to the synthesis of heteroaromatic N-oxides. Heterocycles,, 1976, 4, 767-816.Availble at.
[http://dx.doi.org/10.3987/R-1976-04-0767.]
[66]
Lima, L.; Amaral, D. Beirut reaction and its application in the synthesis of quinoxaline-N,N′-dioxide bioactive compounds. Rev. Virtual Chuim.,, 2013, 5, 1075-1100.Availble at.
[http://dx.doi.org/10.5935/1984-6835.20130079.]
[67]
Cerecetto, H.; González, M.; Lavaggi, M.L.; Porcal, W. Preparation of phenazine N5,N10-dioxides. Effects of benzofuroxan substituents in the outcome of their expansion reaction with phenolates. J. Braz. Chem. Soc.,, 2005, 16, 1290-1296.Availble at.
[http://dx.doi.org/10.1590/S0103-50532005000700030.]
[68]
Ermondi, G.; Visentin, S.; Boschi, D.; Fruttero, R.; Gasco, A. Structural investigation of Ca2+ antagonists benzofurazanyl and benzofuraxanyl-1,4- dihydropiridines. J. Mol. Struct.,, 2000, 523, 149-154.Availble at.
[http://dx.doi.org/10.1016/S0022-2860(99)00386-5.]
[69]
Gasco, A.M.; Ermondi, G.; Fruttero, R.; Gasco, A. Benzofurazanyl- ad benzofuraxanyl-1,4-dihydropyridines: Synthesis, structure and calcium entry blocker activity. Eur. J. Med. Chem.,, 1996, 31, 2103-2107.Availble at.
[http://dx.doi.org/10.1016/S0223-5234(96)80001-8.]
[70]
Lima, L.M.; Amaral, D.N. Beirut reaction and its application in the synthesis of quinoxaline-N,N-dioxides bioactive compounds. Rev. Virtual Quim.,, 2013, 5(4), 1075-1100.Availble at.
[http://dx.doi.org/10.5935/1984-6835.20130079.]
[71]
Mason, J.C.; Tennant, G. Synthesis of 1-hydroxyquinoxalin-2-(1H)-one 4-Noxides. J. Chem. Soc. D,, 1971, 11, 586-587.Availble at.
[http://dx.doi.org/10.1039/c29710000586.]
[72]
Chang, L.; Liu, X.; Wang, D.; Ma, J.; Zhou, T.; Chen, Y.; Sheng, R.; Hu, Y.; Du, Y.; He, Q.; Yang, B.; Zhu, H. Hypoxia-targeted drug Q6 induces G2-M arrest and apoptosis via poisoning topoisomerase II under hypoxia. PLoS One,, 2015, 10(12)e0144506.Availble at.
[http://dx.doi.org/10.1371/journal.pone.0144506.] [PMID: 26649750]
[73]
Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr A., 2015, 71, 3-8.Availble at.
[http://dx.doi.org/10.1107/S2053273314026370.]
[74]
Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Cryst.,, 2011, 44(Pt 6), 1281-1284.Availble at.
[http://dx.doi.org/10.1107/S0021889811043202.] [PMID: 22477785]
[75]
Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. D Biol. Crystallogr.,, 2009, 65(Pt 2), 148-155.Availble at.
[http://dx.doi.org/10.1107/S090744490804362X.] [PMID: 19171970]
[76]
Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst.,, 2009, 42, 339-341.Availble at.
[http://dx.doi.org/10.1107/S0021889808042726.]
[77]
Dolomanov, O.V.; Blake, A.J.; Champness, N.R.; Schroder, M. OLEX: New software for visualization and analysis of extended crystal structures. J. Appl.Cryst.,, 2003, 36, 1283-1284.Availble at.
[http://dx.doi.org/10.1107/S0021889803015267.]
[78]
Kotovskaya, S.K.; Romanova, S.A.; Charushin, V.N.; Kodess, M.I.; Chupakhin, O.N. 3 5(6)-Fluoro-6(5)-R-benzofuroxans: Synthesis and NMR 1H, 13C and 19F studies. J. Fluor. Chem.,, 2004, 125, 421-428.Availble at.
[http://dx.doi.org/10.1016/j.jfluchem.2003.11.011.]
[79]
Monge, A.; Palop, J.A.; López de Ceráin, A.; Senador, V.; Martínez-Crespo, F.J.; Sainz, Y.; Narro, S.; García, E.; de Miguel, C.; González, M.; Hamilton, E.; Barker, A.J.; Clarke, E.D.; Greenhow, D.T. Hypoxia-selective agents derived from quinoxaline 1,4-di-N-oxides. J. Med. Chem.,, 1995, 38(10), 1786-1792.Availble at.
[http://dx.doi.org/10.1021/jm00010a023.] [PMID: 7752202]
[80]
Boulton, A.J.; Katritzky, A.R.; Sewell, M.J.; Wallis, B. The nuclear magnetic resonance spectra and tautomerism of some substituted benzofuroxans. J.Chem. Soc. B,, 1967, 914-919.Availble at.
[http://dx.doi.org/10.1039/j29670000914.]
[81]
Leyva, S.; Castanedo, V.; Leyva, E. Synthesis of novel fluorobenzofuroxans by oxidation of anilines and thermal cyclization of arylazides. J. Fluor.Chem.,, 2003, 121, 171-175.Availble at.
[http://dx.doi.org/10.1016/S0022-1139(03)00011-3.]
[82]
Santivañez-Veliz, M.; Pérez-Silanes, S.; Torres, E.; Moreno-Viguri, E. Design and synthesis of novel quinoxaline derivatives as potential candidates for treatment of multidrug-resistant and latent tuberculosis. Bioorg. Med. Chem. Lett.,, 2016, 26(9), 2188-2193.Availble at: .
[http://dx.doi.org/10.1016/j.bmcl.2016.03.066.] [PMID: 27025343]
[83]
Panasyuk, P.M.; Mel’nikova, S.F.; Tselinskii, I.V. Reaction of substituted benzofuroxanes with styrene. Russ. J. Org. Chem.,, 2001, 37, 892-893.Availble at: .
[http://dx.doi.org/10.1023/A:1012438320918.]
[84]
Ji, Y.; Trenkle, W.C.; Vowles, J.V. A high-yielding preparation of β-ketonitriles. Org. Lett.,, 2006, 8(6), 1161-1163.Availble at: .
[http://dx.doi.org/10.1021/ol053164z.] [PMID: 16524293]
[85]
Iselt, M.; Holtei, W.; Hilgard, P. The tetrazolium dye assay for rapid in vitro assessment of cytotoxicity. Arzneimittelforschung, 1989, 39(7), 747-749.
[PMID: 2783179]
[86]
Volkova, Y.A.; Antonov, Y.S.; Komkov, A.V.; Scherbakov, A.M.; Shashkov, A.S.; Menchikov, L.G.; Chernoburova, E.I.; Zavarzin, I.V. Access to steroidal pyridazines via modified thiohydrazides. RSC Advances,, 2016, 6, 42863-42868.Availble at: .
[http://dx.doi.org/10.1039/C6RA06881B.]
[87]
Pretsch, E.; Bullmann, P.; Affolter, C. Structure determination of organic compounds:, Springer-Verlag Berlin Heideberg: New York,. 2000. Availble at:
[http://dx.doi.org/10.1007/978-3-662-04201-4.]
[88]
Hansen, P.E. 13C NMR of polycyclic aromatic compounds. Organic Magnetic Resonance,, 1979, 12, 109-142.Availble at: .
[http://dx.doi.org/10.1002/mrc.1270120302.]
[89]
Phillips, R.M. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother. Pharmacol.,, 2016, 77(3), 441-457.Availble at: .
[http://dx.doi.org/10.1007/s00280-015-2920-7.] [PMID: 26811177]
[90]
Rischin, D.; Peters, L.; Fisher, R.; Macann, A.; Denham, J.; Poulsen, M.; Jackson, M.; Kenny, L.; Penniment, M.; Corry, J.; Lamb, D.; McClure, B. Tirapazamine, Cisplatin, and Radiation versus Fluorouracil, Cisplatin, and Radiation in patients with locally advanced head and neck cancer: A randomized phase II trial of the Trans-Tasman Radiation Oncology Group (TROG 98.02). J. Clin. Oncol.,, 2005, 23(1), 79-87.Availble at.
[http://dx.doi.org/10.1200/JCO.2005.01.072.] [PMID: 15625362]
[91]
Rischin, D.; Peters, L.J.; Ó’Sullivan, B.; Giralt, J.; Fisher, R.; Yuen, K.; Trotti, A.; Bernier, J.; Bourhis, J.; Ringash, J.; Henke, M.; Kenny, L. Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the Trans-Tasman Radiation Oncology Group. J. Clin. Oncol.,, 2010, 28(18), 2989-2995.Availble at.
[http://dx.doi.org/10.1200/JCO.2009.27.4449.] [PMID: 20479425]
[92]
Brown, J.M. The hypoxic cell: A target for selective cancer therapy-Eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res., 1999, 59(23), 5863-5870.
[PMID: 10606224]
[93]
Zarranz, B.; Jaso, A.; Aldana, I.; Monge, A.; Maurel, S.; Deharo, E.; Jullian, V.; Sauvain, M. Synthesis and antimalarial activity of new 3-arylquinoxaline-2-carbonitrile derivatives. Arzneimittelforschung, 2005, 55(12), 754-761.
[PMID: 16430030]
[94]
Vicente, E.; Lima, L.M.; Bongard, E.; Charnaud, S.; Villar, R.; Solano, B.; Burguete, A.; Perez-Silanes, S.; Aldana, I.; Vivas, L.; Monge, A. Synthesis and structure-activity relationship of 3-phenylquinoxaline 1,4-di-N-oxide derivatives as antimalarial agents. Eur. J. Med. Chem.,, 2008, 43(9), 1903-1910.Availble at.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.024.] [PMID: 18215443]
[95]
Vicente, E.; Pérez-Silanes, S.; Lima, L.M.; Ancizu, S.; Burguete, A.; Solano, B.; Villar, R.; Aldana, I.; Monge, A. Selective activity against Mycobacteriumtuberculosis of new quinoxaline 1,4-di-N-oxides. Bioorg. Med. Chem., 2009, 17(1), 385-389.Availble at.
[http://dx.doi.org/10.1016/j.bmc.2008.10.086.] [PMID: 19058970]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy