Mini-Review Article

用于亚细胞靶向的纳米药物:线粒体的观点

卷 27, 期 33, 2020

页: [5480 - 5509] 页: 30

弟呕挨: 10.2174/0929867326666191125092111

价格: $65

摘要

背景:在过去的十年中,针对从癌症到衰老的各种疾病的线粒体活性疗法的数量激增。亚细胞靶向干预可以调节不利于细胞内隔室的细胞内过程。然而,缺乏关于线粒体纳米递送的综述,并且该综述试图填补关于线粒体的纳米治疗的空白。 方法:亚细胞靶向除了具有比靶向组织和细胞水平更高的治疗指数潜力外,还考虑了全身性药物给药的局限性并显着改善了药代动力学。因此,进行了广泛的文献综述,并在该综述中汇编了重要信息。 结果:从文献中可以明显看出,具有可调节理化特性的纳米颗粒已显示出有效治疗递送的潜力,其中几种纳米药物已获得FDA和其他临床试验的批准。然而,用于亚细胞靶向的纳米药物开发策略仍在不断涌现,随着对功能障碍分子过程的更多了解,推动了治疗模块的开发。为了获得最佳递送,亚细胞递送的理想载体的设计必须考虑患病微环境的特征。强调了患病状态下线粒体的功能和结构特征,并讨论了可能用于治疗和诊断的纳米传递干预措施。 结论:这篇综述提供了对亚细胞靶向的最新进展的见解,重点是亚细胞靶向的通路障碍。线粒体功能障碍在某些疾病的病因学中的影响突出,并确定了潜在的治疗部位。

关键词: 亚细胞,靶向,线粒体,治疗剂,纳米药物,纳米载体。

[1]
Greish, K.; Mathur, A.; Bakhiet, M.; Taurin, S. Nanomedicine: is it lost in translation? Ther. Deliv., 2018, 9(4), 269-285.
[http://dx.doi.org/10.4155/tde-2017-0118] [PMID: 29495928]
[2]
Rizzo, L.Y.; Theek, B.; Storm, G.; Kiessling, F.; Lammers, T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr. Opin. Biotechnol., 2013, 24(6), 1159-1166.
[http://dx.doi.org/10.1016/j.copbio.2013.02.020] [PMID: 23578464]
[3]
Wagner, A.M.; Spencer, D.S.; Peppas, N.A. Advanced architectures in the design of responsive polymers for cancer nanomedicine. J. Appl. Polym. Sci., 2018, 135(24), 46154.
[http://dx.doi.org/10.1002/app.46154] [PMID: 30174339]
[4]
Rajendran, L.; Knölker, H.J.; Simons, K. Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discov., 2010, 9(1), 29-42.
[http://dx.doi.org/10.1038/nrd2897] [PMID: 20043027]
[5]
Vyas, S.; Zaganjor, E.; Haigis, M.C. Mitochondria and cancer. Cell, 2016, 166(3), 555-566.
[http://dx.doi.org/10.1016/j.cell.2016.07.002] [PMID: 27471965]
[6]
Rozanov, D.; Cheltsov, A.; Nilsen, A.; Boniface, C.; Forquer, I.; Korkola, J.; Gray, J.; Tyner, J.; Tognon, C.E.; Mills, G.B.; Spellman, P. Targeting mitochondria in cancer therapy could provide a basis for the selective anti-cancer activity. PLoS One, 2019, 14(3)e0205623
[http://dx.doi.org/10.1371/journal.pone.0205623] [PMID: 30908483]
[7]
Badrinath, N.; Yoo, S.Y. Mitochondria in cancer: in the aspects of tumorigenesis and targeted therapy. Carcinogenesis, 2018, 39(12), 1419-1430.
[http://dx.doi.org/10.1093/carcin/bgy148] [PMID: 30357389]
[8]
Stöckigt, F.; Beiert, T.; Knappe, V.; Baris, O.R.; Wiesner, R.J.; Clemen, C.S.; Nickenig, G.; Andrié, R.P.; Schrickel, J.W. Aging-related mitochondrial dysfunction facilitates the occurrence of serious arrhythmia after myocardial infarction. Biochem. Biophys. Res. Commun., 2017, 493(1), 604-610.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.145] [PMID: 28867191]
[9]
Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 2008, 8(6), 473-480.
[http://dx.doi.org/10.1038/nrc2394] [PMID: 18469827]
[10]
Hendricks, W.P.; Yang, J.; Sur, S.; Zhou, S. Formulating the magic bullet: barriers to clinical translation of nanoparticle cancer gene therapy. Nanomedicine (Lond.), 2014, 9(8), 1121-1124.
[http://dx.doi.org/10.2217/nnm.14.63] [PMID: 25118704]
[11]
Preissner, S.C.; Hoffmann, M.F.; Preissner, R.; Dunkel, M.; Gewiess, A.; Preissner, S. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS One, 2013, 8(12)e82562
[http://dx.doi.org/10.1371/journal.pone.0082562] [PMID: 24340040]
[12]
Aqil, F.; Munagala, R.; Jeyabalan, J.; Vadhanam, M.V. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett., 2013, 334(1), 133-141.
[http://dx.doi.org/10.1016/j.canlet.2013.02.032] [PMID: 23435377]
[13]
Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.), 2016, 11(6), 673-692.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[14]
Bartlett, D.W.; Davis, M.E. Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjug. Chem., 2007, 18(2), 456-468.
[http://dx.doi.org/10.1021/bc0603539] [PMID: 17326672]
[15]
George, L.; Elizabeth, H.; George, L., Jr The role of the reticuloendothelial system in natural immunity. Neuro Immune Biol., 2005, 5, 95-101.
[http://dx.doi.org/10.1016/S1567-7443(05)80011-0]
[16]
Sun, X.; Rossin, R.; Turner, J.L.; Becker, M.L.; Joralemon, M.J.; Welch, M.J.; Wooley, K.L. An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules, 2005, 6(5), 2541-2554.
[http://dx.doi.org/10.1021/bm050260e] [PMID: 16153091]
[17]
Perrault, S.D.; Walkey, C.; Jennings, T.; Fischer, H.C.; Chan, W.C. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett., 2009, 9(5), 1909-1915.
[http://dx.doi.org/10.1021/nl900031y] [PMID: 19344179]
[18]
Salmaso, S.; Caliceti, P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J. Drug Deliv., 2013, 2013374252
[http://dx.doi.org/ 10.1155/2013/374252] [PMID: 23533769]
[19]
Yang, Q.; Lai, S.K. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(5), 655-677.
[http://dx.doi.org/10.1002/wnan.1339] [PMID: 25707913]
[20]
Abu Lila, A.S.; Kiwada, H.; Ishida, T. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J. Control. Release, 2013, 172(1), 38-47.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.026] [PMID: 23933235]
[21]
Abd Ellah, N.H.; Abouelmagd, S.A. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin. Drug Deliv., 2017, 14(2), 201-214.
[http://dx.doi.org/10.1080/17425247.2016.1213238] [PMID: 27426638]
[22]
Dams, E.T.; Laverman, P.; Oyen, W.J.; Storm, G.; Scherphof, G.L.; van Der, J.W.M.; Corstens, F.H.; Boerman, O.C. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J. Pharmacol. Exp. Ther., 2000, 292(3), 1071-1079.
[PMID: 10688625]
[23]
Garay, R.P.; El-Gewely, R.; Armstrong, J.K.; Garratty, G.; Richette, P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents, 2012.9(11), 1319-1323.
[http://dx.doi.org/10.1517/17425247.2012.720969] [PMID: 22931049]
[24]
Salatin, S.; Yari Khosroushahi, A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J. Cell. Mol. Med., 2017, 21(9), 1668-1686.
[http://dx.doi.org/10.1111/jcmm.13110] [PMID: 28244656]
[25]
Uthaman, S.; Lee, S.J.; Cherukula, K.; Cho, C.S.; Park, I.K. Polysaccharide-coated magnetic nanoparticles for imaging and gene therapy. BioMed Res. Int., 2015, 2015959175
[http://dx.doi.org/10.1155/2015/959175] [PMID: 26078971]
[26]
Yang, Y.; Zhang, Y.M.; Chen, Y.; Chen, J.T.; Liu, Y. Polysaccharide-based noncovalent assembly for targeted delivery of taxol. Sci. Rep., 2016, 6, 19212.
[http://dx.doi.org/10.1038/srep19212] [PMID: 26759029]
[27]
Lin, W.J.; Lee, W.C. Polysaccharide-modified nanoparticles with intelligent CD44 receptor targeting ability for gene delivery. Int. J. Nanomedicine, 2018, 13, 3989-4002.
[http://dx.doi.org/10.2147/IJN.S163149] [PMID: 30022822]
[28]
Wang, C.; Gao, X.; Chen, Z.; Chen, Y.; Chen, H. Preparation, characterization and application of polysaccharide-based metallic nanoparticles: a review. Polymers (Basel), 2017, 9(12), 689.
[http://dx.doi.org/10.3390/polym9120689] [PMID: 30965987]
[29]
Zheng, L.; Sundaram, H.S.; Wei, Z.; Li, C.; Yuan, Z. Applications of zwitterionic polymers. React. Funct. Polym., 2017, 118, 51-61.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.07.006]
[30]
Hadjesfandiari, N.; Parambath, A. Stealth coatings for nanoparticles: polyethylene glycol alternatives; Engineer. Biomat. Drug Deliv. Sys, 2018, pp. 345-361.
[http://dx.doi.org/ 10.1016/B978-0-08-101750-0.00013-1]
[31]
Devlin, T.M. Textbook of Biochemistry: With Clinical Correlations; John Wiley & Sons: New York, 2011.
[32]
Yang, N.J.; Hinner, M.J. Getting across the cell membrane: an overview for small molecules, peptides and proteins. Methods Mol. Biol., 2015, 29-53.
[http://dx.doi.org/10.1007/978-1-4939-2272-7_3] [PMID: 25560066]
[33]
Gershell, L.J.; Atkins, J.H. A brief history of novel drug discovery technologies. Nat. Rev. Drug Discov., 2003, 2(4), 321-327.
[http://dx.doi.org/10.1038/nrd1064] [PMID: 12669031]
[34]
Kuhn, D.A.; Vanhecke, D.; Michen, B.; Blank, F.; Gehr, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotechnol., 2014, 5, 1625-1636.
[http://dx.doi.org/10.3762/bjnano.5.174] [PMID: 25383275]
[35]
Bakema, J.E.; van Egmond, M. The human immunoglobulin A Fc receptor FcαRI: a multifaceted regulator of mucosal immunity. Mucosal Immunol., 2011, 4(6), 612-624.
[http://dx.doi.org/10.1038/mi.2011.36] [PMID: 21937986]
[36]
Rosales, C.; Uribe-Querol, E. Phagocytosis: a fundamental process in immunity. BioMed Res. Int., 2017, 2017, 9042-9851.
[http://dx.doi.org/10.1155/2017/9042851] [PMID: 28691037]
[37]
Gordon, S. Phagocytosis: an immunobiologic process. Immunity, 2016, 44(3), 463-475.
[http://dx.doi.org/10.1016/j.immuni.2016.02.026] [PMID: 26982354]
[38]
Kumari, S.; Mg, S.; Mayor, S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res., 2010, 20(3), 256-275.
[http://dx.doi.org/10.1038/cr.2010.19] [PMID: 20125123]
[39]
Kaksonen, M.; Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol., 2018, 19(5), 313-326.
[http://dx.doi.org/10.1038/nrm.2017.132] [PMID: 29410531]
[40]
McMahon, H.T.; Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol., 2011, 12(8), 517-533.
[http://dx.doi.org/10.1038/nrm3151] [PMID: 21779028]
[41]
Singh, M.; Jadhav, H.R.; Bhatt, T. Dynamin functions and ligands: classical mechanisms behind. Mol. Pharmacol., 2017, 91(2), 123-134.
[http://dx.doi.org/10.1124/mol.116.105064] [PMID: 27879341]
[42]
Grassart, A.; Cheng, A.T.; Hong, S.H.; Zhang, F.; Zenzer, N.; Feng, Y.; Briner, D.M.; Davis, G.D.; Malkov, D.; Drubin, D.G. Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis. J. Cell Biol., 2014, 205(5), 721-735.
[http://dx.doi.org/10.1083/jcb.201403041] [PMID: 24891602]
[43]
El-Sayed, A.; Harashima, H. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol. Ther., 2013, 21(6), 1118-1130.
[http://dx.doi.org/10.1038/mt.2013.54] [PMID: 23587924]
[44]
Foroozandeh, P.; Aziz, A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett., 2018, 13(1), 339.
[http://dx.doi.org/10.1186/s11671-018-2728-6] [PMID: 30361809]
[45]
Kiss, A.L.; Botos, E. Endocytosis via caveolae: alternative pathway with distinct cellular compartments to avoid lysosomal degradation? J. Cell. Mol. Med., 2009, 13(7), 1228-1237.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00754.x] [PMID: 19382909]
[46]
Echarri, A.; Del Pozo, M.A. Imaging the complexity, plasticity, and dynamics of caveolae. In: Cell Membrane Nano-domains; From Biochemistry to Nanoscopy, 2014; p. 113.
[47]
Cossart, P.; Helenius, A. Endocytosis of viruses and bacteria. Cold Spring Harb. Perspect. Biol., 2014, 6(8)a016972
[http://dx.doi.org/10.1101/cshperspect.a016972] [PMID: 25085912]
[48]
Akinyelu, J.; Singh, M. Chitosan stabilized gold-folate-poly(lactide-co-glycolide) nanoplexes facilitate efficient gene delivery in hepatic and breast cancer cells. J. Nanosci. Nanotechnol., 2018, 18(7), 4478-4486.
[http://dx.doi.org/10.1166/jnn.2018.15286] [PMID: 29442622]
[49]
Ha, K.D.; Bidlingmaier, S.M.; Liu, B. Macropinocytosis exploitation by cancers and cancer therapeutics. Front. Physiol., 2016, 7, 381.
[http://dx.doi.org/10.3389/fphys.2016.00381] [PMID: 27672367]
[50]
Bloomfield, G.; Kay, R.R. Uses and abuses of macropinocytosis. J. Cell Sci., 2016, 129(14), 2697-2705.
[http://dx.doi.org/10.1242/jcs.176149] [PMID: 27352861]
[51]
BoseDasgupta. S.; Moes, S.; Jenoe, P.; Pieters, J. Cytokine-induced macropinocytosis in macrophages is regulated by 14-3-3ζ through its interaction with serine-phosphorylated coronin 1. FEBS J., 2015, 282(7), 1167-1181.
[http://dx.doi.org/10.1111/febs.13214] [PMID: 25645340]
[52]
Shang, L.; Nienhaus, K.; Nienhaus, G.U. Engineered nanoparticles interacting with cells: size matters. J. Nanobiotechnology, 2014, 12(1), 5.
[http://dx.doi.org/10.1186/1477-3155-12-5] [PMID: 24491160]
[53]
Wan, Y.; Moyle, P.M.; Toth, I. Endosome escape strategies for improving the efficacy of oligonucleotide delivery systems. Curr. Med. Chem., 2015, 22(29), 3326-3346.
[http://dx.doi.org/10.2174/0929867322666150825162941] [PMID: 26303176]
[54]
Yuan, H.; Li, J.; Bao, G.; Zhang, S. Variable nanoparticle-cell adhesion strength regulates cellular uptake. Phys. Rev. Lett., 2010, 105(13)138101
[http://dx.doi.org/10.1103/PhysRevLett.105.138101] [PMID: 21230813]
[55]
Zhang, S.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh, S. Size‐dependent endocytosis of nanoparticles. Adv. Mater., 2009, 21(4), 419-424.
[http://dx.doi.org/10.1002/adma.200801393] [PMID: 19606281]
[56]
He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010, 31(13), 3657-3666.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.065] [PMID: 20138662]
[57]
Jiang, Y.; Huo, S.; Mizuhara, T.; Das, R.; Lee, Y.W.; Hou, S.; Moyano, D.F.; Duncan, B.; Liang, X.J.; Rotello, V.M. The interplay of size and surface functionality on the cellular uptake of sub-10 nm gold nanoparticles. ACS Nano, 2015, 9(10), 9986-9993.
[http://dx.doi.org/10.1021/acsnano.5b03521] [PMID: 26435075]
[58]
Liu, X.; Huang, N.; Li, H.; Jin, Q.; Ji, J. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir, 2013, 29(29), 9138-9148.
[http://dx.doi.org/10.1021/la401556k] [PMID: 23815604]
[59]
Huang, H.W.; Chen, F.Y.; Lee, M.T. Molecular mechanism of peptide-induced pores in membranes. Phys. Rev. Lett., 2004, 92(19)198304
[http://dx.doi.org/10.1103/PhysRevLett.92.198304] [PMID: 15169456]
[60]
Moreira, C.; Oliveira, H.; Pires, L.R.; Simões, S.; Barbosa, M.A.; Pêgo, A.P. Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone. Acta Biomater., 2009, 5(8), 2995-3006.
[http://dx.doi.org/10.1016/j.actbio.2009.04.021] [PMID: 19427930]
[61]
Varkouhi, A.K.; Scholte, M.; Storm, G.; Haisma, H.J. Endosomal escape pathways for delivery of biologicals. J. Control. Release, 2011, 151(3), 220-228.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.004] [PMID: 21078351]
[62]
Bandelt, H.J.; Macaulay, V.; Richards, M. Human Mitochondrial DNA and the Evolution of Homo sapiens; Springer Nature, 2006.
[63]
Friedman, J.R.; Nunnari, J. Mitochondrial form and function. Nature, 2014, 505(7483), 335-343.
[http://dx.doi.org/10.1038/nature12985] [PMID: 24429632]
[64]
Kang, Y.C.; Son, M.; Kang, S.; Im, S.; Piao, Y.; Lim, K.S.; Song, M.Y.; Park, K.S.; Kim, Y.H.; Pak, Y.K. Cell-penetrating artificial mitochondria-targeting peptide-conjugated metallothionein 1A alleviates mitochondrial damage in Parkinson’s disease models. Exp. Mol. Med., 2018, 50(8), 105.
[http://dx.doi.org/10.1038/s12276-018-0124-z] [PMID: 30120245]
[65]
Omura, T. Mitochondria-targeting sequence, a multi-role sorting sequence recognized at all steps of protein import into mitochondria. J. Biochem., 1998, 123(6), 1010-1016.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022036] [PMID: 9603986]
[66]
Kim, G.H.; Won, J.E.; Byeon, Y.; Kim, M.G.; Wi, T.I.; Lee, J.M.; Park, Y.Y.; Lee, J.W.; Kang, T.H.; Jung, I.D.; Shin, B.C.; Ahn, H.J.; Lee, Y.J.; Sood, A.K.; Han, H.D.; Park, Y.M. Selective delivery of PLXDC1 small interfering RNA to endothelial cells for anti-angiogenesis tumor therapy using CD44-targeted chitosan nanoparticles for epithelial ovarian cancer. Drug Deliv., 2018, 25(1), 1394-1402.
[http://dx.doi.org/10.1080/10717544.2018.1480672] [PMID: 29890852]
[67]
Howell, N. Leber hereditary optic neuropathy: mitochondrial mutations and degeneration of the optic nerve. Vision Res., 1997, 37(24), 3495-3507.
[http://dx.doi.org/10.1016/S0042-6989(96)00167-8] [PMID: 9425526]
[68]
Wallace, D.C.; Singh, G.; Lott, M.T.; Hodge, J.A.; Schurr, T.G.; Lezza, A.M.; Elsas, L.J., II; Nikoskelainen, E.K. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science, 1988, 242(4884), 1427-1430.
[http://dx.doi.org/10.1126/science.3201231] [PMID: 3201231]
[69]
Yu, H.; Koilkonda, R.D.; Chou, T-H.; Porciatti, V.; Ozdemir, S.S.; Chiodo, V.; Boye, S.L.; Boye, S.E.; Hauswirth, W.W.; Lewin, A.S.; Guy, J. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc. Natl. Acad. Sci. USA, 2012, 109(20), E1238-E1247.
[http://dx.doi.org/10.1073/pnas.1119577109] [PMID: 22523243]
[70]
Yousif, L.F.; Stewart, K.M.; Horton, K.L.; Kelley, S.O. Mitochondria-penetrating peptides: sequence effects and model cargo transport. ChemBioChem, 2009, 10(12), 2081-2088.
[http://dx.doi.org/10.1002/cbic.200900017] [PMID: 19670199]
[71]
Zhao, T.; Liu, X.; Singh, S.; Liu, X.; Zhang, Y.; Sawada, J.; Komatsu, M.; Belfield, K.D. Mitochondria penetrating peptide conjugated TAMRA for live-cell long-term tracking. Bioconjug. Chem., 2019, 30(9), 2312-2316.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00465] [PMID: 31433175]
[72]
Horton, K.L.; Stewart, K.M.; Fonseca, S.B.; Guo, Q.; Kelley, S.O. Mitochondria-penetrating peptides. Chem. Biol., 2008, 15(4), 375-382.
[http://dx.doi.org/10.1016/j.chembiol.2008.03.015] [PMID: 18420144]
[73]
Derossi, D.; Joliot, A.H.; Chassaing, G.; Prochiantz, A. The third helix of the antennapedia homeodomain translocates through biological membranes. J. Biol. Chem., 1994, 269(14), 10444-10450.
[PMID: 8144628]
[74]
Pujals, S.; Giralt, E. Proline-rich, amphipathic cell-penetrating peptides. Adv. Drug Deliv. Rev., 2008, 60(4-5), 473-484.
[http://dx.doi.org/10.1016/j.addr.2007.09.012] [PMID: 18187229]
[75]
Rhee, M.; Davis, P. Mechanism of uptake of C105Y, a novel cell-penetrating peptide. J. Biol. Chem., 2006, 281(2), 1233-1240.
[http://dx.doi.org/10.1074/jbc.M509813200] [PMID: 16272160]
[76]
Zhao, K.; Zhao, G.M.; Wu, D.; Soong, Y.; Birk, A.V.; Schiller, P.W.; Szeto, H.H. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death and reperfusion injury. J. Biol. Chem., 2004, 279(33), 34682-34690.
[http://dx.doi.org/10.1074/jbc.M402999200] [PMID: 15178689]
[77]
Reddy, P.H.; Manczak, M.; Kandimalla, R. Mitochondria-targeted small molecule SS31: a potential candidate for the treatment of Alzheimer’s disease. Hum. Mol. Genet., 2017, 26(8), 1483-1496.
[http://dx.doi.org/10.1093/hmg/ddx052] [PMID: 28186562]
[78]
Okamura, D.M.; Pennathur, S.; Pasichnyk, K.; López-Guisa, J.M.; Collins, S.; Febbraio, M.; Heinecke, J.; Eddy, A.A. CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD. J. Am. Soc. Nephrol., 2009, 20(3), 495-505.
[http://dx.doi.org/10.1681/ASN.2008010009] [PMID: 19211715]
[79]
Hou, Y.; Shi, Y.; Han, B.; Liu, X.; Qiao, X.; Qi, Y.; Wang, L. The antioxidant peptide SS31 prevents oxidative stress, downregulates CD36 and improves renal function in diabetic nephropathy. Nephrol. Dial. Transplant., 2018, 33(11), 1908-1918.
[http://dx.doi.org/10.1093/ndt/gfy021] [PMID: 30388276]
[80]
Sun, Y.; Zhan, A.; Zhou, S.; Kuang, X.; Shen, H.; Liu, H.; Xu, Y. A novel mitochondria-targeting tetrapeptide for subcellular delivery of nanoparticles. Chin. Chem. Lett., 2019, 30(7), 1435-1439.
[http://dx.doi.org/10.1016/j.cclet.2019.05.001]
[81]
Liberman, E.A.; Topaly, V.P.; Tsofina, L.M.; Jasaitis, A.A.; Skulachev, V.P. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature, 1969, 222(5198), 1076-1078.
[http://dx.doi.org/10.1038/2221076a0] [PMID: 5787094]
[82]
Ross, M.F.; Kelso, G.F.; Blaikie, F.H.; James, A.M.; Cochemé, H.M.; Filipovska, A.; Da Ros, T.; Hurd, T.R.; Smith, R.A.; Murphy, M.P. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc.), 2005, 70(2), 222-230.
[http://dx.doi.org/10.1007/s10541-005-0104-5] [PMID: 15807662]
[83]
Murphy, M.P. Selective targeting of bioactive compounds to mitochondria. Trends Biotechnol., 1997, 15(8), 326-330.
[http://dx.doi.org/10.1016/S0167-7799(97)01068-8] [PMID: 9263481]
[84]
Honig, B.H.; Hubbell, W.L.; Flewelling, R.F. Electrostatic interactions in membranes and proteins. Annu. Rev. Biophys. Biophys. Chem., 1986, 15(1), 163-193.
[http://dx.doi.org/10.1146/annurev.bb.15.060186.001115] [PMID: 2424473]
[85]
Gennis, R.B. Biomembranes: Molecular Structure and Function; Springer Science & Business Medias, 2013.
[86]
Flewelling, R.F.; Hubbell, W.L. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys. J., 1986, 49(2), 541-552.
[http://dx.doi.org/10.1016/S0006-3495(86)83664-5] [PMID: 3955184]
[87]
Rin Jean, S.; Tulumello, D.V.; Wisnovsky, S.P.; Lei, E.K.; Pereira, M.P.; Kelley, S.O. Molecular vehicles for mitochondrial chemical biology and drug delivery. ACS Chem. Biol., 2014, 9(2), 323-333.
[http://dx.doi.org/10.1021/cb400821p] [PMID: 24410267]
[88]
Pathak, R.K.; Marrache, S.; Harn, D.A.; Dhar, S. Mito-DCA: a mitochondria targeted molecular scaffold for efficacious delivery of metabolic modulator dichloroacetate. ACS Chem. Biol., 2014, 9(5), 1178-1187.
[http://dx.doi.org/10.1021/cb400944y] [PMID: 24617941]
[89]
Cheng, G.; Zielonka, J.; McAllister, D.M.; Mackinnon, A.C., Jr; Joseph, J.; Dwinell, M.B.; Kalyanaraman, B. Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death. BMC Cancer, 2013, 13(1), 285.
[http://dx.doi.org/10.1186/1471-2407-13-285] [PMID: 23764021]
[90]
Yang, Y.; He, L.; Xu, K.; Lin, W. Development of a mitochondria-targeted fluorescent probe for the ratiometric visualization of sulfur dioxide in living cells and zebrafish. Anal. Methods, 2019, 11(31), 3931-3935.
[http://dx.doi.org/10.1039/C9AY01211G]
[91]
Marrache, S.; Dhar, S. The energy blocker inside the power house: mitochondria targeted delivery of 3-bromopyruvate. Chem. Sci. (Camb.), 2015, 6(3), 1832-1845.
[http://dx.doi.org/10.1039/C4SC01963F] [PMID: 25709804]
[92]
Jean, S.R.; Ahmed, M.; Lei, E.K.; Wisnovsky, S.P.; Kelley, S.O. Peptide-mediated delivery of chemical probes and therapeutics to mitochondria. Acc. Chem. Res., 2016, 49(9), 1893-1902.
[http://dx.doi.org/10.1021/acs.accounts.6b00277] [PMID: 27529125]
[93]
Cohen-Erez, I.; Rapaport, H. Negatively charged polypeptide-peptide nanoparticles showing efficient drug delivery to the mitochondria. Colloids Surf. B Biointerfaces, 2018, 162, 186-192.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.048] [PMID: 29190470]
[94]
Cohen-Erez, I.; Rapaport, H. Coassemblies of the anionic polypeptide γ-PGA and cationic β-sheet peptides for drug delivery to mitochondria. Biomacromolecules, 2015, 16(12), 3827-3835.
[http://dx.doi.org/10.1021/acs.biomac.5b01140] [PMID: 26505209]
[95]
Cohen‐Erez, I.; Harduf, N.; Rapaport, H. Oligonucleotide loaded polypeptide‐peptide nanoparticles towards mitochondrial‐targeted delivery. Polym. Adv. Technol., 2019, 30, 2506-2541.
[http://dx.doi.org/10.1002/pat.4707]
[96]
Yin, J.; Peng, M.; Lin, W. Visualization of mitochondrial viscosity in inflammation, fatty liver, and cancer living mice by a robust fluorescent probe. Anal. Chem., 2019, 91(13), 8415-8421.
[http://dx.doi.org/10.1021/acs.analchem.9b01293] [PMID: 31179692]
[97]
Gao, W.; Ma, Y.; Lin, W. A mitochondria-targeted and deep-red emission ratiometric fluorescent probe for real-time visualization of SO2 in living cells, zebrafish and living mice. Analyst (Lond.), 2019, 144(16), 4972-4977.
[http://dx.doi.org/10.1039/C9AN00973F] [PMID: 31322159]
[98]
Liu, Y.; Li, K.; Wu, M.Y.; Liu, Y.H.; Xie, Y.M.; Yu, X.Q. A mitochondria-targeted colorimetric and ratiometric fluorescent probe for biological SO2 derivatives in living cells. Chem. Commun. (Camb.), 2015, 51(50), 10236-10239.
[http://dx.doi.org/10.1039/C5CC03055B] [PMID: 26021301]
[99]
Shi, J.; Shu, W.; Tian, Y.; Wu, Y.; Jing, J.; Zhang, R.; Zhang, X. A real-time ratiometric fluorescent probe for imaging of SO 2 derivatives in mitochondria of living cells. RSC Advances, 2019, 9(39), 22348-22354.
[http://dx.doi.org/10.1039/C9RA03207J]
[100]
Ren, M.; Deng, B.; Zhou, K.; Kong, X.; Wang, J.Y.; Lin, W. Single fluorescent probe for dual-imaging viscosity and H2O2 in mitochondria with different fluorescence signals in living cells. Anal. Chem., 2017, 89(1), 552-555.
[http://dx.doi.org/10.1021/acs.analchem.6b04385] [PMID: 27958699]
[101]
Li, H.; Xin, C.; Zhang, G.; Han, X.; Qin, W.; Zhang, C.; Yu, C.; Jing, S.; Li, L.; Huang, W. Mitochondria-targeted two-photon fluorogenic probe for dual-imaging viscosity and H2O2 level in Parkinson’s disease models. J. Mater. Chem. B Mater. Biol. Med., 2019, 7, 4243-4251.
[http://dx.doi.org/10.1039/C9TB00576E]
[102]
Xu, J.; Zhang, Y.; Yu, H.; Gao, X.; Shao, S. Mitochondria-targeted fluorescent probe for imaging hydrogen peroxide in living cells. Anal. Chem., 2016, 88(2), 1455-1461.
[http://dx.doi.org/10.1021/acs.analchem.5b04424] [PMID: 26695451]
[103]
Zhang, X.; Ba, Q.; Gu, Z.; Guo, D.; Zhou, Y.; Xu, Y.; Wang, H.; Ye, D.; Liu, H. Fluorescent coumarin-artemisinin conjugates as mitochondria-targeting theranostic probes for enhanced anticancer activities. Chemistry, 2015, 21(48), 17415-17421.
[http://dx.doi.org/10.1002/chem.201502543] [PMID: 26458147]
[104]
Cai, G.; Yu, W.; Song, D.; Zhang, W.; Guo, J.; Zhu, J.; Ren, Y.; Kong, L. Discovery of fluorescent coumarin-benzo[b]thiophene 1,1-dioxide conjugates as mitochondria-targeting antitumor STAT3 inhibitors. Eur. J. Med. Chem., 2019, 174, 236-251.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.024] [PMID: 31048139]
[105]
Smith, R.A.; Hartley, R.C.; Murphy, M.P. Mitochondria-targeted small molecule therapeutics and probes. Antioxid. Redox Signal., 2011, 15(12), 3021-3038.
[http://dx.doi.org/10.1089/ars.2011.3969] [PMID: 21395490]
[106]
Guzman-Villanueva, D.; Mendiola, M.R.; Nguyen, H.X.; Weissig, V. Influence of triphenylphosphonium (TPP) cation hydrophobization with phospholipids on cellular toxicity and mitochondrial selectivity. SOJ Pharm. Pharm. Sci., 2015, 2(1), 1-9.
[http://dx.doi.org/10.15226/2374-6866/2/1/00121]
[107]
Battogtokh, G.; Gotov, O.; Kang, J.H.; Cho, J.; Jeong, T.H.; Chimed, G.; Ko, Y.T. Triphenylphosphine-docetaxel conjugate-incorporated albumin nanoparticles for cancer treatment. Nanomedicine (Lond.), 2018, 13(3), 325-338.
[http://dx.doi.org/10.2217/nnm-2017-0274] [PMID: 29338573]
[108]
Marrache, S.; Dhar, S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl. Acad. Sci. USA, 2012, 109(40), 16288-16293.
[http://dx.doi.org/10.1073/pnas.1210096109] [PMID: 22991470]
[109]
Weissig, V. DQAsomes as the prototype of mitochondria-targeted pharmaceutical nanocarriers: preparation, characterization, and use. Methods Mol. Biol., 2015, 1265, 1-11.
[http://dx.doi.org/10.1007/978-1-4939-2288-8_1] [PMID: 25634263]
[110]
Bae, Y.; Jung, M.K.; Lee, S.; Song, S.J.; Mun, J.Y.; Green, E.S.; Han, J.; Ko, K.S.; Choi, J.S. Dequalinium-based functional nanosomes show increased mitochondria targeting and anticancer effect. Eur. J. Pharm. Biopharm., 2018, 124, 104-115.
[http://dx.doi.org/10.1016/j.ejpb.2017.12.013] [PMID: 29305141]
[111]
Bae, Y.; Jung, M.K.; Song, S.J.; Green, E.S.; Lee, S.; Park, H.S.; Jeong, S.H.; Han, J.; Mun, J.Y.; Ko, K.S.; Choi, J.S. Functional nanosome for enhanced mitochondria-targeted gene delivery and expression. Mitochondrion, 2017, 37, 27-40.
[http://dx.doi.org/10.1016/j.mito.2017.06.005] [PMID: 28669809]
[112]
Yang, Y.; He, L.; Xu, K.; Lin, W. Development of a mitochondria-targeted fluorescent probe for ratiometric visualization of sulfur dioxide in living cells and zebrafish. Anal. Methods, 2019, 11(31), 3931-3935.
[http://dx.doi.org/10.1039/C9AY01211G]
[113]
Wu, M.X.; Wei, X.; Wei, Y.F.; Sun, R.; Xu, Y.J.; Ge, J.F. A highly efficient fluorescent probe based on tetrahydroxanthylium-coumarin for detection bisulfite in mitochondria. Anal. Methods, 2019, 11(34), 4334-4340.
[http://dx.doi.org/10.1039/C9AY01355E]
[114]
Wisnovsky, S.P.; Wilson, J.J.; Radford, R.J.; Pereira, M.P.; Chan, M.R.; Laposa, R.R.; Lippard, S.J.; Kelley, S.O. Targeting mitochondrial DNA with a platinum-based anticancer agent. Chem. Biol., 2013, 20(11), 1323-1328.
[http://dx.doi.org/10.1016/j.chembiol.2013.08.010] [PMID: 24183971]
[115]
Chamberlain, G.R.; Tulumello, D.V.; Kelley, S.O. Targeted delivery of doxorubicin to mitochondria. ACS Chem. Biol., 2013, 8(7), 1389-1395.
[http://dx.doi.org/10.1021/cb400095v] [PMID: 23590228]
[116]
Wang, X.X.; Li, Y.B.; Yao, H.J.; Ju, R.J.; Zhang, Y.; Li, R.J.; Yu, Y.; Zhang, L.; Lu, W.L. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials, 2011, 32(24), 5673-5687.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.029] [PMID: 21550109]
[117]
Patel, N.R.; Hatziantoniou, S.; Georgopoulos, A.; Demetzos, C.; Torchilin, V.P.; Weissig, V.; D’Souza, G.G. Mitochondria-targeted liposomes improve the apoptotic and cytotoxic action of sclareol. J. Liposome Res., 2010, 20(3), 244-249.
[http://dx.doi.org/10.3109/08982100903347931] [PMID: 19883213]
[118]
Biswas, S.; Dodwadkar, N.S.; Piroyan, A.; Torchilin, V.P. Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials, 2012, 33(18), 4773-4782.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.032] [PMID: 22469294]
[119]
Boddapati, S.V.; D’Souza, G.G.; Erdogan, S.; Torchilin, V.P.; Weissig, V. Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett., 2008, 8(8), 2559-2563.
[http://dx.doi.org/10.1021/nl801908y] [PMID: 18611058]
[120]
Zhang, Y.; Li, R.J.; Ying, X.; Tian, W.; Yao, H.J.; Men, Y.; Yu, Y.; Zhang, L.; Ju, R.J.; Wang, X.X.; Zhou, J.; Chen, J.X.; Li, N.; Lu, W.L. Targeting therapy with mitosomal daunorubicin plus amlodipine has the potential to circumvent intrinsic resistant breast cancer. Mol. Pharm., 2011, 8(1), 162-175.
[http://dx.doi.org/10.1021/mp100249x] [PMID: 21062083]
[121]
Zhang, L.; Yao, H.J.; Yu, Y.; Zhang, Y.; Li, R.J.; Ju, R.J.; Wang, X.X.; Sun, M.G.; Shi, J.F.; Lu, W-L. Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials, 2012, 33(2), 565-582.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.055] [PMID: 21983136]
[122]
Samuelson, L.E.; Dukes, M.J.; Hunt, C.R.; Casey, J.D.; Bornhop, D.J. TSPO targeted dendrimer imaging agent: synthesis, characterization, and cellular internalization. Bioconjug. Chem., 2009, 20(11), 2082-2089.
[http://dx.doi.org/10.1021/bc9002053] [PMID: 19863077]
[123]
Yusuf, M.; Khan, R.A.; Khan, M.; Ahmed, B. Plausible antioxidant biomechanics and anticonvulsant pharmacological activity of brain-targeted β-carotene nanoparticles. Int. J. Nanomedicine, 2012, 7, 4311-4321.
[http://dx.doi.org/ 10.2147/ijn.s34588] [PMID: 22915852]
[124]
Pucheu, S.; Boucher, F.; Sulpice, T.; Tresallet, N.; Bonhomme, Y.; Malfroy, B.; de Leiris, J. EUK-8 a synthetic catalytic scavenger of reactive oxygen species protects isolated iron-overloaded rat heart from functional and structural damage induced by ischemia/reperfusion. Cardiovasc. Drugs Ther., 1996, 10(3), 331-339.
[http://dx.doi.org/10.1007/BF02627957] [PMID: 8877076]
[125]
Cheng, J.; Kamiya, K.; Kodama, I. Carvedilol: molecular and cellular basis for its multifaceted therapeutic potential. Cardiovasc. Drug Rev., 2001, 19(2), 152-171.
[http://dx.doi.org/10.1111/j.1527-3466.2001.tb00061.x] [PMID: 11484068]
[126]
Niknahad, H.; Taghdiri, A.; Mohammadi-Bardbori, A.; Rezaeian Mehrabadi, A. Protective effect of captopril against doxorubicin-induced oxidative stress in isolated rat liver mitochondria. Iranian J. Pharm. Sci., 2010, 6(2), 91-98.
[127]
Silva, M.F.; Aires, C.C.; Luis, P.B.; Ruiter, J.P.; IJlst, L.; Duran, M.; Wanders, R.J.; de Almeida, I.T. Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: a review. J. Inherit. Metab. Dis., 2008, 31(2), 205-216.
[http://dx.doi.org/10.1007/s10545-008-0841-x] [PMID: 18392741]
[128]
Spiller, H.A.; Sawyer, T.S. Toxicology of oral antidiabetic medications. Amer J. Health Syst. Pharm., 2006, 63(10), 929-938.
[http://dx.doi.org/10.2146/ajhp050500] [PMID: 16675650]
[129]
Bindu, L.H.; Reddy, P.P. Genetics of aminoglycoside-induced and prelingual non-syndromic mitochondrial hearing impairment: a review. Int. J. Audiol., 2008, 47(11), 702-707.
[http://dx.doi.org/10.1080/14992020802215862] [PMID: 19031229]
[130]
Scruggs, E.R.; Dirks Naylor, A.J. Mechanisms of zidovudine-induced mitochondrial toxicity and myopathy. Pharmacology, 2008, 82(2), 83-88.
[http://dx.doi.org/10.1159/000134943] [PMID: 18504416]
[131]
Pinti, M.; Salomoni, P.; Cossarizza, A. Anti-HIV drugs and the mitochondria. Biochim. Biophys. Acta (BBA) -. Bioenergetics, 2006, 1757(5-6), 700-707.
[http://dx.doi.org/10.1016/j.bbabio.2006.05.001] [PMID: 16782042]
[132]
Fosslien, E. Review: mitochondrial medicine-cardiomyopathy caused by defective oxidative phosphorylation. Ann. Clin. Lab. Sci., 2003, 33(4), 371-395.
[PMID: 14584751]
[133]
Sullivan, L.B.; Chandel, N.S. Mitochondrial reactive oxygen species and cancer. Cancer Metab., 2014, 2(1), 17.
[http://dx.doi.org/10.1186/2049-3002-2-17] [PMID: 25671107]
[134]
Veenman, L.; Shandalov, Y.; Gavish, M. VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis. J. Bioenerg. Biomembr., 2008, 40(3), 199-205.
[http://dx.doi.org/10.1007/s10863-008-9142-1] [PMID: 18670869]
[135]
Wen, R.; Banik, B.; Pathak, R.K.; Kumar, A.; Kolishetti, N.; Dhar, S. Nanotechnology inspired tools for mitochondrial dysfunction related diseases Adv. Drug Deliv. Rev., 2016, 99(Pt A), 52-69.
[http://dx.doi.org/10.1016/j.addr.2015.12.024]
[136]
Zhang, Y.; Wei, J.; Xu, J.; Leong, W.S.; Liu, G.; Ji, T.; Cheng, Z.; Wang, J.; Lang, J.; Zhao, Y.; You, L.; Zhao, X.; Wei, T.; Anderson, G.J.; Qi, S.; Kong, J.; Nie, G.; Li, S. Suppression of tumor energy supply by liposomal nanoparticle-mediated inhibition of aerobic glycolysis. ACS Appl. Mater. Interfaces, 2018, 10(3), 2347-2353.
[http://dx.doi.org/10.1021/acsami.7b16685] [PMID: 29286239]
[137]
Gatliff, J.; East, D.A.; Singh, A.; Alvarez, M.S.; Frison, M.; Matic, I.; Ferraina, C.; Sampson, N.; Turkheimer, F.; Campanella, M. A role for TSPO in mitochondrial Ca2+ homeostasis and redox stress signaling. Cell Death Dis., 2017, 8(6)e2896
[http://dx.doi.org/10.1038/cddis.2017.186] [PMID: 28640253]
[138]
Yasin, N.; Veenman, L.; Singh, S.; Azrad, M.; Bode, J.; Vainshtein, A.; Caballero, B.; Marek, I.; Gavish, M. Classical and novel TSPO ligands for the mitochondrial TSPO can modulate nuclear gene expression: implications for mitochondrial retrograde signaling. Int. J. Mol. Sci., 2017, 18(4), 786.
[http://dx.doi.org/10.3390/ijms18040786] [PMID: 28387723]
[139]
Bhoola, N.H.; Mbita, Z.; Hull, R.; Dlamini, Z. Translocator protein (TSPO) as a potential biomarker in human cancers. Int. J. Mol. Sci., 2018, 19(8), 2176.
[http://dx.doi.org/10.3390/ijms19082176] [PMID: 30044440]
[140]
Yip, K.W.; Reed, J.C. Bcl-2 family proteins and cancer. Oncogene, 2008, 27(50), 6398-6406.
[http://dx.doi.org/10.1038/onc.2008.307] [PMID: 18955968]
[141]
Rahman, M.A.; Wang, P.; Zhao, Z.; Wang, D.; Nannapaneni, S.; Zhang, C.; Chen, Z.; Griffith, C.C.; Hurwitz, S.J.; Chen, Z.G.; Ke, Y.; Shin, D.M. Systemic delivery of Bc12-targeting siRNA by DNA nanoparticles suppresses cancer cell growth. Angew. Chem. Int. Ed. Engl., 2017, 56(50), 16023-16027.
[http://dx.doi.org/10.1002/anie.201709485] [PMID: 29076273]
[142]
Wu, X.; Zheng, Y.; Yang, D.; Chen, T.; Feng, B.; Weng, J.; Wang, J.; Zhang, K.; Zhang, X. A strategy using mesoporous polymer nanospheres as nanocarriers of Bcl-2 siRNA towards breast cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(3), 477-487.
[http://dx.doi.org/10.1039/C8TB02463D] [PMID: 32254735]
[143]
Sharma, A.; Soliman, G.M.; Al-Hajaj, N.; Sharma, R.; Maysinger, D.; Kakkar, A. Design and evaluation of multifunctional nanocarriers for selective delivery of coenzyme Q10 to mitochondria. Biomacromolecules, 2012, 13(1), 239-252.
[http://dx.doi.org/10.1021/bm201538j] [PMID: 22148549]
[144]
Hou, J.; Yu, X.; Shen, Y.; Shi, Y.; Su, C.; Zhao, L. Triphenyl phosphine-functionalized chitosan nanoparticles enhanced antitumor efficiency through targeted delivery of doxorubicin to mitochondria. Nanoscale Res. Lett., 2017, 12(1), 158.
[http://dx.doi.org/10.1186/s11671-017-1931-1] [PMID: 28249375]
[145]
Malhi, S.S.; Budhiraja, A.; Arora, S.; Chaudhari, K.R.; Nepali, K.; Kumar, R.; Sohi, H.; Murthy, R.S. Intracellular delivery of redox cycler-doxorubicin to the mitochondria of cancer cell by folate receptor targeted mitocancerotropic liposomes. Int. J. Pharm., 2012, 432(1-2), 63-74.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.030] [PMID: 22531856]
[146]
Xiong, H.; Du, S.; Ni, J.; Zhou, J.; Yao, J. Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing therapeutic efficacy of doxorubicin. Biomaterials, 2016, 94, 70-83.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.004] [PMID: 27105438]
[147]
He, C.; Jiang, S.; Jin, H.; Chen, S.; Lin, G.; Yao, H.; Wang, X.; Mi, P.; Ji, Z.; Lin, Y.; Lin, Z.; Liu, G. Mitochondrial electron transport chain identified as a novel molecular target of SPIO nanoparticles mediated cancer-specific cytotoxicity. Biomaterials, 2016, 83, 102-114.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.010] [PMID: 26773667]
[148]
Qu, Q.; Ma, X.; Zhao, Y. Anticancer effect of α-tocopheryl succinate delivered by mitochondria-targeted mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces, 2016, 8(50), 34261-34269.
[http://dx.doi.org/10.1021/acsami.6b13974] [PMID: 27998109]
[149]
Tuo, J.; Xie, Y.; Song, J.; Chen, Y.; Guo, Q.; Liu, X.; Ni, X.; Xu, D.; Huang, H.; Yin, S.; Zhu, W.; Wu, J.; Hu, H. Development of a novel berberine-mediated mitochondria-targeting nano-platform for drug-resistant cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(42), 6856-6864.
[http://dx.doi.org/10.1039/C6TB01730D] [PMID: 32263579]
[150]
Chandarana, M.; Curtis, A.; Hoskins, C. The use of nanotechnology in cardiovascular disease. Appl. Nanosci., 2018, 8(7), 1607-1619.
[http://dx.doi.org/10.1007/s13204-018-0856-z]
[151]
Golia, E.; Limongelli, G.; Natale, F.; Fimiani, F.; Maddaloni, V.; Pariggiano, I.; Bianchi, R.; Crisci, M.; D’Acierno, L.; Giordano, R.; Di Palma, G.; Conte, M.; Golino, P.; Russo, M.G.; Calabrò, R.; Calabrò, P. Inflammation and cardiovascular disease: from pathogenesis to therapeutic target. Curr. Atheroscler. Rep., 2014, 16(9), 435.
[http://dx.doi.org/10.1007/s11883-014-0435-z] [PMID: 25037581]
[152]
Martín Giménez, V.M.; Kassuha, D.E.; Manucha, W. Nanomedicine applied to cardiovascular diseases: latest developments. Ther. Adv. Cardiovasc. Dis., 2017, 11(4), 133-142.
[http://dx.doi.org/10.1177/1753944717692293] [PMID: 28198204]
[153]
Shoshan-Barmatz, V.; Ben-Hail, D. VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion, 2012, 12(1), 24-34.
[http://dx.doi.org/10.1016/j.mito.2011.04.001] [PMID: 21530686]
[154]
Salnikov, V.; Lukyánenko, Y.O.; Frederick, C.A.; Lederer, W.J.; Lukyánenko, V. Probing the outer mitochondrial membrane in cardiac mitochondria with nanoparticles. Biophys. J., 2007, 92(3), 1058-1071.
[http://dx.doi.org/10.1529/biophysj.106.094318] [PMID: 17098804]
[155]
Skonieczna, M.; Cieslar-Pobuda, A.; Saenko, Y.; Foksinski, M.; Olinski, R.; Rzeszowska-Wolny, J.; Wiechec, E. The impact of DIDS-induced inhibition of voltage-dependent anion channels (VDAC) on cellular response of lymphoblastoid cells to ionizing radiation. Med. Chem., 2017, 13(5), 477-483.
[http://dx.doi.org/10.2174/1573406413666170421102353] [PMID: 28427245]
[156]
Nakano, Y.; Matoba, T.; Tokutome, M.; Funamoto, D.; Katsuki, S.; Ikeda, G.; Nagaoka, K.; Ishikita, A.; Nakano, K.; Koga, J.; Sunagawa, K.; Egashira, K. Nanoparticle-mediated delivery of irbesartan induces cardioprotection from myocardial ischemia-reperfusion injury by antagonizing monocyte-mediated inflammation. Sci. Rep., 2016, 6, 29601.
[http://dx.doi.org/10.1038/srep29601] [PMID: 27403534]
[157]
Cohen, M.V.; Downey, J.M. Adenosine: trigger and mediator of cardioprotection. Basic Res. Cardiol., 2008, 103(3), 203-215.
[http://dx.doi.org/10.1007/s00395-007-0687-7] [PMID: 17999026]
[158]
Galagudza, M.; Korolev, D.; Postnov, V.; Naumisheva, E.; Grigorova, Y.; Uskov, I.; Shlyakhto, E. Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles. Int. J. Nanomedicine, 2012, 7, 1671-1678.
[http://dx.doi.org/10.2147/IJN.S29511] [PMID: 22619519]
[159]
Zhang, N.; Li, C.; Zhou, D.; Ding, C.; Jin, Y.; Tian, Q.; Meng, X.; Pu, K.; Zhu, Y. Cyclic RGD functionalized liposomes encapsulating urokinase for thrombolysis. Acta Biomater., 2018, 70, 227-236.
[http://dx.doi.org/10.1016/j.actbio.2018.01.038] [PMID: 29412186]
[160]
Allijn, I.E.; Czarny, B.M.S.; Wang, X.; Chong, S.Y.; Weiler, M.; da Silva, A.E.; Metselaar, J.M.; Lam, C.S.P.; Pastorin, G.; de Kleijn, D.P.V.; Storm, G.; Wang, J.W.; Schiffelers, R.M. Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction. J. Control. Release, 2017, 247, 127-133.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.042] [PMID: 28065862]
[161]
Rosenfeldt, F.; Marasco, S.; Lyon, W.; Wowk, M.; Sheeran, F.; Bailey, M.; Esmore, D.; Davis, B.; Pick, A.; Rabinov, M.; Smith, J.; Nagley, P.; Pepe, S. Coenzyme Q10 therapy before cardiac surgery improves mitochondrial function and in vitro contractility of myocardial tissue. J. Thorac. Cardiovasc. Surg., 2005, 129(1), 25-32.
[http://dx.doi.org/10.1016/j.jtcvs.2004.03.034] [PMID: 15632821]
[162]
Swarnakar, N.K.; Jain, A.K.; Singh, R.P.; Godugu, C.; Das, M.; Jain, S. Oral bioavailability, therapeutic efficacy and reactive oxygen species scavenging properties of coenzyme Q10-loaded polymeric nanoparticles. Biomaterials, 2011, 32(28), 6860-6874.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.079] [PMID: 21704368]
[163]
Yamada, Y.; Nakamura, K.; Abe, J.; Hyodo, M.; Haga, S.; Ozaki, M.; Harashima, H. Mitochondrial delivery of coenzyme Q10 via systemic administration using a MITO-porter prevents ischemia/reperfusion injury in the mouse liver. J. Control. Release, 2015, 213, 86-95.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.037] [PMID: 26160304]
[164]
Weyer, C.; Bogardus, C.; Mott, D.M.; Pratley, R.E. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin. Invest., 1999, 104(6), 787-794.
[http://dx.doi.org/10.1172/JCI7231] [PMID: 10491414]
[165]
Kaiser, A.B.; Zhang, N.; Van der Pluijm, W. Global prevalence of type 2 diabetes over the next ten years (2018- 2028). Am. Diabetes Assoc., 2018, 67(Suppl. 1)..
[http://dx.doi.org/10.2337/db18-202-LB]
[166]
Szendroedi, J.; Phielix, E.; Roden, M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2011, 8(2), 92-103.
[http://dx.doi.org/10.1038/nrendo.2011.138] [PMID: 21912398]
[167]
Wu, H.; Yin, J.J.; Wamer, W.G.; Zeng, M.; Lo, Y.M. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. Yao Wu Shi Pin Fen Xi, 2014, 22(1), 86-94.
[http://dx.doi.org/10.1016/j.jfda.2014.01.007] [PMID: 24673906]
[168]
West, I.C. Radicals and oxidative stress in diabetes. Diabet. Med., 2000, 17(3), 171-180.
[http://dx.doi.org/10.1046/j.1464-5491.2000.00259.x] [PMID: 10784220]
[169]
Joseph, A.M.; Joanisse, D.R.; Baillot, R.G.; Hood, D.A. Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp. Diabetes Res., 2011, 2012642038
[http://dx.doi.org/ 10.1155/2012/642038] [PMID: 22203837]
[170]
Wong, L.L.; McGinnis, J.F. Nanoceria as bona fide catalytic antioxidants in medicine: what we know and what we want to know…. Adv. Exp. Med. Biol., 2014, 801, 821-828.
[http://dx.doi.org/10.1007/978-1-4614-3209-8_103] [PMID: 24664776]
[171]
Wang, S.; Chen, W.; Liu, A.L.; Hong, L.; Deng, H.H.; Lin, X.H. Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem, 2012, 13(5), 1199-1204.
[http://dx.doi.org/10.1002/cphc.201100906] [PMID: 22383315]
[172]
Pedone, D.; Moglianetti, M.; De Luca, E.; Bardi, G.; Pompa, P.P. Platinum nanoparticles in nanobiomedicine. Chem. Soc. Rev., 2017, 46(16), 4951-4975.
[http://dx.doi.org/10.1039/C7CS00152E] [PMID: 28696452]
[173]
Selim, M.E.; Abd-Elhakim, Y.M.; Al-Ayadhi, L.Y. Pancreatic response to gold nanoparticles includes decrease of oxidative stress and inflammation in autistic diabetic model. Cell. Physiol. Biochem., 2015, 35(2), 586-600.
[http://dx.doi.org/10.1159/000369721] [PMID: 25612738]
[174]
Ahmed, H.H.; Abd El-Maksoud, M.D.; Abdel Moneim, A.E.; Aglan, H.A. Pre-clinical study for the antidiabetic potential of selenium nanoparticles. Biol. Trace Elem. Res., 2017, 177(2), 267-280.
[http://dx.doi.org/10.1007/s12011-016-0876-z] [PMID: 27785741]
[175]
Yang, K.; Kolanowski, J.L.; New, E.J. Mitochondrially targeted fluorescent redox sensors. Interface Focus, 2017, 7(2)20160105
[http://dx.doi.org/10.1098/rsfs.2016.0105] [PMID: 28382201]
[176]
Macdonald, R.; Barnes, K.; Hastings, C.; Mortiboys, H. Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: can mitochondria be targeted therapeutically? Biochem. Soc. Trans., 2018, 46(4), 891-909.
[http://dx.doi.org/10.1042/BST20170501] [PMID: 30026371]
[177]
Hameed, S.; Hsiung, H. The role of mitochondria in aging, neurodegenerative disease, and future therapeutic options. BC. Med. J., 2011, 53(4), 188-192.
[178]
Doody, R.S.; Thomas, R.G.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; Raman, R.; Sun, X.; Aisen, P.S.; Siemers, E.; Liu-Seifert, H.; Mohs, R. Solanezumab Study Group. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med., 2014, 370(4), 311-321.
[http://dx.doi.org/10.1056/NEJMoa1312889] [PMID: 24450890]
[179]
Savva, G.M.; Wharton, S.B.; Ince, P.G.; Forster, G.; Matthews, F.E.; Brayne, C. Medical research council cognitive function and ageing study. Age, neuropathology, and dementia. N. Engl. J. Med., 2009, 360(22), 2302-2309.
[http://dx.doi.org/10.1056/NEJMoa0806142] [PMID: 19474427]
[180]
Maurer, I.; Zierz, S.; Möller, H.J. A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol. Aging, 2000, 21(3), 455-462.
[http://dx.doi.org/10.1016/S0197-4580(00)00112-3] [PMID: 10858595]
[181]
Lunnon, K.; Keohane, A.; Pidsley, R.; Newhouse, S.; Riddoch-Contreras, J.; Thubron, E.B.; Devall, M.; Soininen, H.; Kłoszewska, I.; Mecocci, P.; Tsolaki, M.; Vellas, B.; Schalkwyk, L.; Dobson, R.; Malik, A.N.; Powell, J.; Lovestone, S.; Hodges, A. AddNeuroMed Consortium. Mitochondrial genes are altered in blood early in Alzheimer’s disease. Neurobiol. Aging, 2017, 53, 36-47.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.12.029] [PMID: 28208064]
[182]
Kim, S.H.; Vlkolinsky, R.; Cairns, N.; Fountoulakis, M.; Lubec, G. The reduction of NADH ubiquinone oxidoreductase 24- and 75-kDa subunits in brains of patients with down syndrome and Alzheimer’s disease. Life Sci., 2001, 68(24), 2741-2750.
[http://dx.doi.org/10.1016/S0024-3205(01)01074-8] [PMID: 11400916]
[183]
Armand-Ugon, M.; Ansoleaga, B.; Berjaoui, S.; Ferrer, I. Reduced mitochondrial activity is early and steady in the entorhinal cortex but it is mainly unmodified in the frontal cortex in Alzheimer’s disease. Curr. Alzheimer Res., 2017, 14(12), 1327-1334.
[http://dx.doi.org/10.2174/1567205014666170505095921] [PMID: 28474567]
[184]
Wang, X.; Su, B.; Lee, H.G.; Li, X.; Perry, G.; Smith, M.A.; Zhu, X. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J. Neurosci., 2009, 29(28), 9090-9103.
[http://dx.doi.org/10.1523/JNEUROSCI.1357-09.2009] [PMID: 19605646]
[185]
Manczak, M.; Calkins, M.J.; Reddy, P.H. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum. Mol. Genet., 2011, 20(13), 2495-2509.
[http://dx.doi.org/10.1093/hmg/ddr139] [PMID: 21459773]
[186]
Wang, X.; Su, B.; Fujioka, H.; Zhu, X. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am. J. Pathol., 2008, 173(2), 470-482.
[http://dx.doi.org/10.2353/ajpath.2008.071208] [PMID: 18599615]
[187]
Area-Gomez, E.; de Groof, A.J.; Boldogh, I.; Bird, T.D.; Gibson, G.E.; Koehler, C.M.; Yu, W.H.; Duff, K.E.; Yaffe, M.P.; Pon, L.A.; Schon, E.A. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am. J. Pathol., 2009, 175(5), 1810-1816.
[http://dx.doi.org/10.2353/ajpath.2009.090219] [PMID: 19834068]
[188]
Zampese, E.; Fasolato, C.; Kipanyula, M.J.; Bortolozzi, M.; Pozzan, T.; Pizzo, P. Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc. Natl. Acad. Sci. USA, 2011, 108(7), 2777-2782.
[http://dx.doi.org/10.1073/pnas.1100735108] [PMID: 21285369]
[189]
Gray, N.E.; Quinn, J.F. Alterations in mitochondrial number and function in Alzheimer’s disease fibroblasts. Metab. Brain Dis., 2015, 30(5), 1275-1278.
[http://dx.doi.org/10.1007/s11011-015-9667-z] [PMID: 25862550]
[190]
Contino, S.; Porporato, P.E.; Bird, M.; Marinangeli, C.; Opsomer, R.; Sonveaux, P.; Bontemps, F.; Dewachter, I.; Octave, J-N.; Bertrand, L.; Stanga, S.; Kienlen-Campard, P. Presenilin 2-dependent maintenance of mitochondrial oxidative capacity and morphology. Front. Physiol., 2017, 8, 796.
[http://dx.doi.org/10.3389/fphys.2017.00796] [PMID: 29085303]
[191]
Trushina, E.; Nemutlu, E.; Zhang, S.; Christensen, T.; Camp, J.; Mesa, J.; Siddiqui, A.; Tamura, Y.; Sesaki, H.; Wengenack, T.M.; Dzeja, P.P.; Poduslo, J.F. Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer’s disease. PLoS One, 2012, 7(2)e32737
[http://dx.doi.org/10.1371/journal.pone.0032737] [PMID: 22393443]
[192]
Martín-Maestro, P.; Gargini, R.A.; Sproul, A.; García, E.; Antón, L.C.; Noggle, S.; Arancio, O.; Avila, J.; García-Escudero, V. Mitophagy failure in fibroblasts and iPSC-derived neurons of Alzheimer’s disease-associated presenilin 1 mutation. Front. Mol. Neurosci., 2017, 10, 291.
[http://dx.doi.org/10.3389/fnmol.2017.00291] [PMID: 28959184]
[193]
Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.G.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta, 2014, 1842(8), 1240-1247.
[http://dx.doi.org/10.1016/j.bbadis.2013.10.015] [PMID: 24189435]
[194]
Huang, W.J.; Zhang, X.; Chen, W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep., 2016, 4(5), 519-522.
[http://dx.doi.org/10.3892/br.2016.630] [PMID: 27123241]
[195]
Tönnies, E.; Trushina, E. Oxidative stress, synaptic dysfunction and Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1105-1121.
[http://dx.doi.org/10.3233/JAD-161088] [PMID: 28059794]
[196]
Chen, Q.; Du, Y.; Zhang, K.; Liang, Z.; Li, J.; Yu, H.; Ren, R.; Feng, J.; Jin, Z.; Li, F.; Sun, J.; Zhou, M.; He, Q.; Sun, X.; Zhang, H.; Tian, M.; Ling, D. Tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer’s disease. ACS Nano, 2018, 12(2), 1321-1338.
[http://dx.doi.org/10.1021/acsnano.7b07625] [PMID: 29364648]
[197]
Kwon, H.J.; Cha, M.Y.; Kim, D.; Kim, D.K.; Soh, M.; Shin, K.; Hyeon, T.; Mook-Jung, I. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano, 2016, 10(2), 2860-2870.
[http://dx.doi.org/10.1021/acsnano.5b08045] [PMID: 26844592]
[198]
McManus, M.J.; Murphy, M.P.; Franklin, J.L. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J. Neurosci., 2011, 31(44), 15703-15715.
[http://dx.doi.org/10.1523/JNEUROSCI.0552-11.2011] [PMID: 22049413]
[199]
Hewlings, S.J.; Kalman, D.S. Curcumin: a review of its effects on human health. Foods, 2017, 6(10), 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[200]
Barbara, R.; Belletti, D.; Pederzoli, F.; Masoni, M.; Keller, J.; Ballestrazzi, A.; Vandelli, M.A.; Tosi, G.; Grabrucker, A.M. Novel Curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt Abeta aggregates. Int. J. Pharm., 2017, 526(1-2), 413-424.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.015] [PMID: 28495580]
[201]
Stutzmann, G.E.; Mattson, M.P. Endoplasmic reticulum Ca(2+) handling in excitable cells in health and disease. Pharmacol. Rev., 2011, 63(3), 700-727.
[http://dx.doi.org/10.1124/pr.110.003814] [PMID: 21737534]
[202]
Wong, L.R.; Ho, P.C. Role of serum albumin as a nanoparticulate carrier for nose-to-brain delivery of R-flurbiprofen: implications for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol., 2018, 70(1), 59-69.
[http://dx.doi.org/10.1111/jphp.12836] [PMID: 29034965]
[203]
Hirosawa, S.; Arai, S.; Takeoka, S. A TEMPO-conjugated fluorescent probe for monitoring mitochondrial redox reactions. Chem. Commun. (Camb.), 2012, 48(40), 4845-4847.
[http://dx.doi.org/10.1039/c2cc30603d] [PMID: 22506265]
[204]
Kaur, A.; Jankowska, K.; Pilgrim, C.; Fraser, S.T.; New, E.J. Studies of hematopoietic cell differentiation with a ratiometric and reversible sensor of mitochondrial reactive oxygen species. Antioxid. Redox Signal., 2016, 24(13), 667-679.
[http://dx.doi.org/10.1089/ars.2015.6495] [PMID: 26865422]
[205]
Hu, J.J.; Wong, N.K.; Ye, S.; Chen, X.; Lu, M.Y.; Zhao, A.Q.; Guo, Y.; Ma, A.C.H.; Leung, A.Y.H.; Shen, J.; Yang, D. Fluorescent probe HKSOX-1 for imaging and detection of endogenous superoxide in live cells and in vivo. J. Am. Chem. Soc., 2015, 137(21), 6837-6843.
[http://dx.doi.org/10.1021/jacs.5b01881] [PMID: 25988218]
[206]
Qin, G.; Wu, M.; Wang, J.; Xu, Z.; Xia, J.; Sang, N. Sulfur dioxide contributes to the cardiac and mitochondrial dysfunction in rats. Toxicol. Sci., 2016, 151(2), 334-346.
[http://dx.doi.org/10.1093/toxsci/kfw048] [PMID: 26980303]
[207]
Sang, N.; Yun, Y.; Yao, G.Y.; Li, H.Y.; Guo, L.; Li, G.K. SO(2)-induced neurotoxicity is mediated by cyclooxygenases-2-derived prostaglandin E(2) and its downstream signaling pathway in rat hippocampal neurons. Toxicol. Sci., 2011, 124(2), 400-413.
[http://dx.doi.org/10.1093/toxsci/kfr224] [PMID: 21873648]
[208]
Li, J.; Meng, Z. The role of sulfur dioxide as an endogenous gaseous vasoactive factor in synergy with nitric oxide. Nitric Oxide, 2009, 20(3), 166-174.
[http://dx.doi.org/10.1016/j.niox.2008.12.003] [PMID: 19135162]
[209]
Li, K.; Li, L.L.; Zhou, Q.; Yu, K.K.; Kim, J.S.; Yu, X.Q. Reaction-based fluorescent probes for SO2 derivatives and their biological applications. Coord. Chem. Rev., 2019, 388, 310-333.
[http://dx.doi.org/10.1016/j.ccr.2019.03.001]
[210]
Paul, S.; Ghoshal, K.; Bhattacharyya, M.; Maiti, D.K. Detection of HSO3-: a rapid colorimetric and fluorimetric selective sensor for detecting biological SO2 in food and living cells. ACS Omega, 2017, 2(12), 8633-8639.
[http://dx.doi.org/10.1021/acsomega.7b01218] [PMID: 30023588]
[211]
Song, W.; Dong, B.; Kong, X.; Wang, C.; Zhang, N.; Lin, W. Development of a mitochondrial-targeted ratiometric probe for the detection of SO2 in living cells and zebrafishes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 209, 196-201.
[http://dx.doi.org/10.1016/j.saa.2018.10.038] [PMID: 30390505]
[212]
Weitzman, S.A.; Gordon, L.I. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood, 1990, 76(4), 655-663.
[http://dx.doi.org/10.1182/blood.V76.4.655.655] [PMID: 2200535]
[213]
Hammerschmidt, S.; Büchler, N.; Wahn, H. Tissue lipid peroxidation and reduced glutathione depletion in hypochlorite-induced lung injury. Chest, 2002, 121(2), 573-581.
[http://dx.doi.org/10.1378/chest.121.2.573] [PMID: 11834674]
[214]
Li, K.; Hou, J.T.; Yang, J.; Yu, X.Q. A tumor-specific and mitochondria-targeted fluorescent probe for real-time sensing of hypochlorite in living cells. Chem. Commun. (Camb.), 2017, 53(40), 5539-5541.
[http://dx.doi.org/ 10.1039/c7cc01679d] [PMID: 28466921]
[215]
Webster, K.A. Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol., 2012, 8(6), 863-884.
[http://dx.doi.org/10.2217/fca.12.58] [PMID: 23176689]
[216]
Grienberger, C.; Konnerth, A. Imaging calcium in neurons. Neuron, 2012, 73(5), 862-885.
[http://dx.doi.org/10.1016/j.neuron.2012.02.011] [PMID: 22405199]
[217]
Pendin, D.; Norante, R.; De Nadai, A.; Gherardi, G.; Vajente, N.; Basso, E.; Kaludercic, N.; Mammucari, C.; Paradisi, C.; Pozzan, T.; Mattarei, A. A synthetic fluorescent mitochondria-targeted sensor for ratiometric imaging of calcium in live cells. Angew. Chem. Int. Ed. Engl., 2019, 58(29), 9917-9922.
[http://dx.doi.org/10.1002/anie.201902272] [PMID: 31132197]
[218]
Wang, W.; Ning, J.Y.; Liu, J.T.; Miao, J.Y.; Zhao, B.X. A mitochondria-targeted ratiometric fluorescence sensor for the detection of hypochlorite in living cells. Dyes Pigments, 2019, 171107708
[http://dx.doi.org/10.1016/j.dyepig.2019.107708]
[219]
Santos, R.X.; Correia, S.C.; Zhu, X.; Smith, M.A.; Moreira, P.I.; Castellani, R.J.; Nunomura, A.; Perry, G. Mitochondrial DNA oxidative damage and repair in aging and Alzheimer’s disease. Antioxid. Redox Signal., 2013, 18(18), 2444-2457.
[http://dx.doi.org/10.1089/ars.2012.5039]
[220]
Mecocci, P.; Beal, M.F.; Cecchetti, R.; Polidori, M.C.; Cherubini, A.; Chionne, F.; Avellini, L.; Romano, G.; Senin, U. Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Mol. Chem. Neuropathol., 1997, 31(1), 53-64.
[http://dx.doi.org/10.1007/BF02815160] [PMID: 9271005]
[221]
Steinmark, I.E.; James, A.L.; Chung, P.H.; Morton, P.E.; Parsons, M.; Dreiss, C.A.; Lorenz, C.D.; Yahioglu, G.; Suhling, K. Targeted fluorescence lifetime probes reveal responsive organelle viscosity and membrane fluidity. PLoS One, 2019, 14(2)e0211165
[http://dx.doi.org/10.1371/journal.pone.0211165] [PMID: 30763333]
[222]
Ma, Y.; Zhao, Y.; Guo, R.; Zhu, L.; Lin, W. A near-infrared emission fluorescent probe with multi-rotatable moieties for highly sensitive detection of mitochondrial viscosity in an inflammatory cell model. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(39), 6212-6216.
[http://dx.doi.org/10.1039/C8TB02083C] [PMID: 32254611]
[223]
Song, X.; Li, N.; Wang, C.; Xiao, Y. Targetable and fixable rotor for quantifying mitochondrial viscosity of living cells by fluorescence lifetime imaging. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(2), 360-368.
[http://dx.doi.org/10.1039/C6TB02524B] [PMID: 32263554]
[224]
Guo, R.; Ma, Y.; Tang, Y.; Xie, P.; Wang, Q.; Lin, W. A novel mitochondria-targeted near-infrared (NIR) probe for detection of viscosity changes in living cell, zebra fishes and living mice. Talanta, 2019, 204, 868-874.
[http://dx.doi.org/10.1016/j.talanta.2019.06.050] [PMID: 31357375]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy