Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

The Correlation Between Ischemic Stroke and Thrombosis by Nanoscale Biomarker Analysis

Author(s): Guoqing Wang*, Xiangpeng Shen, Qiangyuan Tian, Thangavel Lakshmipriya and Subash C.B. Gopinath

Volume 16, Issue 5, 2020

Page: [676 - 684] Pages: 9

DOI: 10.2174/1573413715666191111111718

Price: $65

Abstract

Ischemic stroke, which is the fifth leading cause of death, is an attack in the brain due to blockage of a brain artery. It occurs when a sudden loss of blood flow to the brain leads to a reduction in the oxygen supply. A wide range of reasons have been found for ischemic stroke, including high blood pressure and associated thrombosis. Suitable biomarker analysis followed by proper treatment helps to prevent ischemic stroke. An aptamer is an artificial antibody generated against various clinical biomarkers from a smaller molecule of a whole cell. Recently, several researchers conducted biomarker analysis for ischemic stroke using aptamers. Furthermore, factor IX, which is a blood clotting factor, is highly correlated with thrombosis and plays a role in ischemic stroke. In this review, we summarized the potential role of aptamers in ischemic stroke by nanoscale analysis, and factor IX was the distinct focus of this review.

Keywords: Ischemic stroke, aptamer, biomarker, factor IX, thrombosis, nanoscale analysis.

Graphical Abstract

[1]
Burden, G.; Factors, R. Global Burden of Disease and Risk Factors, 2006.
[http://dx.doi.org/10.1596/978-0-8213-6262-4.]
[2]
Beri, A.; Punnam, S.R. Anticoagulation in patients with acute ischemic stroke and atrial fibrillation--a balance of risks and benefits. Cardiovasc. Drugs Ther., 2008, 22(5), 419-425.
[http://dx.doi.org/10.1007/s10557-008-6122-y] [PMID: 18642133]
[3]
Mehdi, Z.; Birns, J.; Partridge, J.; Bhalla, A.; Dhesi, J. Perioperative management of adult patients with a history of stroke or transient ischaemic attack undergoing elective non-cardiac surgery. Clin. Med. (Lond.), 2016, 16(6), 535-540.
[http://dx.doi.org/10.7861/clinmedicine.16-6-535] [PMID: 27927817]
[4]
Rodriguez-Pont, A.; Guilera, N.; Sierra, P.; Mases, A.; Fita, G.; Colilles, C. Major cardiac and cerebrovascular events in patients with coronary stents undergoing noncardiac surgery. RegistreStents Study, preliminary results: 4AP5-2. Eur. J. Anaesthesiol., 2013, 29, 63-64.
[http://dx.doi.org/10.1097/00003643-201206001-00206]
[5]
Diener, H.C.; Ringleb, P.A.; Savi, P. Clopidogrel for the secondary prevention of stroke. Expert Opin. Pharmacother., 2005, 6(5), 755-764.
[http://dx.doi.org/10.1517/14656566.6.5.755] [PMID: 15934902]
[6]
Hornstra, G. Platelet - vessel wall interaction: role of blood clotting. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1981, 294(1072), 355-371.
[http://dx.doi.org/10.1098/rstb.1981.0112] [PMID: 6117897]
[7]
Fogelson, A.L.; Neeves, K.B. Fluid mechanics of blood clot formation. Annu. Rev. Fluid Mech., 2015, 47, 377-403.
[http://dx.doi.org/10.1146/annurev-fluid-010814-014513] [PMID: 26236058]
[8]
Goldhaber, S.Z.; Bounameaux, H. Pulmonary embolism and deep vein thrombosis. Lancet, 2012, 379(9828), 1835-1846.
[http://dx.doi.org/10.1016/S0140-6736(11)61904-1] [PMID: 22494827]
[9]
Sharpe, E.E.; Pasternak, J.J. Cerebral Venous Thrombosis. In: Prabhakar, H. (Ed.)Essentials of Neuroanesthesia; Academic Press: Elsevier B.V; , 2017, pp. 681-691.
[http://dx.doi.org/10.1016/B978-0-12-805299-0.00041-5]
[10]
Gross, P.L.; Murray, R.K.; Weil, P.A.; Rand, M.L. Hemostasis & Thrombosis. In: Rodwell, V.W.; Bender, D.A.; Botham, K.M.; Kennelly, P.J.; Weil, P.A. Harper’s Illustrated Biochemistry, 30e; McGraw-Hill Education: New York, 2015, pp. 713-725.
[11]
Andrews, R.K.; Berndt, M.C. Platelet physiology and thrombosis. Thromb. Res., 2004, 114(5-6), 447-453.
[http://dx.doi.org/10.1016/j.thromres.2004.07.020] [PMID: 15507277]
[12]
Albertyn, L.E. Acute portal vein thrombosis. Clin. Radiol., 1987, 38(6), 645-648.
[http://dx.doi.org/10.1016/S0009-9260(87)80353-7] [PMID: 3319354]
[13]
Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; de Ferranti, S.; Després, J.P.; Fullerton, H.J.; Howard, V.J.; Huffman, M.D.; Judd, S.E.; Kissela, B.M.; Lackland, D.T.; Lichtman, J.H.; Lisabeth, L.D.; Liu, S.; Mackey, R.H.; Matchar, D.B.; McGuire, D.K.; Mohler, E.R., III; Moy, C.S.; Muntner, P.; Mussolino, M.E.; Nasir, K.; Neumar, R.W.; Nichol, G.; Palaniappan, L.; Pandey, D.K.; Reeves, M.J.; Rodriguez, C.J.; Sorlie, P.D.; Stein, J.; Towfighi, A.; Turan, T.N.; Virani, S.S.; Willey, J.Z.; Woo, D.; Yeh, R.W.; Turner, M.B. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation, 2015, 131(4), e29-e322.
[http://dx.doi.org/10.1161/CIR.0000000000000152] [PMID: 25520374]
[14]
Mahmood, S.S.; Levy, D.; Vasan, R.S.; Wang, T.J. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet, 2014, 383(9921), 999-1008.
[http://dx.doi.org/10.1016/S0140-6736(13)61752-3] [PMID: 24084292]
[15]
Stroke, E.; Heart, C.; Collaborative, D. Eastern Stroke and Coronary Heart Disease Collaborative Research Group. Blood pressure, cholesterol, and stroke in eastern Asia. Lancet, 1998, 352(9143), 1801-1807.
[http://dx.doi.org/10.1016/S0140-6736(98)03454-0] [PMID: 9851379]
[16]
Ettehad, D.; Emdin, C.A.; Kiran, A.; Anderson, S.G.; Callender, T.; Emberson, J.; Chalmers, J.; Rodgers, A.; Rahimi, K. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet, 2016, 387(10022), 957-967.
[http://dx.doi.org/10.1016/S0140-6736(15)01225-8] [PMID: 26724178]
[17]
Stoll, G.; Kleinschnitz, C.; Nieswandt, B. Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. Blood, 2008, 112(9), 3555-3562.
[http://dx.doi.org/10.1182/blood-2008-04-144758] [PMID: 18676880]
[18]
De Meyer, S.F.; Stoll, G.; Wagner, D.D.; Kleinschnitz, C. von Willebrand factor: an emerging target in stroke therapy. Stroke, 2012, 43(2), 599-606.
[http://dx.doi.org/10.1161/STROKEAHA.111.628867] [PMID: 22180250]
[19]
Otto, G. Thrombosis: Reducing thrombosis in CKD. Nat. Rev. Nephrol., 2018, 14(2), 72.
[http://dx.doi.org/10.1038/nrneph.2017.176] [PMID: 29225344]
[20]
Lowe, G.D.O. Factor IX and thrombosis. Br. J. Haematol., 2001, 115(3), 507-513.
[http://dx.doi.org/10.1046/j.1365-2141.2001.03186.x] [PMID: 11736930]
[21]
Mannucci, P.M.; Tripodi, A. Inherited factors in thrombosis. Blood Rev., 1988, 2(1), 27-35.
[http://dx.doi.org/10.1016/0268-960X(88)90005-7] [PMID: 3289651]
[22]
Orfanakis, A.; Deloughery, T. Patients with disorders of thrombosis and hemostasis. Med. Clin. North Am., 2013, 97(6), 1161-1180.
[http://dx.doi.org/10.1016/j.mcna.2013.07.004] [PMID: 24182725]
[23]
Gopinath, S.C.B.; Shikamoto, Y.; Mizuno, H.; Kumar, P.K.R. Snake-venom-derived Factor IX-binding protein specifically blocks the gamma-carboxyglutamic acid-rich-domain-mediated membrane binding of human Factors IX and X. Biochem. J., 2007, 405(2), 351-357.
[http://dx.doi.org/10.1042/BJ20061737] [PMID: 17407444]
[24]
Gopinath, S.C.B.; Shikamoto, Y.; Mizuno, H.; Kumar, P.K.R. A potent anti-coagulant RNA aptamer inhibits blood coagulation by specifically blocking the extrinsic clotting pathway. Thromb. Haemost., 2006, 95(5), 767-771.
[http://dx.doi.org/10.1160/TH06-01-0047] [PMID: 16676065]
[25]
Gopinath, S.C.B. Anti-coagulant aptamers. Thromb. Res., 2008, 122(6), 838-847.
[http://dx.doi.org/10.1016/j.thromres.2007.10.022] [PMID: 18055002]
[26]
Jin, N.Z.; Gopinath, S.C.B. Potential blood clotting factors and anticoagulants. Biomed. Pharmacother., 2016, 84, 356-365.
[http://dx.doi.org/10.1016/j.biopha.2016.09.057] [PMID: 27668535]
[27]
Ong, C.C.; Gopinath, S.C.B.; Rebecca, L.W.X.; Perumal, V.; Lakshmipriya, T.; Saheed, M.S.M. Diagnosing human blood clotting deficiency. Int. J. Biol. Macromol., 2018, 116, 765-773.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.084] [PMID: 29775720]
[28]
Okuda, M.; Uemura, Y.; Tatsumi, N.; Honda, S. Proposed fibrinogen standard material with purified fibrinogen for plasma fibrinogen measurement on coagulation analyser. J. Autom. Methods Manag. Chem., 2003, 25(5), 103-107.
[http://dx.doi.org/10.1155/S146392460300018X] [PMID: 18924618]
[29]
Schlimp, C.J.; Schöchl, H. Fibrinogen Assays. In: Gonzalez, E.; Moore, H.B.; Moore, E.E. (Eds.).Trauma Induced Coagulopathy; Springer Nature: Switzerland AG; , 2016, pp. 227-235.
[http://dx.doi.org/10.1007/978-3-319-28308-1_15]
[30]
Liu, J.; Jonebring, A.; Hagström, J.; Nyström, A.C.; Lövgren, A. Improved expression of recombinant human factor IX by co-expression of GGCX, VKOR and furin. Protein J., 2014, 33(2), 174-183.
[http://dx.doi.org/10.1007/s10930-014-9550-5] [PMID: 24567122]
[31]
Kao, C.Y.; Lin, C.N.; Yu, I.S.; Tao, M.H.; Wu, H.L.; Shi, G.Y.; Yang, Y.L.; Kao, J.T.; Lin, S.W. FIX-Triple, a gain-of-function factor IX variant, improves haemostasis in mouse models without increased risk of thrombosis. Thromb. Haemost., 2010, 104(2), 355-365.
[http://dx.doi.org/10.1160/TH09-11-0792] [PMID: 20539913]
[32]
Salomon, O.; Steinberg, D.M.; Koren-Morag, N.; Tanne, D.; Seligsohn, U. Reduced incidence of ischemic stroke in patients with severe factor XI deficiency. Blood, 2008, 111(8), 4113-4117.
[http://dx.doi.org/10.1182/blood-2007-10-120139] [PMID: 18268095]
[33]
Peters, R.T.; Low, S.C.; Kamphaus, G.D.; Dumont, J.A.; Amari, J.V.; Lu, Q.; Zarbis-Papastoitsis, G.; Reidy, T.J.; Merricks, E.P.; Nichols, T.C.; Bitonti, A.J. Prolonged activity of factor IX as a monomeric Fc fusion protein. Blood, 2010, 115(10), 2057-2064.
[http://dx.doi.org/10.1182/blood-2009-08-239665] [PMID: 20056791]
[34]
Blostein, M.; Cuerquis, J.; Galipeau, J. Galectin 3-binding protein is a potential contaminant of recombinantly produced factor IX. Haemophilia, 2007, 13(6), 701-706.
[http://dx.doi.org/10.1111/j.1365-2516.2007.01525.x] [PMID: 17973845]
[35]
Rodriguez, M.H.; Enjolras, N.; Plantier, J.L.; Réa, M.; Leboeuf, M.; Uzan, G.; Bordet, J.C.; Négrier, C. Expression of coagulation factor IX in a haematopoietic cell line. Thromb. Haemost., 2002, 87(3), 366-373.
[http://dx.doi.org/10.1055/s-0037-1613013] [PMID: 11916066]
[36]
Kasper, C.K. Surgical operation in hemophilia B. Use of factor IX concentrate. Calif. Med., 1970, 113(1), 4-8.
[PMID: 5520728]
[37]
Nummi, V.; Jouppila, A.; Lassila, R. Monitoring once-weekly recombinant factor IX prophylaxis in hemophilia B with thrombin generation assay and factor IX activity. Int. J. Lab. Hematol., 2017, 39(4), 359-368.
[http://dx.doi.org/10.1111/ijlh.12634] [PMID: 28406575]
[38]
Monahan, P.E. Gene therapy in an era of emerging treatment options for hemophilia B. J. Thromb. Haemost., 2015, 13(Suppl. 1), S151-S160.
[http://dx.doi.org/10.1111/jth.12957] [PMID: 26149016]
[39]
Mackie, I.J.; Kitchen, S.; Machin, S.J.; Lowe, G.D.O. Haemostasis and Thrombosis Task Force of the British Committee for Standards in Haematology. Guidelines on fibrinogen assays. Br. J. Haematol., 2003, 121(3), 396-404.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04256.x] [PMID: 12716361]
[40]
Saidi, P.; Siegelman, M.; Mitchel, V.B. Effect of factor XII deficiency on pregnancy and parturition. Thromb. Haemost., 1979, 41(3), 523-528.
[http://dx.doi.org/10.1055/s-0038-1646804] [PMID: 462418]
[41]
Olson, N.C.; Cushman, M.; Judd, S.E.; Kissela, B.M.; Safford, M.M.; Howard, G.; Zakai, N.A. Associations of coagulation factors IX and XI levels with incident coronary heart disease and ischemic stroke: the REGARDS study. J. Thromb. Haemost., 2017, 15(6), 1086-1094.
[http://dx.doi.org/10.1111/jth.13698] [PMID: 28393470]
[42]
Suri, M.F.; Yamagishi, K.; Aleksic, N.; Hannan, P.J.; Folsom, A.R. Novel hemostatic factor levels and risk of ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. Cerebrovasc. Dis., 2010, 29(5), 497-502.
[http://dx.doi.org/10.1159/000297966] [PMID: 20299790]
[43]
Siegerink, B.; Rosendaal, F.R.; Algra, A. Antigen levels of coagulation factor XII, coagulation factor XI and prekallikrein, and the risk of myocardial infarction and ischemic stroke in young women. J. Thromb. Haemost., 2014, 12(5), 606-613.
[http://dx.doi.org/10.1111/jth.12531] [PMID: 24977287]
[44]
Todd, M.; McDevitt, E.; McDowell, F. Stroke and blood coagulation. Stroke, 1973, 4(3), 400-405.
[http://dx.doi.org/10.1161/01.STR.4.3.400] [PMID: 4713027]
[45]
Rost, N.S.; Masrur, S.; Pervez, M.A.; Viswanathan, A.; Schwamm, L.H. Unsuspected coagulopathy rarely prevents IV thrombolysis in acute ischemic stroke. Neurology, 2009, 73(23), 1957-1962.
[http://dx.doi.org/10.1212/WNL.0b013e3181c5b46d] [PMID: 19940272]
[46]
Günther, G.; Junker, R.; Sträter, R.; Schobess, R.; Kurnik, K.; Heller, C.; Kosch, A.; Nowak-Göttl, U. Childhood Stroke Study Group. Symptomatic ischemic stroke in full-term neonates: role of acquired and genetic prothrombotic risk factors. Stroke, 2000, 31(10), 2437-2441.
[http://dx.doi.org/10.1161/01.STR.31.10.2437] [PMID: 11022077]
[47]
Johansson, K.; Jansson, J-H.; Johansson, L.; Bylesjö, I.; Nilsson, T.K.; Eliasson, M.; Söderberg, S.; Lind, M. Factor XII as a risk marker for hemorrhagic stroke: A prospective cohort study. Cerebrovasc. Dis. Extra, 2017, 7(1), 84-94.
[http://dx.doi.org/10.1159/000468994] [PMID: 28433996]
[48]
Doggen, C.J.M.; Rosendaal, F.R.; Meijers, J.C.M. Levels of intrinsic coagulation factors and the risk of myocardial infarction among men: Opposite and synergistic effects of factors XI and XII. Blood, 2006, 108(13), 4045-4051.
[http://dx.doi.org/10.1182/blood-2005-12-023697] [PMID: 16931632]
[49]
Bonderman, D.; Turecek, P.L.; Jakowitsch, J.; Weltermann, A.; Adlbrecht, C.; Schneider, B.; Kneussl, M.; Rubin, L.J.; Kyrle, P.A.; Klepetko, W.; Maurer, G.; Lang, I.M. High prevalence of elevated clotting factor VIII in chronic thromboembolic pulmonary hypertension. Thromb. Haemost., 2003, 90(3), 372-376.
[http://dx.doi.org/10.1160/TH03-02-0067] [PMID: 12958604]
[50]
Erkekol, F.O.; Ulu, A.; Numanoglu, N.; Akar, N. High plasma levels of factor VIII: an important risk factor for isolated pulmonary embolism. Respirology, 2006, 11(1), 70-74.
[http://dx.doi.org/10.1111/j.1440-1843.2006.00786.x] [PMID: 16423204]
[51]
Siegler, J.E.; Samai, A.; Albright, K.C.; Boehme, A.K.; Martin-Schild, S. Factoring in factor VIII with acute ischemic stroke. Clin. Appl. Thromb. Hemost., 2015, 21(7), 597-602.
[http://dx.doi.org/10.1177/1076029615571630] [PMID: 25669199]
[52]
Samai, A.; Albright, K.; Antzoulatos, E.; Schluter, L.; Martin-Schild, S. Heart failure is associated with elevated von willebrand factor (VWF) antigen but not factor VIII (FVIII) in acute ischemic stroke (AIS). Stroke, 2016, 47, ATP440.
[53]
Zakai, N.A.; Judd, S.E.; Kissela, B.; Howard, G.; Safford, M.M.; Cushman, M. Factor VIII, Protein C and cardiovascular disease risk: The reasons for geographic and racial differences in stroke study (REGARDS). Thromb. Haemost., 2018, 118(7), 1305-1315.
[http://dx.doi.org/10.1055/s-0038-1655766] [PMID: 29890521]
[54]
Navalkele, D.; Boehme, A.; Albright, K.; Leissinger, C.; Schluter, L.; Freeman, M.; Drury, S.; Khoury, R.E.; Beasley, T.M.; Martin-Schild, S. Factor VIII in acute cerebral ischemia pilot study: Biomarker in patients with large vessel occlusion? Clin. Appl. Thromb. Hemost., 2018, 24(8), 1249-1254.
[http://dx.doi.org/10.1177/1076029618781045] [PMID: 29895187]
[55]
Adamczyk, P.; Attenello, F.; Wen, G.; He, S.; Russin, J.; Sanossian, N.; Amar, A.P.; Mack, W.J. Mechanical thrombectomy in acute stroke: utilization variances and impact of procedural volume on inpatient mortality. J. Stroke Cerebrovasc. Dis., 2013, 22(8), 1263-1269.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2012.08.007] [PMID: 23017430]
[56]
Kleinschnitz, C.; Stoll, G.; Bendszus, M.; Schuh, K.; Pauer, H-U.; Burfeind, P.; Renné, C.; Gailani, D.; Nieswandt, B.; Renné, T. Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J. Exp. Med., 2006, 203(3), 513-518.
[http://dx.doi.org/10.1084/jem.20052458] [PMID: 16533887]
[57]
Samai, A. A.; Boehme, A. K.; George, A.; Schluter, L.; El Khoury, R.; Martin-Schild, S. Factor VIII level is not modifiable by improved glycemic control in patients with ischemic stroke. Sci. Times J. Diabetes, 2017, 1(1), pii: 1003.
[58]
Zakai, N.A.; Judd, S.E.; Kissela, B.; Howard, G.; Safford, M.M.; Cushman, M. Joint association of elevated factor VIII and low protein C with stroke and coronary heart disease: the reasons for geographic and racial differences in stroke (REGARDS) study. Thromb. Haemost., 2018, 118(7), 1305-1315.
[http://dx.doi.org/10.1055/s-0038-1655766] [PMID: 29890521]
[59]
Tarsia, J.; Chang, T.R.; Aysenne, A.; Boehme, A.K.; Sartor, A.E.; Albright, K.C.; Yalvac, E.A.; Kruse-Jarres, R.; Leissinger, C.; Martin-Schild, S. Elevated plasma factor VIII in patients with ischemic stroke: does it have any association with hypertensive heart disease? J. Neurol. Disord. Stroke, 2013, 1(3), 1027.
[PMID: 25750937]
[60]
Samai, A.; Monlezun, D., Jr; George, A.; Dowell, L.; Schluter, L.; El Khoury, R.; Martin-Schild, S. Combined elevation of FVIII and von Willebrand factor predicts risk for worse outcomes in patients with acute ischemic stroke (AIS). Neurology, 2014, 82(10 Supplement), P7.152.
[61]
Schluter, L.; Boehme, A.; Albright, K.; Chang, T.; Dorsey, A.; Beasley, T.M.; Leissinger, C.; Kruse-Jarres, R.; Martin-Schild, S. Concurrent Elevation in Factor VIII and antiphospholipid antibodies is associated with worse outcome in ischemic stroke patients. Neurology, 2013, 80(7 Supplement), P06.249..
[62]
Jickling, G.C.; Sharp, F.R. Biomarker panels in ischemic stroke. Stroke, 2015, 46(3), 915-920.
[http://dx.doi.org/10.1161/STROKEAHA.114.005604] [PMID: 25657186]
[63]
Jickling, G.C.; Sharp, F.R. Blood biomarkers of ischemic stroke. Neurotherapeutics, 2011, 8(3), 349-360.
[http://dx.doi.org/10.1007/s13311-011-0050-4] [PMID: 21671123]
[64]
Bustamante, A.; López-Cancio, E.; Pich, S.; Penalba, A.; Giralt, D.; García-Berrocoso, T.; Ferrer-Costa, C.; Gasull, T.; Hernández-Pérez, M.; Millan, M.; Rubiera, M.; Cardona, P.; Cano, L.; Quesada, H.; Terceño, M.; Silva, Y.; Castellanos, M.; Garces, M.; Reverté, S.; Ustrell, X.; Marés, R.; Baiges, J.J.; Serena, J.; Rubio, F.; Salas, E.; Dávalos, A.; Montaner, J. Blood biomarkers for the early diagnosis of stroke. Stroke, 2017, 48(9), 2419-2425.
[http://dx.doi.org/10.1161/STROKEAHA.117.017076]
[65]
Gopinath, S.C.B.; Misono, T.S.; Kumar, P.K.R. Prospects of ligand-induced aptamers. Crit. Rev. Anal. Chem., 2008, 38, 34-47.
[http://dx.doi.org/10.1080/10408340701804558]
[66]
Lakshmipriya, T.; Fujimaki, M.; Gopinath, S.C.B.; Awazu, K.; Horiguchi, Y.; Nagasaki, Y. A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst (Lond.), 2013, 138(10), 2863-2870.
[http://dx.doi.org/10.1039/c3an00298e] [PMID: 23577343]
[67]
Lakshmipriya, T.; Fujimaki, M.; Gopinath, S.C.B.; Awazu, K. Generation of anti-influenza aptamers using the systematic evolution of ligands by exponential enrichment for sensing applications. Langmuir, 2013, 29(48), 15107-15115.
[http://dx.doi.org/10.1021/la4027283] [PMID: 24200095]
[68]
Gopinath, S.C.B.; Sakamaki, Y.; Kawasaki, K.; Kumar, P.K.R. An efficient RNA aptamer against human influenza B virus hemagglutinin. J. Biochem., 2006, 139(5), 837-846.
[http://dx.doi.org/10.1093/jb/mvj095] [PMID: 16751591]
[69]
Gopinath, S.C.B.; Kumar, P.K.R. Aptamers that bind to the hemagglutinin of the recent pandemic influenza virus H1N1 and efficiently inhibit agglutination. Acta Biomater., 2013, 9(11), 8932-8941.
[http://dx.doi.org/10.1016/j.actbio.2013.06.016] [PMID: 23791676]
[70]
Gopinath, S.C.B.; Misono, T.S.; Kawasaki, K.; Mizuno, T.; Imai, M.; Odagiri, T.; Kumar, P.K.R. An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion. J. Gen. Virol., 2006, 87(Pt 3), 479-487.
[http://dx.doi.org/10.1099/vir.0.81508-0] [PMID: 16476969]
[71]
Hamaguchi, N.; Ellington, A.; Stanton, M. Aptamer beacons for the direct detection of proteins. Anal. Biochem., 2001, 294(2), 126-131.
[http://dx.doi.org/10.1006/abio.2001.5169] [PMID: 11444807]
[72]
Gopinath, S.C.B. Antiviral aptamers. Arch. Virol., 2007, 152(12), 2137-2157.
[http://dx.doi.org/10.1007/s00705-007-1014-1] [PMID: 17851732]
[73]
Lakshmipriya, T.; Fujimaki, M.; Gopinath, S.C.B.; Awazu, K. Generation of anti-influenza aptamers using the systematic evolution of ligands by exponential enrichment for sensing applications. Langmuir, 2013, 29(48), 15107-15115.
[http://dx.doi.org/10.1021/la4027283] [PMID: 24200095]
[74]
Gopinath, S.C.B.; Hayashi, K.; Kumar, P.K.R. Aptamer that binds to the gD protein of herpes simplex virus 1 and efficiently inhibits viral entry. J. Virol., 2012, 86(12), 6732-6744.
[http://dx.doi.org/10.1128/JVI.00377-12] [PMID: 22514343]
[75]
Citartan, M.; Tang, T-H.; Tan, S-C.; Gopinath, S.C.B. Conditions optimized for the preparation of single-stranded DNA (SsDNA) employing lambda exonuclease digestion in generating DNA aptamer. World J. Microbiol. Biotechnol., 2011, 27, 1167-1173.
[http://dx.doi.org/10.1007/s11274-010-0563-8]
[76]
Blake, C.M.; Wang, H.; Laskowitz, D.T.; Sullenger, B.A. A reversible aptamer improves outcome and safety in murine models of stroke and hemorrhage. Oligonucleotides, 2011, 21(1), 11-19.
[http://dx.doi.org/10.1089/oli.2010.0262] [PMID: 21142878]
[77]
Sandercock, P.; Gubitz, G.; Counsell, C. Anticoagulants for acute ischemic stroke. Stroke, 2004, 35, 2916-2917.
[http://dx.doi.org/10.1161/01.STR.0000147725.45220.79]
[78]
Tan, X.; Dey, S.K.; Telmer, C.; Zhang, X.; Armitage, B.A.; Bruchez, M.P. Aptamers act as activators for the thrombin mediated-hydrolysis of peptide substrates. ChemBioChem, 2014, 15(2), 205-208.
[http://dx.doi.org/10.1002/cbic.201300693] [PMID: 24339381]
[79]
Woelfel, M.; De Meyer, S.; Wagner, P.; McGinness, K.E.; Wagner, D.D.; Schaub, R. The generation of an aptamer inhibitor of murine von Willebrand Factor (VWF) mediated platelet aggregation. Blood, 2010, 116(21), 4312.
[http://dx.doi.org/10.1182/blood.V116.21.4312.4312]
[80]
Skrypina, N.A.; Savochkina, L.P.; Beabealashvilli, R.Sh. In vitro selection of single-stranded DNA aptamers that bind human pro-urokinase. Nucleosides Nucleotides Nucleic Acids, 2004, 23(6-7), 891-893.
[http://dx.doi.org/10.1081/NCN-200026037] [PMID: 15560078]
[81]
Firbas, C.; Siller-Matula, J.M.; Jilma, B. Targeting von Willebrand factor and platelet glycoprotein Ib receptor. Expert Rev. Cardiovasc. Ther., 2010, 8(12), 1689-1701.
[http://dx.doi.org/10.1586/erc.10.154] [PMID: 21108551]
[82]
Zhou, J.; Bobbin, M.L.; Burnett, J.C.; Rossi, J.J. Current progress of RNA aptamer-based therapeutics. Front. Genet., 2012, 3, 234.
[http://dx.doi.org/10.3389/fgene.2012.00234] [PMID: 23130020]
[83]
Dornbos, D.L.; Wheeler, D.G.; Harris, H.; Gnyawali, S.; Huttinger, A.; Talentino, S.; Venetos, N.; Musgrave, N.; Jones, C.; Wilson, J.; Bratton, C.; Carlisle, K.; Zweier, J.L.; Sen, C.K.; Rink, C.; Nimjee, S.M. Aptamer inhibition of von Willebrand factor ameliorates ischemic stroke burden in a murine model of thromboembolic stroke. Stroke. Conf. Am. Hear. Assoc. Stroke Assoc., 2018, 49(Supplement 1), AWP70.
[http://dx.doi.org/10.1161/str.49.suppl_1.WP70]
[84]
de Puig, H.; Cifuentes Rius, A.; Flemister, D.; Baxamusa, S. H.; Hamad-Schifferli, K. Selective light-triggered release of DNA from gold nanorods switches blood clotting on and off. PLoS One, 2013, 8(7), e68511-8.
[http://dx.doi.org/10.1371/journal.pone.0068511.]
[85]
Heckel, A.; Mayer, G. Light regulation of aptamer activity: an anti-thrombin aptamer with caged thymidine nucleobases. J. Am. Chem. Soc., 2005, 127(3), 822-823.
[http://dx.doi.org/10.1021/ja043285e] [PMID: 15656605]
[86]
Lakshmipriya, T.; Gopinath, S.C.B.; Hashim, U.; Chinni, S.V.; Tang, T.H. Computational base substitution analyses on secondary structure of aptamer: Conformational changes diminish complex formation. Walailak J. Sci. Technol., 2018, 15, 645-657.
[87]
Russo Krauss, I.; Merlino, A.; Randazzo, A.; Novellino, E.; Mazzarella, L.; Sica, F. High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity. Nucleic Acids Res., 2012, 40(16), 8119-8128.
[http://dx.doi.org/10.1093/nar/gks512] [PMID: 22669903]
[88]
Löhndorf, M.; Schlecht, U.; Gronewold, T.M.A.; Malavé, A.; Tewes, M. Microfabricated high-performance microwave impedance biosensors for detection of aptamer-protein interactions. Appl. Phys. Lett., 2005, 87, 1-3.
[http://dx.doi.org/10.1063/1.2146058]
[89]
Lakshmipriya, T.; Fujimaki, M.; Gopinath, S.C.B.; Awazu, K.; Horiguchi, Y.; Nagasaki, Y. A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst (Lond.), 2013, 138(10), 2863-2870.
[http://dx.doi.org/10.1039/c3an00298e] [PMID: 23577343]
[90]
Lakshmipriya, T.; Horiguchi, Y.; Nagasaki, Y. Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma. Analyst (Lond.), 2014, 139(16), 3977-3985.
[http://dx.doi.org/10.1039/C4AN00168K] [PMID: 24922332]
[91]
Cheen, O.C.; Gopinath, S.C.B.; Perumal, V.; Arshad, M.K.M.; Lakshmipriya, T.; Chen, Y.; Haarindraprasad, R.; Rao, B.S.; Hashim, U.; Pandian, K. Aptamer-based impedimetric determination of the human blood clotting factor IX in serum using an interdigitated electrode modified with a ZnO nanolayer. Mikrochim. Acta, 2017, 184, 117-125.
[http://dx.doi.org/10.1007/s00604-016-2001-6]
[92]
Gopinath, S.C.B.; Awazu, K.; Fujimaki, M.; Sugimoto, K.; Ohki, Y.; Komatsubara, T.; Tominaga, J.; Gupta, K.C.; Kumar, P.K.R. Influence of nanometric holes on the sensitivity of a waveguide-mode sensor: label-free nanosensor for the analysis of RNA aptamer-ligand interactions. Anal. Chem., 2008, 80(17), 6602-6609.
[http://dx.doi.org/10.1021/ac800767s] [PMID: 18672888]
[93]
Shikamoto, Y.; Morita, T.; Fujimoto, Z.; Mizuno, H. Crystal structure of Mg2+- and Ca2+-bound Gla domain of factor IX complexed with binding protein. J. Biol. Chem., 2003, 278(26), 24090-24094.
[http://dx.doi.org/10.1074/jbc.M300650200] [PMID: 12695512]
[94]
Povsic, T.J.; Wargin, W.A.; Alexander, J.H.; Krasnow, J.; Krolick, M.; Cohen, M.G.; Mehran, R.; Buller, C.E.; Bode, C.; Zelenkofske, S.L.; Rusconi, C.P.; Becker, R.C. RADAR Investigators. Pegnivacogin results in near complete FIX inhibition in acute coronary syndrome patients: RADAR pharmacokinetic and pharmacodynamic substudy. Eur. Heart J., 2011, 32(19), 2412-2419.
[http://dx.doi.org/10.1093/eurheartj/ehr179] [PMID: 21724623]
[95]
Candelise, L.; Ciccone, A.; Ciccone, A. Gangliosides for acute ischemic stroke. Stroke, 2002, 33(9), 2336.
[http://dx.doi.org/10.1161/01.STR.0000029272.13806.46] [PMID: 12215609]
[96]
Fagan, S.C. Drug repurposing for drug development in stroke. Pharmacotherapy, 2010, 30(7 Pt 2), 51S-54S.
[http://dx.doi.org/10.1592/phco.30.pt2.51S] [PMID: 20575622]
[97]
Abciximab in Ischemic Stroke Investigators. Abciximab in acute ischemic stroke. A randomized, double-blind, placebo-controlled, dose-escalation study. Stroke, 2000, 31(3), 601-609.
[http://dx.doi.org/10.1161/01.STR.31.3.601] [PMID: 10700492]
[98]
Devuyst, G.; Bogousslavsky, J. Recent progress in drug treatment for acute ischemic stroke. Cerebrovasc. Dis., 2001, 11(Suppl. 1), 71-79.
[http://dx.doi.org/10.1159/000049128] [PMID: 11244203]
[99]
Norris, J.W. Drug therapy for stroke prevention. N. Engl. J. Med., 2001, 345, 1919.
[http://dx.doi.org/10.1056/NEJM200112273452616]
[100]
Fisher, M.; Jones, S.; Sacco, R.L. Prophylactic neuroprotection for cerebral ischemia. Stroke, 1994, 25(5), 1075-1080.
[http://dx.doi.org/10.1161/01.STR.25.5.1075] [PMID: 8165683]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy