Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

The Posterior Perforated Substance: A Brain Mystery Wrapped in an Enigma

Author(s): Vladimir N. Nikolenko, Leonid A. Gridin, Marine V. Oganesyan, Negoriya A. Rizaeva, Yury S. Podolskiy, Valentina A. Kudryashova, Ekaterina V. Kochurova, Roman K. Kostin, Ekaterina E. Tyagunova, Liudmila M. Mikhaleva, Marco Avila-Rodriguez, Siva G. Somasundaram, Cecil E. Kirkland and Gjumrakch Aliev*

Volume 19, Issue 32, 2019

Page: [2991 - 2998] Pages: 8

DOI: 10.2174/1568026619666191127122452

Price: $65

Abstract

Background: There is a dearth of published information on the posterior perforated substance as compared to the anterior perforated substance. We managed to glean facts about the posterior perforated substance that can serve as a landmark for surgical operations in the adjacent regions of the midbrain and the vessels passing through it. Moreover, the posterior perforated substance contains the interpeduncular nucleus responsible for the mental state of the individual.

Objectives: 1) To describe the topography of the blood vessels supplying the posterior perforated substance area from the surgical point of view; 2) to investigate the functions of the interpeduncular nucleus.

Methods: We assembled and analyzed results from source databases by Elsevier, NCBI MedLine, Scopus, Scholar. Google and Embase. Each article was studied in detail for practically useful information about the posterior perforated substance.

Results: The P1-segment perforating branches of the posterior cerebral artery supply the posterior perforated substance. This area is especially vulnerable in the case of vascular pathologies. The posterior communicating artery can block the surgeon’s view and impede maneuverability of the tool in the area of the posterior perforated substance, which may be addressed using the separation technique, which can lead to positive results. In addition, the medial habenula-interpeduncular nucleus in the posterior perforated substance is associated with various addictions and psychiatric conditions.

Conclusion: The posterior perforated substance area is of great interest for surgical interventions. Future studies of the interpeduncular nucleus anticipate the development of drugs to affect different types of dependencies and some mental diseases.

Keywords: Posterior perforated substance, Interpeduncular fossa, Thalamoperforating arteries, Posterior communicating arteries, Interpeduncular nucleus, IPN, MHb-IPN axis, MHb-IPN way.

Graphical Abstract

[1]
Brassier, G.; Morandi, X.; Fournier, D.; Velut, S.; Mercier, P. Origin of the perforating arteries of the interpeduncular fossa in relation to the termination of the basilar artery. Interv. Neuroradiol., 1998, 4(2), 109-120.
[http://dx.doi.org/10.1177/159101999800400202] [PMID: 20673399]
[2]
Rhoton, A.L., Jr Cerebellum and fourth ventricle. Neurosurgery, 2000, 47(3)(Suppl.), S7-S27.
[http://dx.doi.org/10.1097/00006123-200009001-00007] [PMID: 10983303]
[3]
Rhoton, A.L., Jr The supratentorial arteries. Neurosurgery, 2002, 51(4)(Suppl.), S53-S120.
[PMID: 12234447]
[4]
Krayenbuhl, H.A.; Yasargil, M.G. Cerebral angiography, 2nd ed; JB Lippincott: Philadelphia, 1968, pp. 20-84.
[5]
Zeal, A.A.; Rhoton, A.L., Jr Microsurgical anatomy of the posterior cerebral artery. J. Neurosurg., 1978, 48(4), 534-559.
[http://dx.doi.org/10.3171/jns.1978.48.4.0534] [PMID: 632878]
[6]
Saeki, N.; Rhoton, A.L. Jr Microsurgical anatomy of the upper basilar artery and the posterior circle of Willis. J. Neurosurg., 1977, 46(5), 563-578.
[http://dx.doi.org/10.3171/jns.1977.46.5.0563] [PMID: 845644]
[7]
Krayenbühl, N.; Krisht, A.F. Dividing the posterior communicating fossa: technical aspects and safety. Oper. Neurosurg. (Hagerstown), 2007, 61, 392-397.
[http://dx.doi.org/10.1227/01.neu.0000303998.20268.6e] [PMID: 18091254]
[8]
Lazorthes, G.; Gouhze, A.; Salamon, G. Vascularization et Circulation Cerebrales; Masson: Paris, 1976.
[9]
Yasargil, M.G. Microneurosurgery; George Thieme Verlag: New York, 1984, Vol. I, pp. 5-168.
[10]
Kaya, A.H.; Dagcinar, A.; Ulu, M.O.; Topal, A.; Bayri, Y.; Ulus, A.; Kopuz, C.; Sam, B. The perforating branches of the P1 segment of the posterior cerebral artery. J. Clin. Neurosci., 2010, 17(1), 80-84.
[http://dx.doi.org/10.1016/j.jocn.2009.03.046] [PMID: 20006506]
[11]
Gabrovsky, N. Microanatomical bases for intraoperative division of the posterior communicating artery. Acta Neurochir. (Wien), 2002, 144(11), 1205-1211.
[http://dx.doi.org/10.1007/s00701-002-1002-x] [PMID: 12434177]
[12]
Leon-Ariza, D.S.; Campero, A.; Romero Chaparro, R.J.; Prada, D.G.; Vargas Grau, G.; Rhoton, A.L., Jr Key aspects in foramen magnum meningiomas: from old neuroanatomical conceptions to current far lateral neurosurgical intervention. World Neurosurg., 2017, 106, 477-483.
[http://dx.doi.org/10.1016/j.wneu.2017.07.029] [PMID: 28712910]
[13]
Vincentelli, F.; Caruso, G.; Grisoli, F.; Rabehanta, P.; Andriamamonjy, C.; Gouaze, A. Microsurgical anatomy of the cisternal course of the perforating branches of the posterior communicating artery. Neurosurgery, 1990, 26(5), 824-831.
[http://dx.doi.org/10.1227/00006123-199005000-00015] [PMID: 2352600]
[14]
Marinkovic, S.; Gibo, H.; Brigante, L.; Milisavljevic, M.; Donzelli, R. Arteries of the brain and spinal cord: anatomic features and clinical significance. Neurosurgery, 44(3)1999, , 679-680.
[http://dx.doi.org/10.1097/00006123-199903000-00145]
[15]
Pedroza, A.; Dujovny, M.; Cabezudo-Artero, J.; Umansky, F.; Berman, S.K.; Diaz, F.G.; Ausman, J.I.; Mirchandani, G. Microanatomy of the premamillary artery. Acta Neurochir. (Wien), 1987, 86(1-2), 50-55.
[http://dx.doi.org/10.1007/BF01419504] [PMID: 3618306]
[16]
Ghali, M.G.Z.; Srinivasan, V.M.; Wagner, K.M.; Lam, S.; Johnson, J.N.; Kan, P. Anterior Choroidal Artery Aneurysms: Influence of Regional Microsurgical Anatomy on Safety of Endovascular Treatment. J. Cerebrovasc. Endovasc. Neurosurg., 2018, 20(1), 47-52.
[http://dx.doi.org/10.7461/jcen.2018.20.1.47] [PMID: 30370240]
[17]
Yasargil, M.G.; Fox, J.L. The microsurgical approach to intracranial aneurysms. Surg. Neurol., 1975, 3(1), 7-14.
[PMID: 1111150]
[18]
Yasargil, M.G.; Antic, J.; Laciga, R.; Jain, K.K.; Hodosh, R.M.; Smith, R.D. Microsurgical pterional approach to aneurysms of the basilar bifurcation. Surg. Neurol., 1976, 6(2), 83-91.
[PMID: 951657]
[19]
Inao, S.; Kuchiwaki, H.; Hirai, N.; Gonda, T.; Furuse, M. Posterior communicating artery section during surgery for basilar tip aneurysm. Acta Neurochir. (Wien), 1996, 138(7), 853-861.
[http://dx.doi.org/10.1007/BF01411264] [PMID: 8869714]
[20]
Tanaka, Y.; Kobayashi, S.; Sugita, K.; Gibo, H.; Kyoshima, K.; Nagasaki, T. Characteristics of pterional routes to basilar bifurcation aneurysm. Neurosurgery, 1995, 36(3), 533-538.
[PMID: 7753353]
[21]
Yonekawa, Y.; Khan, N.; Imhof, H.G.; Roth, P. Basilar bifurcation aneurysms. Lessons learnt from 40 consecutive cases. Acta Neurochir. Suppl. (Wien), 2005, 94, 39-44.
[http://dx.doi.org/10.1007/3-211-27911-3_7] [PMID: 16060239]
[22]
Regli, L.; de Tribolet, N. Tuberothalamic infarct after division of a hypoplastic posterior communicating artery for clipping of a basilar tip aneurysm: case report. Neurosurgery, 1991, 28(3), 456-459.
[http://dx.doi.org/10.1227/00006123-199103000-00023] [PMID: 2011233]
[23]
Sugita, K.; Kobayashi, S.; Shintani, A.; Mutsuga, N. Microneurosurgery for aneurysms of the basilar artery. J. Neurosurg., 1979, 51(5), 615-620.
[http://dx.doi.org/10.3171/jns.1979.51.5.0615] [PMID: 501400]
[24]
Krisht, A.F.; Kadri, P.A. Surgical clipping of complex basilar apex aneurysms: a strategy for successful outcome using the pretemporal transzygomatic transcavernous approach. Neurosurgery, 2005, 56(2)(Suppl.), 261-273.
[PMID: 15794823]
[25]
McLaughlin, I.; Dani, J.A.; De Biasi, M. The medial habenula and interpeduncular nucleus circuitry is critical in addiction, anxiety, and mood regulation. J. Neurochem., 2017, 142(Suppl. 2), 130-143.
[http://dx.doi.org/10.1111/jnc.14008] [PMID: 28791703]
[26]
Shumake, J.; Gonzalez-Lima, F. Brain systems underlying susceptibility to helplessness and depression. Behav. Cogn. Neurosci. Rev., 2003, 2(3), 198-221.
[http://dx.doi.org/10.1177/1534582303259057] [PMID: 15006293]
[27]
Bianco, I.H.; Wilson, S.W. The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1519), 1005-1020.
[http://dx.doi.org/10.1098/rstb.2008.0213] [PMID: 19064356]
[28]
Sutherland, R.J. The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci. Biobehav. Rev., 1982, 6(1), 1-13.
[http://dx.doi.org/10.1016/0149-7634(82)90003-3] [PMID: 7041014]
[29]
Herkenham, M.; Nauta, W.J. Efferent connections of the habenular nuclei in the rat. J. Comp. Neurol., 1979, 187(1), 19-47.
[http://dx.doi.org/10.1002/cne.901870103] [PMID: 226566]
[30]
Phillipson, O.T.; Pycock, C.J. Dopamine neurones of the ventral tegmentum project to both medial and lateral habenula. Some implications for habenular function. Exp. Brain Res., 1982, 45(1-2), 89-94.
[PMID: 6799315]
[31]
Lecourtier, L.; Kelly, P.H. A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci. Biobehav. Rev., 2007, 31(5), 658-672.
[http://dx.doi.org/10.1016/j.neubiorev.2007.01.004] [PMID: 17379307]
[32]
Gottesfeld, Z. Origin and distribution of noradrenergic innervation in the habenula: a neurochemical study. Brain Res., 1983, 275(2), 299-304.
[http://dx.doi.org/10.1016/0006-8993(83)90990-3] [PMID: 6354358]
[33]
Qin, C.; Luo, M. Neurochemical phenotypes of the afferent and efferent projections of the mouse medial habenula. Neuroscience, 2009, 161(3), 827-837.
[http://dx.doi.org/10.1016/j.neuroscience.2009.03.085] [PMID: 19362132]
[34]
Conrad, L.C.; Leonard, C.M.; Pfaff, D.W. Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study. J. Comp. Neurol., 1974, 156(2), 179-205.
[http://dx.doi.org/10.1002/cne.901560205] [PMID: 4419253]
[35]
Rønnekleiv, O.K.; Møller, M. Brain-pineal nervous connections in the rat: an ultrastructure study following habenular lesion. Exp. Brain Res., 1979, 37(3), 551-562.
[http://dx.doi.org/10.1007/BF00236823] [PMID: 520442]
[36]
Guglielmotti, V.; Cristino, L. The interplay between the pineal complex and the habenular nuclei in lower vertebrates in the context of the evolution of cerebral asymmetry. Brain Res. Bull., 2006, 69(5), 475-488.
[http://dx.doi.org/10.1016/j.brainresbull.2006.03.010] [PMID: 16647576]
[37]
Groenewegen, H.J.; Ahlenius, S.; Haber, S.N.; Kowall, N.W.; Nauta, W.J. Cytoarchitecture, fiber connections, and some histochemical aspects of the interpeduncular nucleus in the rat. J. Comp. Neurol., 1986, 249(1), 65-102.
[http://dx.doi.org/10.1002/cne.902490107] [PMID: 2426312]
[38]
Behzadi, G.; Kalén, P.; Parvopassu, F.; Wiklund, L. Afferents to the median raphe nucleus of the rat: retrograde cholera toxin and wheat germ conjugated horseradish peroxidase tracing, and selective D-[3H]aspartate labelling of possible excitatory amino acid inputs. Neuroscience, 1990, 37(1), 77-100.
[http://dx.doi.org/10.1016/0306-4522(90)90194-9] [PMID: 2243599]
[39]
Massopust, L.C., Jr; Thompson, R. A new interpedunculodiencephalic pathway in rats and cats. J. Comp. Neurol., 1962, 118, 97-105.
[http://dx.doi.org/10.1002/cne.901180108] [PMID: 14470963]
[40]
Morley, B.J. The interpeduncular nucleus. Int. Rev. Neurobiol., 1986, 28, 157-182.
[http://dx.doi.org/10.1016/S0074-7742(08)60108-7] [PMID: 2433243]
[41]
Contestabile, A.; Flumerfelt, B.A. Afferent connections of the interpeduncular nucleus and the topographic organization of the habenulo-interpeduncular pathway: an HRP study in the rat. J. Comp. Neurol., 1981, 196(2), 253-270.
[http://dx.doi.org/10.1002/cne.901960206] [PMID: 7217357]
[42]
Vertes, R.P.; Fass, B. Projections between the interpeduncular nucleus and basal forebrain in the rat as demonstrated by the anterograde and retrograde transport of WGA-HRP. Exp. Brain Res., 1988, 73(1), 23-31.
[http://dx.doi.org/10.1007/BF00279657] [PMID: 2463180]
[43]
Takagishi, M.; Chiba, T. Efferent projections of the infralimbic (area 25) region of the medial prefrontal cortex in the rat: an anterograde tracer PHA-L study. Brain Res., 1991, 566(1-2), 26-39.
[http://dx.doi.org/10.1016/0006-8993(91)91677-S] [PMID: 1726062]
[44]
Shibata, H.; Suzuki, T. Efferent projections of the interpeduncular complex in the rat, with special reference to its subnuclei: a retrograde horseradish peroxidase study. Brain Res., 1984, 296(2), 345-349.
[http://dx.doi.org/10.1016/0006-8993(84)90071-4] [PMID: 6704742]
[45]
Hamill, G.S.; Jacobowitz, D.M. A study of afferent projections to the rat interpeduncular nucleus. Brain Res. Bull., 1984, 13(4), 527-539.
[http://dx.doi.org/10.1016/0361-9230(84)90035-2] [PMID: 6084542]
[46]
McCormick, D.A.; Prince, D.A. Acetylcholine causes rapid nicotinic excitation in the medial habenular nucleus of guinea pig, in vitro. J. Neurosci., 1987, 7(3), 742-752.
[http://dx.doi.org/10.1523/JNEUROSCI.07-03-00742.1987] [PMID: 3549993]
[47]
Burgunder, J.M.; Young, W.S. III Neurokinin B and substance P genes are co-expressed in a subset of neurons in the rat habenula. Neuropeptides, 1989, 13(3), 165-169.
[http://dx.doi.org/10.1016/0143-4179(89)90087-5] [PMID: 2469031]
[48]
Jackson, K.J.; Muldoon, P.P.; De Biasi, M.; Damaj, M.I. New mechanisms and perspectives in nicotine withdrawal. Neuropharmacology, 2015, 96(Pt B), 223-234.
[http://dx.doi.org/10.1016/j.neuropharm.2014.11.009] [PMID: 25433149]
[49]
De Biasi, M.; McLaughlin, I.; Klima, M.L. Nicotine and neurokinin Signaling. In: Neuropathology of drug addictions and substance misuse; Elsevier: Amsterdam, 2016; pp. 189-200.
[50]
Kinsey, A.M.; Wainwright, A.; Heavens, R.; Sirinathsinghji, D.J.; Oliver, K.R. Distribution of 5-ht(5A), 5-ht(5B), 5-ht(6) and 5-HT(7) receptor mRNAs in the rat brain. Brain Res. Mol. Brain Res., 2001, 88(1-2), 194-198.
[http://dx.doi.org/10.1016/S0169-328X(01)00034-1] [PMID: 11295248]
[51]
Edwards, F.A.; Gibb, A.J.; Colquhoun, D. ATP receptor-mediated synaptic currents in the central nervous system. Nature, 1992, 359(6391), 144-147.
[http://dx.doi.org/10.1038/359144a0] [PMID: 1381811]
[52]
Sperlágh, B.; Maglóczky, Z.; Vizi, E.S.; Freund, T.F. The triangular septal nucleus as the major source of ATP release in the rat habenula: a combined neurochemical and morphological study. Neuroscience, 1998, 86(4), 1195-1207.
[http://dx.doi.org/10.1016/S0306-4522(98)00026-8] [PMID: 9697126]
[53]
Sugama, S.; Cho, B.P.; Baker, H.; Joh, T.H.; Lucero, J.; Conti, B. Neurons of the superior nucleus of the medial habenula and ependymal cells express IL-18 in rat CNS. Brain Res., 2002, 958(1), 1-9.
[http://dx.doi.org/10.1016/S0006-8993(02)03363-2] [PMID: 12468024]
[54]
Mori, S; Sugama, S; Nguyen, W. Lack of interleukin-13 receptor α1 delays the loss of dopaminergic neurons during chronic stress. J Neuroinflammation, 2017, 21 ;14(1), 88.
[http://dx.doi.org/10.1186/s12974-017-0862-1]
[55]
McLaughlin, I.; Dani, J.A.; De Biasi, M. Nicotine withdrawal. Curr. Top. Behav. Neurosci., 2015, 24, 99-123.
[http://dx.doi.org/10.1007/978-3-319-13482-6_4] [PMID: 25638335]
[56]
Shumake, J.; Edwards, E.; Gonzalez-Lima, F. Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior. Brain Res., 2003, 963(1-2), 274-281.
[http://dx.doi.org/10.1016/S0006-8993(02)04048-9] [PMID: 12560133]
[57]
Aghajanian, G.K.; Wang, R.Y. Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique. Brain Res., 1977, 122(2), 229-242.
[http://dx.doi.org/10.1016/0006-8993(77)90291-8] [PMID: 837230]
[58]
Valjakka, A.; Vartiainen, J.; Tuomisto, L.; Tuomisto, J.T.; Olkkonen, H.; Airaksinen, M.M. The fasciculus retroflexus controls the integrity of REM sleep by supporting the generation of hippocampal theta rhythm and rapid eye movements in rats. Brain Res. Bull., 1998, 47(2), 171-184.
[http://dx.doi.org/10.1016/S0361-9230(98)00006-9] [PMID: 9820735]
[59]
Benabid, A.L.; Jeaugey, L. Cells of the rat lateral habenula respond to high-threshold somatosensory inputs. Neurosci. Lett., 1989, 96(3), 289-294.
[http://dx.doi.org/10.1016/0304-3940(89)90393-5] [PMID: 2717054]
[60]
Fuchs, P.; Cox, V.C. Habenula lesions attenuate lateral hypothalamic analgesia in the formalin test. Neuroreport, 1993, 4(2), 121-124.
[http://dx.doi.org/10.1097/00001756-199302000-00001] [PMID: 8453046]
[61]
Lee, E.H.; Huang, S.L. Role of lateral habenula in the regulation of exploratory behavior and its relationship to stress in rats. Behav. Brain Res., 1988, 30(3), 265-271.
[http://dx.doi.org/10.1016/0166-4328(88)90169-6] [PMID: 3178997]
[62]
Sandyk, R. Relevance of the habenular complex to neuropsychiatry: a review and hypothesis. Int. J. Neurosci., 1991, 61(3-4), 189-219.
[http://dx.doi.org/10.3109/00207459108990738] [PMID: 1824382]
[63]
Morris, J.S.; Smith, K.A.; Cowen, P.J.; Friston, K.J.; Dolan, R.J. Covariation of activity in habenula and dorsal raphé nuclei following tryptophan depletion. Neuroimage, 1999, 10(2), 163-172.
[http://dx.doi.org/10.1006/nimg.1999.0455] [PMID: 10417248]
[64]
Amat, J.; Sparks, P.D.; Matus-Amat, P.; Griggs, J.; Watkins, L.R.; Maier, S.F. The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Res., 2001, 917(1), 118-126.
[http://dx.doi.org/10.1016/S0006-8993(01)02934-1] [PMID: 11602236]
[65]
Woolf, N.J.; Butcher, L.L. Cholinergic systems in the rat brain: II. Projections to the interpeduncular nucleus. Brain Res. Bull., 1985, 14(1), 63-83.
[http://dx.doi.org/10.1016/0361-9230(85)90178-9] [PMID: 2580607]
[66]
Charles, H.C.; Lazeyras, F.; Krishnan, K.R.; Boyko, O.B.; Payne, M.; Moore, D. Brain choline in depression: in vivo detection of potential pharmacodynamic effects of antidepressant therapy using hydrogen localized spectroscopy. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1994, 18(7), 1121-1127.
[http://dx.doi.org/10.1016/0278-5846(94)90115-5] [PMID: 7846284]
[67]
Dilsaver, S.C.; Coffman, J.A. Cholinergic hypothesis of depression: a reappraisal. J. Clin. Psychopharmacol., 1989, 9(3), 173-179.
[http://dx.doi.org/10.1097/00004714-198906000-00003] [PMID: 2661605]
[68]
Dube, S. In: Cholinergic supersensitivity in affective disorder, InJ; J., Mann.; & D. J., Kupfer., Eds.; Biology of depressive disorders, Part A: A systems perspective. New York, 1993; pp. 51-78.
[69]
Janowsky, D.S.; el-Yousef, M.K.; Davis, J.M.; Sekerke, H.J. A cholinergic-adrenergic hypothesis of mania and depression. Lancet, 1972, 2(7778), 632-635.
[http://dx.doi.org/10.1016/S0140-6736(72)93021-8] [PMID: 4116781]
[70]
Janowsky, D.S.; Risch, S.C.; Gillin, J.C. Adrenergic-cholinergic balance and the treatment of affective disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1983, 7(2-3), 297-307.
[http://dx.doi.org/10.1016/0278-5846(83)90119-7] [PMID: 6684317]
[71]
Steingard, R.J.; Yurgelun-Todd, D.A.; Hennen, J.; Moore, J.C.; Moore, C.M.; Vakili, K.; Young, A.D.; Katic, A.; Beardslee, W.R.; Renshaw, P.F. Increased orbitofrontal cortex levels of choline in depressed adolescents as detected by in vivo proton magnetic resonance spectroscopy. Biol. Psychiatry, 2000, 48(11), 1053-1061.
[http://dx.doi.org/10.1016/S0006-3223(00)00942-2] [PMID: 11094138]
[72]
Riemann, D.; Berger, M.; Voderholzer, U. Sleep and depression--results from psychobiological studies: an overview. Biol. Psychol., 2001, 57(1-3), 67-103.
[http://dx.doi.org/10.1016/S0301-0511(01)00090-4] [PMID: 11454435]
[73]
Antolin-Fontes, B.; Ables, J.L.; G€orlich, A.; Iba~nez-Tallon, I. The habenulo-interpeduncular pathway in nicotine aversion andwithdrawal. Neuropharmacology, 2015, 96, 213-222.
[http://dx.doi.org/10.1016/j.neuropharm.2014.11.019] [PMID: 25476971]
[74]
Burger, J.; Capobianco, M.; Lovern, R.; Boche, B.; Ross, E.; Darracq, M.A.; McLay, R. A double-blinded, randomized, placebocontrolled sub-dissociative dose ketamine pilot study in thetreatment of acute depression and suicidality in a militaryemergency department setting. Mil. Med., 2016, 181(10), 1195-1199.
[http://dx.doi.org/10.7205/MILMED-D-15-00431] [PMID: 27753551]
[75]
Haun, F.; Eckenrode, T.C.; Murray, M. Habenula and thalamus cell transplants restore normal sleep behaviors disrupted by denervation of the interpeduncular nucleus. J. Neurosci., 1992, 12(8), 3282-3290.
[http://dx.doi.org/10.1523/JNEUROSCI.12-08-03282.1992] [PMID: 1494957]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy