Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Progress and Prospects in Translating Nanobiotechnology in Medical Theranostics

Author(s): Amna Batool, Farid Menaa*, Bushra Uzair, Barkat Ali Khan and Bouzid Menaa

Volume 16, Issue 5, 2020

Page: [685 - 707] Pages: 23

DOI: 10.2174/1573413715666191126093258

Price: $65

Abstract

The pace at which nanotheranostic technology for human disease is evolving has accelerated exponentially over the past five years. Nanotechnology is committed to utilizing the intrinsic properties of materials and structures at submicroscopic-scale measures. Indeed, there is generally a profound influence of reducing physical dimensions of particulates and devices on their physico-chemical characteristics, biological properties, and performance. The exploration of nature’s components to work effectively as nanoscaffolds or nanodevices represents a tremendous and growing interest in medicine for various applications (e.g., biosensing, tunable control and targeted drug release, tissue engineering). Several nanotheranostic approaches (i.e., diagnostic plus therapeutic using nanoscale) conferring unique features are constantly progressing and overcoming all the limitations of conventional medicines including specificity, efficacy, solubility, sensitivity, biodegradability, biocompatibility, stability, interactions at subcellular levels.

This review introduces two major aspects of nanotechnology as an innovative and challenging theranostic strategy or solution: (i) the most intriguing (bare and functionalized) nanomaterials with their respective advantages and drawbacks; (ii) the current and promising multifunctional “smart” nanodevices.

Keywords: Nanotechnology, nanomedicine, nanotheranostics, nanoplatforms, nanodevices, nanomaterials, nanostructures, nanosystems, translational medicine, innovation.

Graphical Abstract

[1]
Menaa, F. When pharma meets nano or the emerging era of nanopharmaceuticals. Pharm. Anal. Acta, 2013, 4, 223.
[http://dx.doi.org/10.4172/2153-2435.1000223]
[2]
Menaa, F. Food nanotechnology: A safe innovation for production and competition? BAOJ Nutrition, 2015, 1, 003.
[3]
Menaa, F. Genetic engineering and nanotechnology: When science-fiction meets reality! Adv. Genet. Eng., 2015, 4, 128.
[4]
Menaa, F.; Abdelghani, A.; Menaa, B. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine. J. Tissue Eng. Regen. Med., 2015, 9(12), 1321-1338.
[http://dx.doi.org/10.1002/term.1910] [PMID: 24917559]
[5]
Jain, K.K. The handbook of nanomedicine, 3rd ed; Humana Press, 2017, p. 637.
[http://dx.doi.org/10.1007/978-1-4939-6966-1]
[6]
Menaa, F. Graphene-based biosensors for nano and pico applications: The future is here! Pharm. Anal. Acta, 2013, 5, e161.
[http://dx.doi.org/10.4172/2153-2435.1000e161]
[7]
Menaa, F. Functional graphene-based nanobioimaging platforms: New powered real-time interfaces. J. Mol. Imaging Dyn., 2013, 3, e103.
[http://dx.doi.org/10.4172/2155-9937.1000e103]
[8]
Menaa, B. The importance of nanotechnology in biomedical sciences. J. Biotechnol. Biomater., 2011, 1, 105e.
[http://dx.doi.org/10.4172/2155-952X.1000105e]
[9]
Lewin, M.; Carlesso, N.; Tung, C.H.; Tang, X.W.; Cory, D.; Scadden, D.T.; Weissleder, R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol., 2000, 18(4), 410-414.
[http://dx.doi.org/10.1038/74464] [PMID: 10748521]
[10]
Tiefenauer, L.X.; Kühne, G.; Andres, R.Y. Antibody-magnetite nanoparticles: in vitro characterization of a potential tumor-specific contrast agent for magnetic resonance imaging. Bioconjug. Chem., 1993, 4(5), 347-352.
[http://dx.doi.org/10.1021/bc00023a007] [PMID: 8274518]
[11]
Nam, J.M.; Stoeva, S.I.; Mirkin, C.A. Bio-bar-code-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc., 2004, 126(19), 5932-5933.
[http://dx.doi.org/10.1021/ja049384+] [PMID: 15137735]
[12]
Weizmann, Y.; Patolsky, F.; Lioubashevski, O.; Willner, I. Magneto-mechanical detection of nucleic acids and telomerase activity in cancer cells. J. Am. Chem. Soc., 2004, 126(4), 1073-1080.
[http://dx.doi.org/10.1021/ja038257v] [PMID: 14746475]
[13]
He, H.; Liu, H.; Zhou, K.; Wang, W.; Rong, P. Characteristics of magnetic Fe3O4 nanoparticles encapsulated with human serum albumin. J. Cent. S. Univ. Technol., 2006, 13(1), 6-11.
[http://dx.doi.org/10.1007/s11771-006-0097-2]
[14]
Mikhaylova, M.; Kim, D.K.; Berry, C.C.; Zagorodni, A.; Toprak, M.; Curtis, A.S.; Muhammed, M. BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem. Mater., 2004, 16(12), 2344-2354.
[http://dx.doi.org/10.1021/cm0348904]
[15]
Lee, C.; Huang, K.; Wei, P.; Yao, Y. Conjugation of γ-Fe2O3 nanoparticles with single strand oligonucleotides. J. Magn. Magn. Mater., 2006, 304(1), 412-414.
[http://dx.doi.org/10.1016/j.jmmm.2006.01.213]
[16]
Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008, 3(11), 397-415.
[http://dx.doi.org/10.1007/s11671-008-9174-9] [PMID: 21749733]
[17]
Nilsonne, G.; Sun, X.; Nyström, C.; Rundlöf, A.K.; Potamitou Fernandes, A.; Björnstedt, M.; Dobra, K. Selenite induces apoptosis in sarcomatoid malignant mesothelioma cells through oxidative stress. Free Radic. Biol. Med., 2006, 41(6), 874-885.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.04.031] [PMID: 16934670]
[18]
Tran, P.A.; Sarin, L.; Hurt, R.H.; Webster, T.J. Titanium surfaces with adherent selenium nanoclusters as a novel anticancer orthopedic material. J. Biomed. Mater. Res. A, 2010, 93(4), 1417-1428.
[PMID: 19918919]
[19]
Tran, P.A.; O’Brien-Simpson, N.; Palmer, J.A.; Bock, N.; Reynolds, E.C.; Webster, T.J.; Deva, A.; Morrison, W.A.; O’Connor, A.J. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment. Int. J. Nanomedicine, 2019, 14, 4613-4624.
[http://dx.doi.org/10.2147/IJN.S197737] [PMID: 31308651]
[20]
McHale, K.J.; Sullivan, M.P.; Mehta, S. Nanotechnology: Translational applications in orthopaedic surgery. U. P. O. J., 2013, 23, 75-76.
[21]
Snoddy, B.; Jayasuriya, A.C. The use of nanomaterials to treat bone infections. Mater. Sci. Eng. C, 2016, 67, 822-833.
[http://dx.doi.org/10.1016/j.msec.2016.04.062] [PMID: 27287180]
[22]
Alpuim, P.; Filonovich, S.A.; Costa, C.M.; Rocha, P.F.; Vasilevskiy, M.I.; Lanceros-Mendez, S.; Frias, C.; Marques, A.T.; Soares, R.; Costa, C. Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon. J. Non-Cryst. Solids, 2008, 354(19-25), 2585-2589.
[23]
Brenner, S.A.; Ling, J.F. Nanotechnology applications in orthopedic surgery. J. Nanotechnol. Eng. Med., 2012, 3(2), 024501.
[http://dx.doi.org/10.1115/1.4006923]
[24]
So, M.K.; Xu, C.; Loening, A.M.; Gambhir, S.S.; Rao, J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol., 2006, 24(3), 339-343.
[http://dx.doi.org/10.1038/nbt1188] [PMID: 16501578]
[25]
Guccione, S.; Li, K.C.; Bednarski, M.D. Vascular-targeted nanoparticles for molecular imaging and therapy. Methods Enzymol., 2004, 386, 219-236.
[http://dx.doi.org/10.1016/S0076-6879(04)86010-5] [PMID: 15120254]
[26]
Fakruddin, M.; Hossain, Z.; Afroz, H. Prospects and applications of nanobiotechnology: a medical perspective. J. Nanobiotechnol, 2012, 10(1), 31.
[http://dx.doi.org/10.1186/1477-3155-10-31] [PMID: 22817658]
[27]
Chan, J.M.; Zhang, L.; Tong, R.; Ghosh, D.; Gao, W.; Liao, G.; Yuet, K.P.; Gray, D.; Rhee, J.W.; Cheng, J.; Golomb, G.; Libby, P.; Langer, R.; Farokhzad, O.C. Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc. Natl. Acad. Sci. USA, 2010, 107(5), 2213-2218.
[http://dx.doi.org/10.1073/pnas.0914585107] [PMID: 20133865]
[28]
Stout, D.A.; Yoo, J.; Santiago-Miranda, A.N.; Webster, T.J. Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application. Int. J. Nanomedicine, 2012, 7, 5653-5669.
[PMID: 23180962]
[29]
Chun, Y.W.; Crowder, S.W.; Mehl, S.C.; Wang, X.; Bae, H.; Sung, H.J. Therapeutic application of nanotechnology in cardiovascular and pulmonary regeneration. Comput. Struct. Biotechnol. J., 2013, 7(8), e201304005.
[http://dx.doi.org/10.5936/csbj.201304005] [PMID: 24688735]
[30]
Yang, M.; Feng, X.; Ding, J.; Chang, F.; Chen, X. Nanotherapeutics relieve rheumatoid arthritis. J. Control. Release, 2017, 252, 108-124.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.032] [PMID: 28257989]
[31]
Balasundaram, G.; Webster, T.J. An overview of nano-polymers for orthopedic applications. Macromol. Biosci., 2007, 7(5), 635-642.
[http://dx.doi.org/10.1002/mabi.200600270] [PMID: 17477446]
[32]
West, J.L.; Halas, N.J. Applications of nanotechnology to biotechnology commentary. Curr. Opin. Biotechnol., 2000, 11(2), 215-217.
[http://dx.doi.org/10.1016/S0958-1669(00)00082-3] [PMID: 10753774]
[33]
Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil., 2012, 9(1), 21.
[http://dx.doi.org/10.1186/1743-0003-9-21] [PMID: 22520559]
[34]
Marrache, S.; Dhar, S. Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis. Proc. Natl. Acad. Sci. USA, 2013, 110(23), 9445-9450.
[http://dx.doi.org/10.1073/pnas.1301929110] [PMID: 23671083]
[35]
Tomaszewski, K.A.; Radomski, M.W.; Santos-Martinez, M.J. Nanodiagnostics, nanopharmacology and nanotoxicology of platelet-vessel wall interactions. Nanomedicine (Lond.), 2015, 10(9), 1451-1475.
[http://dx.doi.org/10.2217/nnm.14.232] [PMID: 25996119]
[36]
Menaa, F.; Menaa, B. Development of mitotane lipid nanocarriers and enantiomers: two-in-one solution to efficiently treat adrenocortical carcinoma. Curr. Med. Chem., 2012, 19(34), 5854-5862.
[http://dx.doi.org/10.2174/092986712804143376] [PMID: 22934807]
[37]
Lagarce, F.; Passirani, C. Nucleic-acid delivery using lipid nanocapsules. Curr. Pharm. Biotechnol., 2016, 17(8), 723-727.
[http://dx.doi.org/10.2174/1389201017666160401145206] [PMID: 27033510]
[38]
Erdoğar, N.; Akkın, S.; Bilensoy, E. Nanocapsules for drug delivery: An updated review of the last decade. Recent Pat. Drug Deliv. Formul., 2018, 12(4), 252-266.
[http://dx.doi.org/10.2174/1872211313666190123153711] [PMID: 30674269]
[39]
Menaa, F.; Vashist, S.K.; Abdelghani, A.; Menaa, B. Graphene-Based Nanosystems for the Detection of Proteinic Biomarkers of Disease. In: Eshaghian-Wilner, M.M.; (Ed.). Implication in Translational Medicine; John Wiley & Sons, Inc., 2016, pp. 377-399.
[http://dx.doi.org/10.1002/9781118993620.ch13]
[40]
Su, Q.; Feng, W.; Yang, D.; Li, F. Resonance energy transfer in upconversion nanoplatforms for selective biodetection. Acc. Chem. Res., 2017, 50(1), 32-40.
[http://dx.doi.org/10.1021/acs.accounts.6b00382] [PMID: 27983801]
[41]
Grabbe, S.; Haas, H.; Diken, M.; Kranz, L.M.; Langguth, P.; Sahin, U. Translating nanoparticulate-personalized cancer vaccines into clinical applications: case study with RNA-lipoplexes for the treatment of melanoma. Nanomedicine (Lond.), 2016, 11(20), 2723-2734.
[http://dx.doi.org/10.2217/nnm-2016-0275] [PMID: 27700619]
[42]
Pardi, N.; Hogan, M.J.; Pelc, R.S.; Muramatsu, H.; Andersen, H.; DeMaso, C.R.; Dowd, K.A.; Sutherland, L.L.; Scearce, R.M.; Parks, R.; Wagner, W.; Granados, A.; Greenhouse, J.; Walker, M.; Willis, E.; Yu, J.S.; McGee, C.E.; Sempowski, G.D.; Mui, B.L.; Tam, Y.K.; Huang, Y.J.; Vanlandingham, D.; Holmes, V.M.; Balachandran, H.; Sahu, S.; Lifton, M.; Higgs, S.; Hensley, S.E.; Madden, T.D.; Hope, M.J.; Karikó, K.; Santra, S.; Graham, B.S.; Lewis, M.G.; Pierson, T.C.; Haynes, B.F.; Weissman, D. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017, 543(7644), 248-251.
[http://dx.doi.org/10.1038/nature21428] [PMID: 28151488]
[43]
Kang, B.S.; Choi, J.S.; Lee, S.E.; Lee, J.K.; Kim, T.H.; Jang, W.S.; Tunsirikongkon, A.; Kim, J.K.; Park, J.S. Enhancing the in vitro anticancer activity of albendazole incorporated into chitosan-coated PLGA nanoparticles. Carbohydr. Polym., 2017, 159, 39-47.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.009] [PMID: 28038752]
[44]
Yang, Q.; Lai, S.K. Engineering well-characterized PEG-coated nanoparticles for elucidating biological barriers to drug delivery. Methods Mol. Biol., 2017, 1530, 125-137.
[http://dx.doi.org/10.1007/978-1-4939-6646-2_8] [PMID: 28150200]
[45]
Hanske, C.; Sanz-Ortiz, M.N.; Liz-Marzán, L.M. Silica-coated plasmonic metal nanoparticles in action. Adv. Mater., 2018, 30(27), e1707003.
[http://dx.doi.org/10.1002/adma.201707003] [PMID: 29736945]
[46]
Fuller, M.A.; Köper, I. Biomedical applications of polyelectrolyte coated spherical gold nanoparticles. Nano Converg., 2019, 6(1), 11.
[http://dx.doi.org/10.1186/s40580-019-0183-4] [PMID: 31016413]
[47]
Ji, M.; Ma, N.; Tian, Y. 3D Lattice engineering of nanoparticles by DNA shells. Small, 2019, 15(26), e1805401.
[http://dx.doi.org/10.1002/smll.201805401] [PMID: 30785664]
[48]
Li, C.; Fu, R.; Yu, C.; Li, Z.; Guan, H.; Hu, D.; Zhao, D.; Lu, L. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study. Int. J. Nanomedicine, 2013, 8, 4131-4145.
[PMID: 24204142]
[49]
Konop, M.; Damps, T.; Misicka, A.; Rudnicka, L. Certain aspects of silver and silver nanoparticles in wound care: A minireview. J. Nanomater., 2016, 2016, 7614753.
[http://dx.doi.org/10.1155/2016/7614753]
[50]
Rehan, M.; Zaghloul, S.; Mahmoud, F.A.; Montaser, A.S.; Hebeish, A. Design of multi-functional cotton gauze with antimicrobial and drug delivery properties. Mater. Sci. Eng. C, 2017, 80, 29-37.
[http://dx.doi.org/10.1016/j.msec.2017.05.093] [PMID: 28866167]
[51]
Mosselhy, D.A.; Granbohm, H.; Hynönen, U.; Ge, Y.; Palva, A.; Nordström, K.; Hannula, S.P. Nanosilver-silica composite: Prolonged antibacterial effects and bacterial interaction mechanisms for wound dressings. Nanomaterials (Basel), 2017, 7(9), 261.
[http://dx.doi.org/10.3390/nano7090261] [PMID: 28878170]
[52]
Kim, J.H.; Park, H.; Seo, S.W. In situ synthesis of silver nanoparticles on the surface of PDMS with high antibacterial activity and biosafety toward an implantable medical device. Nano Converg., 2017, 4(1), 33.
[http://dx.doi.org/10.1186/s40580-017-0126-x] [PMID: 29214127]
[53]
Cheon, J.Y.; Kim, S.J.; Rhee, Y.H.; Kwon, O.H.; Park, W.H. Shape-dependent antimicrobial activities of silver nanoparticles. Int. J. Nanomedicine, 2019, 14, 2773-2780.
[http://dx.doi.org/10.2147/IJN.S196472] [PMID: 31118610]
[54]
Djeribi, R.; Bouchloukh, W.; Jouenne, T.; Menaa, B. Characterization of bacterial biofilms formed on urinary catheters. Am. J. Infect. Control, 2012, 40(9), 854-859.
[http://dx.doi.org/10.1016/j.ajic.2011.10.009] [PMID: 22325732]
[55]
Mala, R.; Annie Aglin, A.; Ruby Celsia, A.S.; Geerthika, S.; Kiruthika, N. VazagaPriya, C.; Srinivasa Kumar, K. Foley catheters functionalised with a synergistic combination of antibiotics and silver nanoparticles resist biofilm formation. IET Nanobiotechnol., 2017, 11(5), 612-620.
[http://dx.doi.org/10.1049/iet-nbt.2016.0148] [PMID: 28745297]
[56]
Bhargava, A.; Pareek, V.; Roy Choudhury, S.; Panwar, J.; Karmakar, S. Superior bactericidal efficacy of fucose-functionalized silver nanoparticles against pseudomonas aeruginosa PAO1 and prevention of its colonization on urinary catheters. ACS Appl. Mater. Interfaces, 2018, 10(35), 29325-29337.
[http://dx.doi.org/10.1021/acsami.8b09475] [PMID: 30096228]
[57]
Padmos, J.D.; Boudreau, R.T.; Weaver, D.F.; Zhang, P. Impact of protecting ligands on surface structure and antibacterial activity of silver nanoparticles. Langmuir, 2015, 31(12), 3745-3752.
[http://dx.doi.org/10.1021/acs.langmuir.5b00049] [PMID: 25773131]
[58]
Chen, J.P.; Chiang, Y. Bioactive electrospun silver nanoparticlescontaining polyurethane nanofibers as wound dressings. J. Nanosci. Nanotechnol., 2010, 10(11), 7560-7564.
[http://dx.doi.org/10.1166/jnn.2010.2829] [PMID: 21137982]
[59]
Fries, C.A.; Ayalew, Y.; Penn-Barwell, J.G.; Porter, K.; Jeffery, S.L.; Midwinter, M.J. Prospective randomised controlled trial of nanocrystalline silver dressing versus plain gauze as the initial post-debridement management of military wounds on wound microbiology and healing. Injury, 2014, 45(7), 1111-1116.
[http://dx.doi.org/10.1016/j.injury.2013.12.005] [PMID: 24485549]
[60]
DeLong, R.K.; Curtis, C.B. Toward RNA nanoparticle vaccines: synergizing RNA and inorganic nanoparticles to achieve immunopotentiation. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(2) 10.1002/wnan.1415.
[http://dx.doi.org/10.1002/wnan.1415] [PMID: 27312869]
[61]
Richner, J.M.; Himansu, S.; Dowd, K.A.; Butler, S.L.; Salazar, V.; Fox, J.M.; Julander, J.G.; Tang, W.W.; Shresta, S.; Pierson, T.C.; Ciaramella, G.; Diamond, M.S. Modified mRNA vaccines protect against zika virus infection. Cell, 2017, 168(6), 1114-1125.e10.
[http://dx.doi.org/10.1016/j.cell.2017.02.017] [PMID: 28222903]
[62]
Dong, H.; Fahmy, T.M.; Metcalfe, S.M.; Morton, S.L.; Dong, X.; Inverardi, L.; Adams, D.B.; Gao, W.; Wang, H. Immuno-isolation of pancreatic islet allografts using pegylated nanotherapy leads to long-term normoglycemia in full MHC mismatch recipient mice. PLoS One, 2012, 7(12), e50265.
[http://dx.doi.org/10.1371/journal.pone.0050265] [PMID: 23227162]
[63]
Makaram, P.; Owens, D.; Aceros, J. Trends in nanomaterial-based non-invasive diabetes sensing technologies. Diagnostics (Basel), 2014, 4(2), 27-46.
[http://dx.doi.org/10.3390/diagnostics4020027] [PMID: 26852676]
[64]
Garciafigueroa, Y.; Trucco, M.; Giannoukakis, N. A brief glimpse over the horizon for type 1 diabetes nanotherapeutics. Clin. Immunol., 2015, 160(1), 36-45.
[http://dx.doi.org/10.1016/j.clim.2015.03.016] [PMID: 25817545]
[65]
He, Z.; Liu, Z.; Tian, H.; Hu, Y.; Liu, L.; Leong, K.W.; Mao, H.Q.; Chen, Y. Scalable production of core-shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. Nanoscale, 2018, 10(7), 3307-3319.
[http://dx.doi.org/10.1039/C7NR08047F] [PMID: 29384554]
[66]
Zhu, W.; Xiao, J.; Wang, D.; Liu, J.; Xiong, J.; Liu, L.; Zhang, X.; Zeng, Y. Experimental study of nano-HA artificial bone with different pore sizes for repairing the radial defect. Int. Orthop., 2009, 33(2), 567-571.
[http://dx.doi.org/10.1007/s00264-008-0572-5] [PMID: 18500516]
[67]
Liu, H.; Webster, T.J. Ceramic/polymer nanocomposites with tunable drug delivery capability at specific disease sites. J. Biomed. Mater. Res. A, 2010, 93(3), 1180-1192.
[PMID: 19777574]
[68]
Kothamasu, P.; Kanumur, H.; Ravur, N.; Maddu, C.; Parasuramrajam, R.; Thangavel, S. Nanocapsules: the weapons for novel drug delivery systems. Bioimpacts, 2012, 2(2), 71-81.
[PMID: 23678444]
[69]
Wibowo, D.; Hui, Y.; Middelberg, A.P.; Zhao, C.X. Interfacial engineering for silica nanocapsules. Adv. Colloid Interface Sci., 2016, 236, 83-100.
[http://dx.doi.org/10.1016/j.cis.2016.08.001] [PMID: 27522646]
[70]
Ding, D.; Xu, Y.; Zou, Y.; Chen, L.; Chen, Z.; Tan, W. Graphitic nanocapsules: design, synthesis and bioanalytical applications. Nanoscale, 2017, 9(30), 10529-10543.
[http://dx.doi.org/10.1039/C7NR02587D] [PMID: 28715021]
[71]
Chen, J.; Ratnayaka, S.; Alford, A.; Kozlovskaya, V.; Liu, F.; Xue, B.; Hoyt, K.; Kharlampieva, E. Theranostic multilayer capsules for ultrasound imaging and guided drug delivery. ACS Nano, 2017, 11(3), 3135-3146.
[http://dx.doi.org/10.1021/acsnano.7b00151] [PMID: 28263564]
[72]
Taylor, T.M.; Davidson, P.M.; Bruce, B.D.; Weiss, J. Liposomal nanocapsules in food science and agriculture. Crit. Rev. Food Sci. Nutr., 2005, 45(7-8), 587-605.
[http://dx.doi.org/10.1080/10408390591001135] [PMID: 16371329]
[73]
Zangabad, P.S.; Mirkiani, S.; Shahsavari, S.; Masoudi, B.; Masroor, M.; Hamed, H.; Jafari, Z.; Taghipour, Y.D.; Hashemi, H.; Karimi, M.; Hamblin, M.R. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol. Rev., 2018, 7(1), 95-122.
[http://dx.doi.org/10.1515/ntrev-2017-0154] [PMID: 29404233]
[74]
Van Tran, V.; Moon, J.Y.; Lee, Y.C. Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J. Control. Release, 2019, 300, 114-140.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.003] [PMID: 30853528]
[75]
Zhang, Y.; Schlachetzki, F.; Li, J.Y.; Boado, R.J.; Pardridge, W.M. Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. Mol. Vis., 2003, 9, 465-472.
[PMID: 14551536]
[76]
Stano, P. Gene expression inside liposomes: From early studies to current protocols. Chemistry, 2019, 25(33), 7798-7814.
[http://dx.doi.org/10.1002/chem.201806445] [PMID: 30889296]
[77]
Riley, M.K.; Vermerris, W. Recent advances in nanomaterials for gene delivery-A review. Nanomaterials (Basel), 2017, 7(5), 94.
[http://dx.doi.org/10.3390/nano7050094] [PMID: 28452950]
[78]
Davis, S.S. Biomédical applications of nanotechnology-implications for drug targeting and gene therapy. Trends Biochem. Sci., 1997, 15(6), 217-224.
[PMID: 9204709]
[79]
Hart, S.L. Lipid carriers for gene therapy. Curr. Drug Deliv., 2005, 2(4), 423-428.
[http://dx.doi.org/10.2174/156720105774370230] [PMID: 16305445]
[80]
Ewert, K.; Evans, H.M.; Ahmad, A.; Slack, N.L.; Lin, A.J.; Martin-Herranz, A.; Safinya, C.R. Lipoplex structures and their distinct cellular pathways. Adv. Genet., 2005, 53, 119-155.
[http://dx.doi.org/10.1016/S0065-2660(05)53005-0] [PMID: 16240992]
[81]
Lu, Y.; Park, K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm., 2013, 453(1), 198-214.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.042] [PMID: 22944304]
[82]
Yokoyama, M. Polymeric micelles as drug carriers: their lights and shadows. J. Drug Target., 2014, 22(7), 576-583.
[http://dx.doi.org/10.3109/1061186X.2014.934688] [PMID: 25012065]
[83]
Kerry, R.G.; Malik, S.; Redda, Y.T.; Sahoo, S.; Patra, J.K.; Majhi, S. Nano-based approach to combat emerging viral (NIPAH virus) infection. Nanomedicine (Lond.), 2019, 18, 196-220.
[http://dx.doi.org/10.1016/j.nano.2019.03.004] [PMID: 30904587]
[84]
Legrand, J.; Brujes, L.; Garnelle, G.; Phalip, P. Study of a microencapsulation process of a virucide agent by a solvent evaporation technique. J. Microencapsul., 1995, 12(6), 639-649.
[http://dx.doi.org/10.3109/02652049509006794] [PMID: 8558386]
[85]
Reilly, R.M. Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. J. Nucl. Med., 2007, 48(7), 1039-1042.
[http://dx.doi.org/10.2967/jnumed.107.041723] [PMID: 17607037]
[86]
Asthagiri, A.R.; Pouratian, N.; Sherman, J.; Ahmed, G.; Shaffrey, M.E. Advances in brain tumor surgery. Neurol. Clin., 2007, 25(4), 975-1003. viii-ix.
[http://dx.doi.org/10.1016/j.ncl.2007.07.006] [PMID: 17964023]
[87]
Sathornsumetee, S.; Rich, J.N.; Reardon, D.A. Diagnosis and treatment of high-grade astrocytoma. Neurol. Clin., 2007, 25(4), 1111-1139,x.
[http://dx.doi.org/10.1016/j.ncl.2007.07.004] [PMID: 17964028]
[88]
Wen, P.Y.; Kesari, S. Malignant gliomas in adults. N. Engl. J. Med., 2008, 359(5), 492-507.
[http://dx.doi.org/10.1056/NEJMra0708126] [PMID: 18669428]
[89]
García-Hevia, L.; Villegas, J.C.; Fernández, F.; Casafont, Í.; González, J.; Valiente, R.; Fanarraga, M.L. Multiwalled carbon nanotubes inhibit tumor progression in a mouse model. Adv. Healthc. Mater., 2016, 5(9), 1080-1087.
[http://dx.doi.org/10.1002/adhm.201500753] [PMID: 26866927]
[90]
González-Lavado, E.; Iturrioz-Rodríguez, N.; Padín-González, E.; González, J.; García-Hevia, L.; Heuts, J.; Pesquera, C.; González, F.; Villegas, J.C.; Valiente, R.; Fanarraga, M.L. Biodegradable multi-walled carbon nanotubes trigger anti-tumoral effects. Nanoscale, 2018, 10(23), 11013-11020.
[http://dx.doi.org/10.1039/C8NR03036G] [PMID: 29868677]
[91]
Son, K.H.; Hong, J.H.; Lee, J.W. Carbon nanotubes as cancer therapeutic carriers and mediators. Int. J. Nanomedicine, 2016, 11, 5163-5185.
[http://dx.doi.org/10.2147/IJN.S112660] [PMID: 27785021]
[92]
Singh, N.; Sachdev, A.; Gopinath, P. Polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. J. Nanosci. Nanotechnol., 2018, 18(3), 1534-1541.
[http://dx.doi.org/10.1166/jnn.2018.14222] [PMID: 29448627]
[93]
González-Lavado, E.; Valdivia, L.; García-Castaño, A.; González, F.; Pesquera, C.; Valiente, R.; Fanarraga, M.L. Multi-walled carbon nanotubes complement the anti-tumoral effect of 5-FLUOROURACIL. Oncotarget, 2019, 10(21), 2022-2029.
[PMID: 31007845]
[94]
Kateb, B.; Van Handel, M.; Zhang, L.; Bronikowski, M.J.; Manohara, H.; Badie, B. Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors. Neuroimage, 2007, 37(Suppl. 1), S9-S17.
[http://dx.doi.org/10.1016/j.neuroimage.2007.03.078] [PMID: 17601750]
[95]
Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano, 2007, 1(1), 50-56.
[http://dx.doi.org/10.1021/nn700040t] [PMID: 19203129]
[96]
Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res., 2008, 68(16), 6652-6660.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1468] [PMID: 18701489]
[97]
Pastorin, G. Crucial functionalizations of carbon nanotubes for improved drug delivery: a valuable option? Pharm. Res., 2009, 26(4), 746-769.
[http://dx.doi.org/10.1007/s11095-008-9811-0] [PMID: 19142717]
[98]
Muzi, L.; Ménard-Moyon, C.; Russier, J.; Li, J.; Chin, C.F.; Ang, W.H.; Pastorin, G.; Risuleo, G.; Bianco, A. Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes. Nanoscale, 2015, 7(12), 5383-5394.
[http://dx.doi.org/10.1039/c5nr00220f]
[99]
VanHandel, M.; Alizadeh, D.; Zhang, L.; Kateb, B.; Bronikowski, M.; Manohara, H.; Badie, B. Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model. J. Neuroimmunol., 2009, 208(1-2), 3-9.
[http://dx.doi.org/10.1016/j.jneuroim.2008.12.006] [PMID: 19181390]
[100]
Liu, Z.; Tabakman, S.M.; Chen, Z.; Dai, H. Preparation of carbon nanotube bioconjugates for biomedical applications. Nat. Protoc., 2009, 4(9), 1372-1382.
[http://dx.doi.org/10.1038/nprot.2009.146] [PMID: 19730421]
[101]
Bianco, A.; Kostarelos, K.; Prato, M. Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opin. Drug Deliv., 2008, 5(3), 331-342.
[http://dx.doi.org/10.1517/17425247.5.3.331] [PMID: 18318654]
[102]
Foldvari, M.; Bagonluri, M. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine (Lond.), 2008, 4(3), 183-200.
[http://dx.doi.org/10.1016/j.nano.2008.04.003] [PMID: 18550450]
[103]
Rathod, V.; Tripathi, R.; Joshi, P.; Jha, P.K.; Bahadur, P.; Tiwari, S. Paclitaxel Encapsulation into dual-functionalized multi-walled carbon nanotubes. AAPS PharmSciTech, 2019, 20(2), 51.
[http://dx.doi.org/10.1208/s12249-018-1218-6] [PMID: 30617845]
[104]
Zhao, D.; Badie, B. Application of Carbon Nanotubes to Brain Tumor Therapy. Nanotechnologies for the Life Sciences, Wiley VCH Verlag GmbH & Co. KGaA, , 2012.
[http://dx.doi.org/10.1002/9783527610419.ntls0242]
[105]
Xiao, Y.; Gao, X.; Taratula, O.; Treado, S.; Urbas, A.; Holbrook, R.D.; Cavicchi, R.E.; Avedisian, C.T.; Mitra, S.; Savla, R.; Wagner, P.D.; Srivastava, S.; He, H. Anti-HER2 IgY antibodyfunctionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer, 2009, 9(1471), 351.
[http://dx.doi.org/10.1186/1471-2407-9-351] [PMID: 19799784]
[106]
Kinoshita, S.; Yoshioka, S.; Fujii, T.; Okamoto, N. Photophysics of structural color in the morpho butterflies. Forma, 2002, 17, 103-121.
[107]
Zheng, Y.; Gao, X.; Jiang, L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter, 2007, 3(2), 178-182.
[http://dx.doi.org/10.1039/B612667G]
[108]
Sun, J.; Bhushan, B. Structure and mechanical properties of beetle wings: a review. RSC Adv., 2012, 2(33), 12606.
[http://dx.doi.org/10.1039/c2ra21276e]
[109]
Tewhey, R.; Warner, J.B.; Nakano, M.; Libby, B.; Medkova, M.; David, P.H.; Kotsopoulos, S.K.; Samuels, M.L.; Hutchison, J.B.; Larson, J.W.; Topol, E.J.; Weiner, M.P.; Harismendy, O.; Olson, J.; Link, D.R.; Frazer, K.A. Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat. Biotechnol., 2009, 27(11), 1025-1031.
[http://dx.doi.org/10.1038/nbt.1583] [PMID: 19881494]
[110]
Abdelgawad, M.; Wheeler, A.R. The digital revolution: A new paradigm for microfluidics. Adv. Mater., 2009, 21(8), 920-925.
[http://dx.doi.org/10.1002/adma.200802244]
[111]
Tee, B.C.; Wang, C.; Allen, R.; Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexionsensitive properties for electronic skin applications. Nat. Nanotechnol., 2012, 7(12), 825-832.
[http://dx.doi.org/10.1038/nnano.2012.192] [PMID: 23142944]
[112]
Sethi, S.; Ge, L.; Ci, L.; Ajayan, P.M.; Dhinojwala, A. Geckoinspired carbon nanotube-based self-cleaning adhesives. Nano Lett., 2008, 8(3), 822-825.
[http://dx.doi.org/10.1021/nl0727765] [PMID: 18266335]
[113]
Wong, T.S.; Kang, S.H.; Tang, S.K.; Smythe, E.J.; Hatton, B.D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011, 477(7365), 443-447.
[http://dx.doi.org/10.1038/nature10447] [PMID: 21938066]
[114]
Qiu, L.; Liu, J.Z.; Chang, S.L.; Wu, Y.; Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun., 2012, 3, 1241.
[http://dx.doi.org/10.1038/ncomms2251] [PMID: 23212370]
[115]
Avinash, M.B.; Verheggen, E.; Schmuck, C.; Govindaraju, T. Self-cleaning functional molecular materials. Angew. Chem. Int. Ed. Engl., 2012, 51(41), 10324-10328.
[http://dx.doi.org/10.1002/anie.201204608] [PMID: 22969032]
[116]
Ge, J.; Lei, J.; Zare, R.N. Protein-inorganic hybrid nanoflowers. Nat. Nanotechnol., 2012, 7(7), 428-432.
[http://dx.doi.org/10.1038/nnano.2012.80] [PMID: 22659609]
[117]
Morin, S.A.; Shepherd, R.F.; Kwok, S.W.; Stokes, A.A.; Nemiroski, A.; Whitesides, G.M. Camouflage and display for soft machines. Science, 2012, 337(6096), 828-832.
[http://dx.doi.org/10.1126/science.1222149] [PMID: 22904008]
[118]
Miyako, E.; Sugino, T.; Okazaki, T.; Bianco, A.; Yudasaka, M.; Iijima, S. Self-assembled carbon nanotube honeycomb networks using a butterfly wing template as a multifunctional nanobiohybrid. ACS Nano, 2013, 7(10), 8736-8742.
[http://dx.doi.org/10.1021/nn403083v] [PMID: 23952240]
[119]
Jain, K.; Kesharwani, P.; Gupta, U.; Jain, N.K. Dendrimer toxicity: Let’s meet the challenge. Int. J. Pharm., 2010, 394(1-2), 122-142.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.027] [PMID: 20433913]
[120]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[121]
Hodge, P. Polymer science branches out. Nature, 1993, 9, 18-19.
[http://dx.doi.org/10.1038/362018a0]
[122]
Noriega-Luna, B.; Godínez, L.A.; Rodríguez, F.J.; Rodríguez, A.; Zaldívar-Lelo de Larrea, G.; Sosa-Ferreyra, C.F.; Mercado-Curiel, R.F.; Manríquez, J.; Bustos, E. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J. Nanomater., 2014, 2014, 507273.
[http://dx.doi.org/10.1155/2014/507273]
[123]
Araújo, R.V.; Santos, S.D.S.; Igne Ferreira, E.; Giarolla, J. New advances in general biomedical applications of PAMAM dendrimers. Molecules, 2018, 23(11), 2849.
[http://dx.doi.org/10.3390/molecules23112849] [PMID: 30400134]
[124]
Chavda, V.P. Nanobased Nano Drug Delivery: A Comprehensive Review. In: Mohapatra, S.; Ranjan, S.; Dasgupta N.; Kumar, R.; Thomas, S. (Ed.). Applications of Targeted Nano Drugs and Delivery Systems, Elsevier B.V., 2019, pp. 69-92.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00004-1]
[125]
Majoros, I.J.; Williams, C.R.; Becker, A.; Baker, J.R., Jr Methotrexate delivery via folate targeted dendrimer-based nanotherapeutic platform. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1(5), 502-510.
[http://dx.doi.org/10.1002/wnan.37] [PMID: 20049813]
[126]
Wang, Y.; Cao, X.; Guo, R.; Shen, M.; Zhang, M.; Zhu, M.; Shi, X. Targeted delivery of doxorubicin into cancer cells using a folic acid-dendrimer conjugate. Polym. Chem., 2011, 2, 1754-1760.
[http://dx.doi.org/10.1039/c1py00179e]
[127]
Wen, S.; Liu, H.; Cai, H.; Shen, M.; Shi, X. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. Adv. Healthc. Mater., 2013, 2(9), 1267-1276.
[http://dx.doi.org/10.1002/adhm.201200389] [PMID: 23447549]
[128]
Taccola, S.; Pensabene, V.; Fujie, T.; Takeoka, S.; Pugno, N.M.; Mattoli, V. On the injectability of free-standing magnetic nanofilms. Biomed. Microdevices, 2017, 19(3), 51.
[http://dx.doi.org/10.1007/s10544-017-0192-1] [PMID: 28577265]
[129]
Haynie, D.T.; Zhang, L.; Zhao, W.; Rudra, J.S. Protein-inspired multilayer nanofilms: science, technology and medicine. Nanomedicine (Lond.), 2006, 2(3), 150-157.
[http://dx.doi.org/10.1016/j.nano.2006.07.008] [PMID: 17292137]
[130]
Jiang, B.; Barnett, J.B.; Li, B. Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems. Nanotechnol. Sci. Appl., 2009, 2, 21-27.
[http://dx.doi.org/10.2147/NSA.S5705] [PMID: 24198464]
[131]
Richardson, J.J.; Björnmalm, M.; Caruso, F. Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. Science, 2015, 348(6233), aaa2491.
[http://dx.doi.org/10.1126/science.aaa2491] [PMID: 25908826]
[132]
Zhang, S.; Xing, M.; Li, B. Biomimetic layer-by-layer self-assembly of nanofilms, nanocoatings, and 3D scaffolds for tissue engineering. Int. J. Mol. Sci., 2018, 19(6), E1641.
[http://dx.doi.org/10.3390/ijms19061641] [PMID: 29865178]
[133]
Jeong, H.; Hwang, J.; Lee, H.; Hammond, P.T.; Choi, J.; Hong, J. In vitro blood cell viability profiling of polymers used in molecular assembly. Sci. Rep., 2017, 7(1), 9481.
[http://dx.doi.org/10.1038/s41598-017-10169-5] [PMID: 28842713]
[134]
Yokogawa, M.; Fukuda, M.; Osawa, M. Nanodiscs for structural biology in a membranous environment. Chem. Pharm. Bull. (Tokyo), 2019, 67(4), 321-326.
[http://dx.doi.org/10.1248/cpb.c18-00941] [PMID: 30930435]
[135]
Yang, Y.; Liu, Z.; Wu, D.; Wu, M.; Tian, Y.; Niu, Z.; Huang, Y. Edge-modified amphiphilic Laponite nano-discs for stabilizing Pickering emulsions. J. Colloid Interface Sci., 2013, 410, 27-32.
[http://dx.doi.org/10.1016/j.jcis.2013.07.060] [PMID: 23998369]
[136]
Denisov, I.G.; Sligar, S.G. Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol., 2016, 23(6), 481-486.
[http://dx.doi.org/10.1038/nsmb.3195] [PMID: 27273631]
[137]
Hagn, F.; Nasr, M.L.; Wagner, G. Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nat. Protoc., 2018, 13(1), 79-98.
[http://dx.doi.org/10.1038/nprot.2017.094] [PMID: 29215632]
[138]
Patwa, R.; Soundararajan, N.; Mulchandani, N.; Bhasney, S.M.; Shah, M.; Kumar, S.; Kumar, A.; Katiyar, V. Silk nano-discs: A natural material for cancer therapy. Biopolymers, 2018, 109(11), e23231.
[http://dx.doi.org/10.1002/bip.23231] [PMID: 30515775]
[139]
Camp, T.; McLean, M.; Kato, M.; Cheruzel, L.; Sligar, S. The hydrodynamic motion of Nanodiscs. Chem. Phys. Lipids, 2019, 220, 28-35.
[http://dx.doi.org/10.1016/j.chemphyslip.2019.02.008] [PMID: 30802435]
[140]
Huff, H.C.; Maroutsos, D.; Das, A. Lipid composition and macromolecular crowding effects on CYP2J2-mediated drug metabolism in nanodiscs. Protein Sci., 2019, 28(5), 928-940.
[http://dx.doi.org/10.1002/pro.3603] [PMID: 30861250]
[141]
Maroutsos, D.; Huff, H.; Das, A. Bacterial expression of membrane-associated cytochrome P450s and their activity assay in nanodiscs. Methods Mol. Biol., 2019, 1927, 47-72.
[http://dx.doi.org/10.1007/978-1-4939-9142-6_5] [PMID: 30788785]
[142]
Murugathas, T.; Zheng, H.Y.; Colbert, D.; Kralicek, A.V.; Carraher, C.; Plank, N.O.V. Biosensing with insect odorant receptor nanodiscs and carbon nanotube field-effect transistors. ACS Appl. Mater. Interfaces, 2019, 11(9), 9530-9538.
[http://dx.doi.org/10.1021/acsami.8b19433] [PMID: 30740970]
[143]
Denisov, I.G.; Sligar, S.G. Nanodiscs in membrane biochemistry and biophysics. Chem. Rev., 2017, 117(6), 4669-4713.
[http://dx.doi.org/10.1021/acs.chemrev.6b00690] [PMID: 28177242]
[144]
Sharma, H.; Dormidontova, E.E. Lipid nanodisc-templated self-assembly of gold nanoparticles into strings and rings. ACS Nano, 2017, 11(4), 3651-3661.
[http://dx.doi.org/10.1021/acsnano.6b08043] [PMID: 28291322]
[145]
Pang, J.; Theodorou, I.G.; Centeno, A.; Petrov, P.; Alford, N.M.; Ryan, M.P.; Xie, F. Gold nanodisc arrays as near infrared metalenhanced fluorescence platforms with tuneable enhancement factors. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5, 917-925.
[http://dx.doi.org/10.1039/C6TC04965F]
[146]
Gao, W.; Borgens, R.B. Remote-controlled eradication of astrogliosis in spinal cord injury via electromagnetically-induced dexamethasone release from “smart” nanowires. J. Control. Release, 2015, 211, 22-27.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.266] [PMID: 25979326]
[147]
Xu, Z.; Li, M.; Li, X.; Liu, X.; Ma, F.; Wu, S.; Yeung, K.W.K.; Han, Y.; Chu, P.K. Antibacterial activity of silver doped titanate nanowires on Ti implants. ACS Appl. Mater. Interfaces, 2016, 8(26), 16584-16594.
[http://dx.doi.org/10.1021/acsami.6b04161] [PMID: 27336202]
[148]
Deane, C. The new face of nanowires. Nat. Chem. Biol., 2019, 15(6), 551-551.
[http://dx.doi.org/10.1038/s41589-019-0299-1] [PMID: 31101913]
[149]
Hubbe, H.; Mendes, E.; Boukany, P.E. Polymeric nanowires for diagnostic applications. Micromachines (Basel), 2019, 10(4), 225.
[http://dx.doi.org/10.3390/mi10040225] [PMID: 30934898]
[150]
Lard, M.; Linke, H.; Prinz, C.N. Biosensing using arrays of vertical semiconductor nanowires: mechanosensing and biomarker detection. Nanotechnology, 2019, 30(21), 214003.
[http://dx.doi.org/10.1088/1361-6528/ab0326] [PMID: 30699399]
[151]
Vernet Crua, A.; Medina, D.; Zhang, B.; González, M.U.; Huttel, Y.; García-Martín, J.M.; Cholula-Díaz, J.L.; Webster, T.J. Comparison of cytocompatibility and anticancer properties of traditional and green chemistry-synthesized tellurium nanowires. Int. J. Nanomedicine, 2019, 14, 3155-3176.
[http://dx.doi.org/10.2147/IJN.S175640] [PMID: 31118629]
[152]
Cacchioli, A.; Ravanetti, F.; Alinovi, R.; Pinelli, S.; Rossi, F.; Negri, M.; Bedogni, E.; Campanini, M.; Galetti, M.; Goldoni, M.; Lagonegro, P.; Alfieri, R.; Bigi, F.; Salviati, G. Cytocompatibility and cellular internalization mechanisms of SiC/SiO2 nanowires. Nano Lett., 2014, 14(8), 4368-4375.
[http://dx.doi.org/10.1021/nl501255m] [PMID: 25026180]
[153]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[154]
Imtiaz, N.; Niazi, M.B.; Fasim, F.; Khan, B.A.; Bano, S.A.; Shah, G.M.; Badshah, M.; Menaa, F.; Uzair, B. Fabrication of an original transparent PVA/gelatin hydrogel: In vitro antimicrobial activity against skin pathogens. Int. J. Polym. Sci., 2019, 2019, 7651810.
[http://dx.doi.org/10.1155/2019/7651810]
[155]
Darge, H.F.; Andrgie, A.T.; Tsai, H.C.; Lai, J.Y. Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. Int. J. Biol. Macromol., 2019, 133, 545-563.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.131] [PMID: 31004630]
[156]
Athukoralalage, S.S.; Balu, R.; Dutta, N.K.; Roy Choudhury, N. 3D bioprinted nanocellulose-based hydrogels for tissue engineering applications: A brief review. Polymers (Basel), 2019, 11(5), 898.
[http://dx.doi.org/10.3390/polym11050898] [PMID: 31108877]
[157]
Reyes-Martínez, J.E.; Ruiz-Pacheco, J.A.; Flores-Valdéz, M.A.; Elsawy, M.A.; Vallejo-Cardona, A.A.; Castillo-Díaz, L.A. Advanced hydrogels for treatment of diabetes. J. Tissue Eng. Regen. Med., 2019, 13(8), 1375-1393.
[http://dx.doi.org/10.1002/term.2880] [PMID: 31066518]
[158]
Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymers (Basel), 2008, 49(8), 1993-2007.
[159]
Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev., 2012, 64, 49-60.
[http://dx.doi.org/10.1016/j.addr.2012.09.024] [PMID: 11744175]
[160]
Agasti, S.S.; Chompoosor, A.; You, C.C.; Ghosh, P.; Kim, C.K.; Rotello, V.M. Photoregulated release of caged anticancer drugs from gold nanoparticles. J. Am. Chem. Soc., 2009, 131(16), 5728-5729.
[http://dx.doi.org/10.1021/ja900591t] [PMID: 19351115]
[161]
Darwish, N.; Aragonès, A.C.; Darwish, T.; Ciampi, S.; Díez-Pérez, I. Multi-responsive photo- and chemo-electrical single-molecule switches. Nano Lett., 2014, 14(12), 7064-7070.
[http://dx.doi.org/10.1021/nl5034599] [PMID: 25419986]
[162]
Schultz, T.; Quenneville, J.; Levine, B.; Toniolo, A.; Martínez, T.J.; Lochbrunner, S.; Schmitt, M.; Shaffer, J.P.; Zgierski, M.Z.; Stolow, A. Mechanism and dynamics of azobenzene photoisomerization. J. Am. Chem. Soc., 2003, 125(27), 8098-8099.
[http://dx.doi.org/10.1021/ja021363x] [PMID: 12837068]
[163]
Fomina, N.; Sankaranarayanan, J.; Almutairi, A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv. Drug Deliv. Rev., 2012, 64(11), 1005-1020.
[http://dx.doi.org/10.1016/j.addr.2012.02.006] [PMID: 22386560]
[164]
Barhoumi, A.; Liu, Q.; Kohane, D.S. Ultraviolet light-mediated drug delivery: Principles, applications, and challenges. J. Control. Release, 2015, 219, 31-42.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.018] [PMID: 26208426]
[165]
Jalani, G.; Naccache, R.; Rosenzweig, D.H.; Haglund, L.; Vetrone, F.; Cerruti, M. Photocleavable hydrogel-coated upconverting nanoparticles: a multifunctional theranostic platform for NIR imaging and on-demand macromolecular delivery. J. Am. Chem. Soc., 2016, 138(3), 1078-1083.
[http://dx.doi.org/10.1021/jacs.5b12357] [PMID: 26708288]
[166]
Emanueli, C.; Shearn, A.I.; Angelini, G.D.; Sahoo, S. Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascul. Pharmacol., 2015, 71, 24-30.
[http://dx.doi.org/10.1016/j.vph.2015.02.008] [PMID: 25869502]
[167]
Santulli, G. Exosomal microRNA: The revolutionary endogenous Innerspace nanotechnology. Sci. Transl. Med., 2018, 10(467), eaav9141.
[http://dx.doi.org/10.1126/scitranslmed.aav9141] [PMID: 30899414]
[168]
Mathiyalagan, P.; Sahoo, S. Exosomes-based gene therapy for microRNA delivery. Methods Mol. Biol., 2017, 1521, 139-152.
[http://dx.doi.org/10.1007/978-1-4939-6588-5_9] [PMID: 27910046]
[169]
Jalalian, S.H.; Ramezani, M.; Jalalian, S.A.; Abnous, K.; Taghdisi, S.M. Exosomes, new biomarkers in early cancer detection. Anal. Biochem., 2019, 571, 1-13.
[http://dx.doi.org/10.1016/j.ab.2019.02.013] [PMID: 30776327]
[170]
Cazzoli, R.; Buttitta, F.; Di Nicola, M.; Malatesta, S.; Marchetti, A.; Rom, W.N.; Pass, H.I. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J. Thorac. Oncol., 2013, 8(9), 1156-1162.
[http://dx.doi.org/10.1097/JTO.0b013e318299ac32] [PMID: 23945385]
[171]
Ziaei, P.; Geruntho, J.J.; Marin-Flores, O.G.; Berkman, C.E.; Norton, M.G. Silica nanostructured platform for affinity capture of tumor-derived exosomes. J. Mater. Sci., 2017, 52(12), 6907-6916.
[http://dx.doi.org/10.1007/s10853-017-0905-0]
[172]
Wang, Q.; Zou, L.; Yang, X.; Liu, X.; Nie, W.; Zheng, Y.; Cheng, Q.; Wang, K. Direct quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification. Biosens. Bioelectron., 2019, 135, 129-136.
[http://dx.doi.org/10.1016/j.bios.2019.04.013] [PMID: 31004923]
[173]
De Palma, G.; Di Lorenzo, V.F.; Krol, S.; Paradiso, A.V. Urinary exosomal shuttle RNA: Promising cancer diagnosis biomarkers of lower urinary tract. Int. J. Biol. Markers, 2019, 34(2), 101-107.
[http://dx.doi.org/10.1177/1724600819827023] [PMID: 30862241]
[174]
Cheng, N.; Du, D.; Wang, X.; Liu, D.; Xu, W.; Luo, Y.; Lin, Y. Recent advances in biosensors for detecting cancer-derived exosomes. Trends Biotechnol., 2019, 37(11), 1236-1254.
[http://dx.doi.org/10.1016/j.tibtech.2019.04.008] [PMID: 31104858]
[175]
Sina, A.A.; Vaidyanathan, R.; Wuethrich, A.; Carrascosa, L.G.; Trau, M. Label-free detection of exosomes using a surface plasmon resonance biosensor. Anal. Bioanal. Chem., 2019, 411(7), 1311-1318.
[http://dx.doi.org/10.1007/s00216-019-01608-5] [PMID: 30719562]
[176]
Lim, T. Nanosensors: Theory and Applications in Industry, Healthcare and Defense; CRC Press, 2016.
[http://dx.doi.org/10.1201/b10450]
[177]
Sin, M.L.; Gao, J.; Liao, J.C.; Wong, P.K. System integration-A major step toward lab on a chip. J. Biol. Eng., 2011, 5(1), 6.
[http://dx.doi.org/10.1186/1754-1611-5-6] [PMID: 21612614]
[178]
Toner, M. Gene delivery: Suddenly squeezed and shocked. Nat. Biomed. Eng. 2017, 1, 0047.
[179]
Salvatore, G.A.; Münzenrieder, N.; Kinkeldei, T.; Petti, L.; Zysset, C.; Strebel, I.; Büthe, L.; Tröster, G. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat. Commun., 2014, 5, 2982.
[http://dx.doi.org/10.1038/ncomms3982] [PMID: 24399363]
[180]
Low, L.A.; Tagle, D.A. Tissue chips - innovative tools for drug development and disease modeling. Lab Chip, 2017, 17(18), 3026-3036.
[http://dx.doi.org/10.1039/C7LC00462A] [PMID: 28795174]
[181]
Yi, H.G.; Lee, H.; Cho, D.W. 3D printing of organs-on-chips. Bioengineering (Basel), 2017, 4(1), 10.
[http://dx.doi.org/10.3390/bioengineering4010010] [PMID: 28952489]
[182]
Wang, A.; Abdulla, A.; Ding, X. Microdroplets-on-chip: A review. Proc. Inst. Mech. Eng. H, 2019, 233(7), 683-694.
[http://dx.doi.org/10.1177/0954411919850912] [PMID: 31113284]
[183]
Guetens, G.; Van Cauwenberghe, K.; De Boeck, G.; Maes, R.; Tjaden, U.R.; van der Greef, J.; Highley, M.; van Oosterom, A.T.; de Bruijn, E.A. Nanotechnology in bio/clinical analysis. J. Chromatogr. B Biomed. Sci. Appl., 2000, 739(1), 139-150.
[http://dx.doi.org/10.1016/S0378-4347(99)00553-8] [PMID: 10744322]
[184]
Khademhosseini, A.; Yeh, J.; Eng, G.; Karp, J.; Kaji, H.; Borenstein, J.; Farokhzad, O.C.; Langer, R. Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays. Lab Chip, 2005, 5(12), 1380-1386.
[http://dx.doi.org/10.1039/b508096g] [PMID: 16286969]
[185]
Herold, K.E.; Rasooly, A. Lab on a chip technology: Fabrication and Microfluidics; Caister Academic Press: Norfolk, 2009.
[186]
Pires, N.M.; Dong, T.; Hanke, U.; Hoivik, N. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors (Basel), 2014, 14(8), 15458-15479.
[http://dx.doi.org/10.3390/s140815458] [PMID: 25196161]
[187]
Chi, C.W.; Ahmed, A.R.; Dereli-Korkut, Z.; Wang, S. Microfluidic cell chips for high-throughput drug screening. Bioanalysis, 2016, 8(9), 921-937.
[http://dx.doi.org/10.4155/bio-2016-0028] [PMID: 27071838]
[188]
Dietvorst, J.; Goyvaerts, J.; Ackermann, T.N.; Alvarez, E.; Muñoz-Berbel, X.; Llobera, A. Microfluidic-controlled optical router for lab on a chip. Lab Chip, 2019, 19(12), 2081-2088.
[http://dx.doi.org/10.1039/C9LC00143C] [PMID: 31114831]
[189]
Chiriacò, M.S.; Bianco, M.; Nigro, A.; Primiceri, E.; Ferrara, F.; Romano, A.; Quattrini, A.; Furlan, R.; Arima, V.; Maruccio, G. Lab-on-chip for exosomes and microvesicles detection and characterization. Sensors (Basel), 2018, 18(10), 3175.
[http://dx.doi.org/10.3390/s18103175] [PMID: 30241303]
[190]
Huang, Z.H.; Wang, Z.G.; Lu, X.Y.; Li, W.Y.; Zhou, Y.X.; Shen, X.Y.; Zhao, X.T. The principle of the micro-electronic neural bridge and a prototype system design. IEEE Trans. Neural Syst. Rehabil. Eng., 2016, 24(1), 180-191.
[http://dx.doi.org/10.1109/TNSRE.2015.2466659] [PMID: 26276996]
[191]
Wang, Z.G.; Lü, X.; Xia, Y.; Li, W.; Huang, Z.; Zhou, Y.; Shen, X.; Zhao, X.; Yang, J.; Wang, S.; Ma, M.; Wang, B. Motor function rebuilding of limbs based on communication principle and electronic system. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2012, 2012, 843-846.
[PMID: 23366024]
[192]
Berthier, E.; Guckenberger, D.J.; Cavnar, P.; Huttenlocher, A.; Keller, N.P.; Beebe, D.J. Kit-On-A-Lid-Assays for accessible self-contained cell assays. Lab Chip, 2013, 13(3), 424-431.
[http://dx.doi.org/10.1039/C2LC41019B] [PMID: 23229806]
[193]
Barbulovic-Nad, I.; Yang, H.; Park, P.S.; Wheeler, A.R. Digital microfluidics for cell-based assays. Lab Chip, 2008, 8(4), 519-526.
[http://dx.doi.org/10.1039/b717759c] [PMID: 18369505]
[194]
Michelini, E.; Cevenini, L.; Mezzanotte, L.; Coppa, A.; Roda, A. Cell-based assays: fuelling drug discovery. Anal. Bioanal. Chem., 2010, 398(1), 227-238.
[http://dx.doi.org/10.1007/s00216-010-3933-z] [PMID: 20623273]
[195]
Sackmann, E.K.; Berthier, E.; Young, E.W.; Shelef, M.A.; Wernimont, S.A.; Huttenlocher, A.; Beebe, D.J. Microfluidic kit-on-a-lid: a versatile platform for neutrophil chemotaxis assays. Blood, 2012, 120(14), e45-e53.
[http://dx.doi.org/10.1182/blood-2012-03-416453] [PMID: 22915642]
[196]
Guckenberger, D.J.; Berthier, E.; Beebe, D.J. High-density self-contained microfluidic KOALA kits for use by everyone. J. Lab. Autom., 2015, 20(2), 146-153.
[http://dx.doi.org/10.1177/2211068214560609] [PMID: 25424385]
[197]
Carrilho, E.; Phillips, S.T.; Vella, S.J.; Martinez, A.W.; Whitesides, G.M. Paper microzone plates. Anal. Chem., 2009, 81(15), 5990-5998.
[http://dx.doi.org/10.1021/ac900847g] [PMID: 19572563]
[198]
Martinez, A.W.; Phillips, S.T.; Whitesides, G.M.; Carrilho, E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem., 2010, 82(1), 3-10.
[http://dx.doi.org/10.1021/ac9013989] [PMID: 20000334]
[199]
Akyazi, T.; Basabe-Desmonts, L.; Benito-Lopez, F. Review on microfluidic paper-based analytical devices towards commercialisation. Anal. Chim. Acta, 2018, 1001, 1-17.
[http://dx.doi.org/10.1016/j.aca.2017.11.010] [PMID: 29291790]
[200]
Singh, A.T.; Lantigua, D.; Meka, A.; Taing, S.; Pandher, M.; Camci-Unal, G. Paper-based sensors: Emerging themes and applications. Sensors (Basel), 2018, 18(9), 2838.
[http://dx.doi.org/10.3390/s18092838] [PMID: 30154323]
[201]
Lepowsky, E.; Ghaderinezhad, F.; Knowlton, S.; Tasoglu, S. Paper-based assays for urine analysis. Biomicrofluidics, 2017, 11(5), 051501.
[http://dx.doi.org/10.1063/1.4996768] [PMID: 29104709]
[202]
Yamada, K.; Shibata, H.; Suzuki, K.; Citterio, D. Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip, 2017, 17(7), 1206-1249.
[http://dx.doi.org/10.1039/C6LC01577H] [PMID: 28251200]
[203]
Altundemir, S.; Uguz, A.K.; Ulgen, K. A review on wax printed microfluidic paper-based devices for international health. Biomicrofluidics, 2017, 11(4), 041501.
[http://dx.doi.org/10.1063/1.4991504] [PMID: 28936274]
[204]
Liu, L.; Yang, D.; Liu, G. Signal amplification strategies for paper-based analytical devices. Biosens. Bioelectron., 2019, 136, 60-75.
[http://dx.doi.org/10.1016/j.bios.2019.04.043] [PMID: 31035028]
[205]
Zhang, Y.; Yang, H.; Zhou, Z.; Huang, K.; Yang, S.; Han, G. Recent advances on magnetic relaxation switching assay-based nanosensors. Bioconjug. Chem., 2017, 28(4), 869-879.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00059] [PMID: 28205434]
[206]
Alcantara, D.; Lopez, S.; García-Martin, M.L.; Pozo, D. Iron oxide nanoparticles as magnetic relaxation switching (MRSw) sensors: Current applications in nanomedicine. Nanomedicine (Lond.), 2016, 12(5), 1253-1262.
[http://dx.doi.org/10.1016/j.nano.2016.01.005] [PMID: 26949164]
[207]
Rosi, N.L.; Mirkin, C.A. Nanostructures in biodiagnostics. Chem. Rev., 2005, 105(4), 1547-1562.
[http://dx.doi.org/10.1021/cr030067f] [PMID: 15826019]
[208]
Ding, C.; Zhu, A.; Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res., 2014, 47(1), 20-30.
[http://dx.doi.org/10.1021/ar400023s] [PMID: 23911118]
[209]
Sun, B.; Zhao, B.; Wang, D.; Wang, Y.; Tang, Q.; Zhu, S.; Yang, B.; Sun, H. Fluorescent non-conjugated polymer dots for targeted cell imaging. Nanoscale, 2016, 8(18), 9837-9841.
[http://dx.doi.org/10.1039/C6NR01909A] [PMID: 27120205]
[210]
Vardharajula, S.; Ali, S.Z.; Tiwari, P.M.; Eroğlu, E.; Vig, K.; Dennis, V.A.; Singh, S.R. Functionalized carbon nanotubes: biomedical applications. Int. J. Nanomedicine, 2012, 7, 5361-5374.
[PMID: 23091380]
[211]
Ye, D.X.; Ma, Y.Y.; Zhao, W.; Cao, H.M.; Kong, J.L.; Xiong, H.M.; Möhwald, H. ZnO-based nanoplatforms for labeling and treatment of mouse tumors without detectable toxic side effects. ACS Nano, 2016, 10(4), 4294-4300.
[http://dx.doi.org/10.1021/acsnano.5b07846] [PMID: 27018822]
[212]
Zheng, X.T.; Ananthanarayanan, A.; Luo, K.Q.; Chen, P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small, 2015, 11(14), 1620-1636.
[http://dx.doi.org/10.1002/smll.201402648] [PMID: 25521301]
[213]
Liu, G.; Zhang, K.; Ma, K.; Care, A.; Hutchinson, M.R.; Goldys, E.M. Graphene quantum dot based “switch-on” nanosensors for intracellular cytokine monitoring. Nanoscale, 2017, 9(15), 4934-4943.
[http://dx.doi.org/10.1039/C6NR09381G] [PMID: 28368062]
[214]
Zhou, T.; Halder, A.; Sun, Y. Fluorescent nanosensor based on molecularly imprinted polymers coated on graphene quantum dots for fast detection of antibiotics. Biosensors (Basel), 2018, 8(3), 82.
[http://dx.doi.org/10.3390/bios8030082] [PMID: 30189690]
[215]
Venkatesan, B.M.; Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol., 2011, 6(10), 615-624.
[http://dx.doi.org/10.1038/nnano.2011.129] [PMID: 21926981]
[216]
Feng, Y.; Zhang, Y.; Ying, C.; Wang, D.; Du, C. Nanopore-based fourth-generation DNA sequencing technology. Genomics Proteomics Bioinformatics, 2015, 13(1), 4-16.
[http://dx.doi.org/10.1016/j.gpb.2015.01.009] [PMID: 25743089]
[217]
Ying, Y.L.; Zhang, J.; Gao, R.; Long, Y.T. Nanopore-based sequencing and detection of nucleic acids. Angew. Chem. Int. Ed. Engl., 2013, 52(50), 13154-13161.
[http://dx.doi.org/10.1002/anie.201303529] [PMID: 24214738]
[218]
Farimani, A.B.; Min, K.; Aluru, N.R. DNA base detection using a single-layer MoS2. ACS Nano, 2014, 8(8), 7914-7922.
[http://dx.doi.org/10.1021/nn5029295] [PMID: 25007098]
[219]
Stranges, P.B.; Palla, M.; Kalachikov, S.; Nivala, J.; Dorwart, M. Trans, A.; Kumar, S.; Porel, M.; Chien, M.; Tao, C.; Morozova, I.; Li, Z.; Shi, S.; Aberra, A.; Arnold, C.; Yang, A.; Aguirre, A.; Harada, E.T.; Korenblum, D.; Pollard, J.; Bhat, A.; Gremyachinskiy, D.; Bibillo, A.; Chen, R.; Davis, R.; Russo, J.J.; Fuller, C.W.; Roever, S.; Ju, J.; Church, G.M. Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array. Proc. Natl. Acad. Sci. USA, 2016, 113(44), E6749-E6756.
[http://dx.doi.org/10.1073/pnas.1608271113] [PMID: 27729524]
[220]
Beaulaurier, J.; Schadt, E.E.; Fang, G. Deciphering bacterial epigenomes using modern sequencing technologies. Nat. Rev. Genet., 2019, 20(3), 157-172.
[http://dx.doi.org/10.1038/s41576-018-0081-3] [PMID: 30546107]
[221]
Wei, S.; Weiss, Z.R.; Gaur, P.; Forman, E.; Williams, Z. Rapid preimplantation genetic screening using a handheld, nanoporebased DNA sequencer. Fertil. Steril., 2018, 110(5), 910-916.e2.
[http://dx.doi.org/10.1016/j.fertnstert.2018.06.014] [PMID: 30316437]
[222]
Mahshid, S.S.; Camiré, S.; Ricci, F.; Vallée-Bélisle, A. A highly selective electrochemical DNA-based sensor that employs steric hindrance effects to detect proteins directly in whole blood. J. Am. Chem. Soc., 2015, 137(50), 15596-15599.
[http://dx.doi.org/10.1021/jacs.5b04942] [PMID: 26339721]
[223]
Okholm, A.H.; Kjems, J. DNA nanovehicles and the biological barriers. Adv. Drug Deliv. Rev., 2016, 106(Pt A), 183-191.
[http://dx.doi.org/10.1016/j.addr.2016.05.024] [PMID: 27276176]
[224]
Chandrasekaran, A.R.; Anderson, N.; Kizer, M.; Halvorsen, K.; Wang, X. Beyond the fold: Emerging biological applications of DNA origami. ChemBioChem, 2016, 17(12), 1081-1089.
[http://dx.doi.org/10.1002/cbic.201600038] [PMID: 26928725]
[225]
Li, P.; Xie, G.; Liu, P.; Kong, X.Y.; Song, Y.; Wen, L.; Jiang, L. Light-driven ATP transmembrane transport controlled by DNA nanomachines. J. Am. Chem. Soc., 2018, 140(47), 16048-16052.
[http://dx.doi.org/10.1021/jacs.8b10527] [PMID: 30372056]
[226]
Hong, F.; Zhang, F.; Liu, Y.; Yan, H. DNA origami: Scaffolds for creating higher order structures. Chem. Rev., 2017, 117(20), 12584-12640.
[http://dx.doi.org/10.1021/acs.chemrev.6b00825] [PMID: 28605177]
[227]
Angell, C.; Kai, M.; Xie, S.; Dong, X.; Chen, Y. Bioderived DNA nanomachines for potential uses in biosensing, diagnostics, and therapeutic applications. Adv. Healthc. Mater., 2018, 7(8), e1701189.
[http://dx.doi.org/10.1002/adhm.201701189] [PMID: 29350489]
[228]
Endo, M.; Sugiyama, H. DNA origami nanomachines. Molecules, 2018, 23(7), 1766.
[http://dx.doi.org/10.3390/molecules23071766] [PMID: 30022011]
[229]
Loescher, S.; Groeer, S.; Walther, A. 3D DNA origami nanoparticles: From basic design principles to emerging applications in soft matter and (Bio-)nanosciences. Angew. Chem. Int. Ed. Engl., 2018, 57(33), 10436-10448.
[http://dx.doi.org/10.1002/anie.201801700] [PMID: 29676504]
[230]
Zhou, L.; Marras, A.E.; Huang, C.M.; Castro, C.E.; Su, H.J. Paper origami-inspired design and actuation of DNA nanomachines with complex motions. Small, 2018, 14(47), e1802580.
[http://dx.doi.org/10.1002/smll.201802580] [PMID: 30369060]
[231]
Chen, F.; Bai, M.; Zhao, Y.; Cao, K.; Cao, X.; Zhao, Y. MnO2-nanosheet-powered protective janus DNA nanomachines supporting robust RNA imaging. Anal. Chem., 2018, 90(3), 2271-2276.
[http://dx.doi.org/10.1021/acs.analchem.7b04634] [PMID: 29295617]
[232]
Wang, F.; Zhang, X.; Liu, X.; Fan, C.; Li, Q. Programming motions of DNA origami nanomachines. Small, 2019, 15(26), e1900013.
[http://dx.doi.org/10.1002/smll.201900013] [PMID: 30908896]
[233]
Fan, S.; Wang, D.; Kenaan, A.; Cheng, J.; Cui, D.; Song, J. Create nanoscale patterns with DNA origami. Small, 2019, 15(26), e1805554.
[http://dx.doi.org/10.1002/smll.201805554] [PMID: 31018040]
[234]
Bila, H.; Kurisinkal, E.E.; Bastings, M.M.C. Engineering a stable future for DNA-origami as a biomaterial. Biomater. Sci., 2019, 7(2), 532-541.
[http://dx.doi.org/10.1039/C8BM01249K] [PMID: 30534709]
[235]
Nedorezova, D.D.; Fakhardo, A.F.; Nemirich, D.V.; Bryushkova, E.A.; Kolpashchikov, D.M. Towards DNA nanomachines for cancer treatment: achieving selective and efficient cleavage of folded RNA. Angew. Chem. Int. Ed. Engl., 2019, 58(14), 4654-4658.
[http://dx.doi.org/10.1002/anie.201900829] [PMID: 30693619]
[236]
Praetorius, F.; Kick, B.; Behler, K.L.; Honemann, M.N.; Weuster-Botz, D.; Dietz, H. Biotechnological mass production of DNA origami. Nature, 2017, 552(7683), 84-87.
[http://dx.doi.org/10.1038/nature24650] [PMID: 29219963]
[237]
Wagenbauer, K.F.; Engelhardt, F.A.S.; Stahl, E.; Hechtl, V.K.; Stömmer, P.; Seebacher, F.; Meregalli, L.; Ketterer, P.; Gerling, T.; Dietz, H. How we make DNA origami. ChemBioChem, 2017, 18(19), 1873-1885.
[http://dx.doi.org/10.1002/cbic.201700377] [PMID: 28714559]
[238]
Marras, A.E.; Shi, Z.; Lindell, M.G., III; Patton, R.A.; Huang, C.M.; Zhou, L.; Su, H.J.; Arya, G.; Castro, C.E. Cation-activated avidity for rapid reconfiguration of DNA nanodevices. ACS Nano, 2018, 12(9), 9484-9494.
[http://dx.doi.org/10.1021/acsnano.8b04817] [PMID: 30169013]
[239]
Grome, M.W.; Zhang, Z.; Pincet, F.; Lin, C. Vesicle tubulation with self-assembling DNA nanosprings. Angew. Chem. Int. Ed. Engl., 2018, 57(19), 5330-5334.
[http://dx.doi.org/10.1002/anie.201800141] [PMID: 29575478]
[240]
Kuzyk, A.; Jungmann, R.; Acuna, G.P.; Liu, N. DNA origami route for nanophotonics. ACS Photonics, 2018, 5(4), 1151-1163.
[http://dx.doi.org/10.1021/acsphotonics.7b01580] [PMID: 30271812]
[241]
Ramakrishnan, S.; Ijäs, H.; Linko, V.; Keller, A. Structural stability of DNA origami nanostructures under application-specific conditions. Comput. Struct. Biotechnol. J., 2018, 16, 342-349.
[http://dx.doi.org/10.1016/j.csbj.2018.09.002] [PMID: 30305885]
[242]
Freitas, R.A. Current status of nanomedicine and medical nanorobotics. J. Comput. Theor. Nanosci., 2005, 2, 1-25.
[243]
Freitas, R.A. Jr Nanotechnology, nanomedicine and nanosurgery. Int. J. Surg., 2005, 3(4), 243-246.
[http://dx.doi.org/10.1016/j.ijsu.2005.10.007] [PMID: 17462292]
[244]
Abhilash, M. NanoRobots. Int. J. Pharma Bio Sci., 2010, 1(1), 1-10.
[245]
Menciassi, A.; Sinibaldi, E.; Pensabene, V.; Dario, P. From miniature to nano robots for diagnostic and therapeutic applications. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2010, 2010, 1954-1957.
[http://dx.doi.org/10.1109/IEMBS.2010.5627629] [PMID: 21097006]
[246]
Song, B.; Yang, R.; Xi, N.; Patterson, K.C.; Qu, C.; Lai, K.W. Cellular-level surgery using nano robots. J. Lab. Autom., 2012, 17(6), 425-434.
[http://dx.doi.org/10.1177/2211068212460665] [PMID: 23015517]
[247]
Singh, S.; Singh, A. Current status of nanomedicine and nanosurgery. Anesth. Essays Res., 2013, 7(2), 237-242.
[http://dx.doi.org/10.4103/0259-1162.118976] [PMID: 25885840]
[248]
Pedram, A.; Pishkenari, H.N. Smart micro/nano-robotic systems for gene delivery. Curr. Gene Ther., 2017, 17(2), 73-79.
[http://dx.doi.org/10.2174/1566523217666170511111000] [PMID: 28494736]
[249]
Halder, A.; Sun, Y. Biocompatible propulsion for biomedical micro/nano robotics. Biosens. Bioelectron., 2019, 139, 111334.
[http://dx.doi.org/10.1016/j.bios.2019.111334] [PMID: 31128479]
[250]
Freitas, R.A. The ideal gene delivery vector: Chromallocytes, cell repair nanorobots for chromosome replacement therapy. J. Evol. Technol., 2007, 16(1), 1-97.
[251]
Kumar, R.; Baghel, O.; Sidar, S.K.; Sen, P.K.; Bohidar, S.K. Applications of nanorobotics. Int. J. Sci. Res. Eng. Technol., 2014, 3(8), 1131-1137.
[252]
Al-Fandi, M.; Alshraiedeh, N.; Oweis, R.; Alshdaifat, H.; Al-Mahaseneh, O.; Al-Tall, K.; Alawneh, R. Novel selective detection method of tumor angiogenesis factors using living nano-robots. Sensors (Basel), 2017, 17(7), 1580.
[http://dx.doi.org/10.3390/s17071580] [PMID: 28708066]
[253]
Dhurat, R.; Sharma, A.; Goren, A.; Daruwalla, S.; Situm, M.; Kovacevic, M. Mission impossible: Dermal delivery of growth factors via microneedling. Dermatol. Ther. (Heidelb.), 2019, 32(3), e12897.
[http://dx.doi.org/10.1111/dth.12897] [PMID: 30963686]
[254]
Xu, J.; Danehy, R.; Cai, H.; Ao, Z.; Pu, M.; Nusawardhana, A.; Rowe-Magnus, D.; Guo, F. Microneedle patch-mediated treatment of bacterial biofilms. ACS Appl. Mater. Interfaces, 2019, 11(16), 14640-14646.
[http://dx.doi.org/10.1021/acsami.9b02578] [PMID: 30933463]
[255]
Maurya, A.; Rangappa, S.; Bae, J.; Dhawan, T.; Ajjarapu, S.S.; Murthy, S.N. Evaluation of soluble fentanyl microneedles for locoregional anti-nociceptive activity. Int. J. Pharm., 2019, 564, 485-491.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.066] [PMID: 31026490]
[256]
Shin, C.I.; Jeong, S.D.; Rejinold, N.S.; Kim, Y.C. Microneedles for vaccine delivery: challenges and future perspectives. Ther. Deliv., 2017, 8(6), 447-460.
[http://dx.doi.org/10.4155/tde-2017-0032] [PMID: 28530151]
[257]
Jana, B.A.; Wadhwani, A.D. Microneedle - Future prospect for efficient drug delivery in diabetes management. Indian J. Pharmacol., 2019, 51(1), 4-10.
[http://dx.doi.org/10.4103/ijp.IJP_16_18] [PMID: 31031461]
[258]
Bhatnagar, S.; Dave, K.; Venuganti, V.V.K. Microneedles in the clinic. J. Control. Release, 2017, 260, 164-182.
[http://dx.doi.org/10.1016/j.jconrel.2017.05.029] [PMID: 28549948]
[259]
Rzhevskiy, A.S.; Singh, T.R.R.; Donnelly, R.F.; Anissimov, Y.G. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J. Control. Release, 2018, 270, 184-202.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.048] [PMID: 29203415]
[260]
Sabri, A.H.; Ogilvie, J.; Abdulhamid, K.; Shpadaruk, V.; McKenna, J.; Segal, J.; Scurr, D.J.; Marlow, M. Expanding the applications of microneedles in dermatology. Eur. J. Pharm. Biopharm., 2019, 140, 121-140.
[http://dx.doi.org/10.1016/j.ejpb.2019.05.001] [PMID: 31059780]
[261]
Howells, O.; Rajendran, N.; Mcintyre, S.; Amini-Asl, S.; Henri, P.; Liu, Y.; Guy, O.; Cass, A.E.G.; Morris, M.C.; Sharma, S. Microneedle array‐based platforms for future theranostic applications. ChemBioChem, 2019, 20(17), 2198-2202.
[http://dx.doi.org/10.1002/cbic.201900112] [PMID: 30897259]
[262]
Jin, Q.; Chen, H.J.; Li, X.; Huang, X.; Wu, Q.; He, G.; Hang, T.; Yang, C.; Jiang, Z.; Li, E.; Zhang, A.; Lin, Z.; Liu, F.; Xie, X. Reduced graphene oxide nanohybrid-assembled microneedles as mini-invasive electrodes for real-time transdermal biosensing. Small, 2019, 15(6), e1804298.
[http://dx.doi.org/10.1002/smll.201804298] [PMID: 30605244]
[263]
Wang, M.; Hu, L.; Xu, C. Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip, 2017, 17(8), 1373-1387.
[http://dx.doi.org/10.1039/C7LC00016B] [PMID: 28352876]
[264]
Li, W.; Terry, R.N.; Tang, J.; Feng, M.R.; Schwendeman, S.P.; Prausnitz, M.R. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng., 2019, 3(3), 220-229.
[http://dx.doi.org/10.1038/s41551-018-0337-4] [PMID: 30948808]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy