Systematic Review Article

涉及从海洋生物中分离的凝集素的抗肿瘤活性的分子机制:系统评价。

卷 21, 期 6, 2020

页: [616 - 625] 页: 10

弟呕挨: 10.2174/1389450120666191122113850

价格: $65

摘要

简介:肿瘤细胞可能会出现几种有利于其恶性肿瘤的分子改变,其中包括与肿瘤相关的抗原的表达,例如截短的T-聚糖,Thomsen-nouvelle,Sialyl-Lewis X和Sialyl Tn,这可能有助于使用特定的目标分子进行诊断和治疗。凝集素是能够与特定碳水化合物相互作用的普遍存在的蛋白质。与植物凝集素相比,从海洋生物中分离出的凝集素具有重要的特征,例如免疫原性低,并且可以与复杂的聚糖结合。 目的:这项工作通过系统的评估,评估了从海洋生物中分离的凝集素抗肿瘤活性的分子机制。方法:使用描述符:海洋凝集素和癌症审查了Pubmed,丁香,Science Direct,Wiley和Scopus数据库。在2008年1月至2018年12月之间发表的英文文章提出了来自海洋生物的凝集素抗癌活性的分子机制,该研究符合条件。 结果:17篇符合条件。凝集素显示出对癌细胞的有希望的性能,对某些类型的恶性细胞表现出特定的细胞毒性。文章介绍了几种特定于不同碳水化合物的凝集素,它们通过有丝分裂原激活的蛋白激酶进行调节:促凋亡蛋白和抗凋亡蛋白,转录因子E2F-1。另外,已证明癌细胞中外源凝集素表达是治疗癌症的有前途的方法。 结论:本综述显示了各种研究,这些研究描述了具有抗肿瘤潜力的海洋凝集素引起的分子机制。该知识与从海洋生物中分离出的下一代凝集素的开发和使用有关,从而支持了其在癌症治疗中的潜力。

关键词: 癌症,海洋凝集素,抗肿瘤药,天然产物,分子机制,海洋生物。

« Previous
图形摘要

[2]
Knoll, L.J.; Hogan, D.A.; Leong, J.M.; Heitman, J.; Condit, R.C. Pearls collections: What we can learn about infectious disease and cancer. PLoS Pathog., 2018, 14(3)e1006915 [http://dx.doi.org/10.1371/journal.ppat.1006915]. [PMID: 29596508].
[3]
Shen, L.; Shi, Q.; Wang, W. Double agents: genes with both oncogenic and tumor-suppressor functions. Oncogenesis, 2018, 7(3), 25. [http://dx.doi.org/10.1038/s41389-018-0034-x]. [PMID: 29540752].
[4]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30. [http://dx.doi.org/10.3322/caac.21442]. [PMID: 29313949].
[5]
Rayan, A.; Raiyn, J.; Falah, M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS One, 2017, 12(11)e0187925 [http://dx.doi.org/10.1371/journal.pone.0187925]. [PMID: 29121120].
[6]
Chen, Z.; He, A.; Liu, Y.; Huang, W.; Cai, Z. Recent development on synthetic biological devices treating bladder cancer. Synth Syst Biotechnol, 2016, 1(4), 216-220. [http://dx.doi.org/10.1016/j.synbio.2016.08.001]. [PMID: 29062946].
[7]
Burstein, H.J.; Krilov, L.; Aragon-Ching, J.B. Clinical Cancer Advances 2017: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology. J. Clin. Oncol., 2017, 35(12), 1341-1367. [http://dx.doi.org/10.1200/JCO.2016.71.5292]. [PMID: 28148207].
[8]
Zhang, Z.; Wuhrer, M.; Holst, S. Serum sialylation changes in cancer. Glycoconj. J., 2018, 35(2), 139-160. [http://dx.doi.org/10.1007/s10719-018-9820-0]. [PMID: 29680984].
[9]
Guo, B.J.; Bian, Z.X.; Qiu, H.C.; Wang, Y.T.; Wang, Y. Biological and clinical implications of herbal medicine and natural products for the treatment of inflammatory bowel disease. Ann. N. Y. Acad. Sci., 2017, 1401(1), 37-48. [http://dx.doi.org/10.1111/nyas.13414]. [PMID: 28891095].
[10]
Atanasov, A.G.; Yeung, A.W.K.; Banach, M.; Banach, M.P.T. Natural products for targeted therapy in precision medicine. Biotechnol. Adv., 2018, 36(6), 1559-1562. [http://dx.doi.org/10.1016/j.biotechadv.2018.08.003]. [PMID: 30081176].
[11]
Arrieta, J.M.; Arnaud-Haond, S.; Duarte, C.M. What lies underneath: conserving the oceans’ genetic resources. Proc. Natl. Acad. Sci. USA, 2010, 107(43), 18318-18324. [http://dx.doi.org/10.1073/pnas.0911897107]. [PMID: 20837523].
[12]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2012, 29(2), 144-222. [http://dx.doi.org/10.1039/C2NP00090C]. [PMID: 22193773].
[13]
Sharon, N.; Lis, H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology, 2004, 14(11), 53R-62R. [http://dx.doi.org/10.1093/glycob/cwh122]. [PMID: 15229195].
[14]
Lagarda-Diaz, I.; Guzman-Partida, A.M.; Vazquez-Moreno, L. Vazquez- moreno l. Legume lectins: Proteins with diverse applications. Int. J. Mol. Sci., 2017, 18(6), 1-18. [http://dx.doi.org/10.3390/ijms18061242]. [PMID: 28604616].
[15]
Coelho, L.C.B.B.; Silva, P.M.S.; Lima, V.L.M. Lectins, interconnecting proteins with biotechnological/pharmacological and therapeutic applications; Hindawi Evidence-Based Complementary and Alternative Medicine, 2017. [http://dx.doi.org/10.1155/2017/1594074]
[16]
Yau, T.; Dan, X.; Ng, C.C.; Ng, T.B.; Ng, T.B. Lectins with potential for anti-cancer therapy. Molecules, 2015, 20(3), 3791-3810. [http://dx.doi.org/10.3390/molecules20033791]. [PMID: 25730388].
[17]
Shi, Z.; Li, W.W.; Tang, Y.; Cheng, L.J.; Review, A. A Novel Molecular Model of Plant Lectin-Induced Programmed Cell Death in Cancer. Biol. Pharm. Bull., 2017, 40(10), 1625-1629. [http://dx.doi.org/10.1248/bpb.b17-00363]. [PMID: 28768938].
[18]
Poiroux, G.; Barre, A.; van Damme, E.J.M.; Benoist, H.; Rougé, P. Plant lectins targeting o-glycans at the cell surface as tools for cancer diagnosis, prognosis and therapy. Int. J. Mol. Sci., 2017, 18(6)E1232 [http://dx.doi.org/10.3390/ijms18061232]. [PMID: 28598369].
[19]
Gardères, J.; Bourguet-Kondracki, M.L.; Hamer, B.; Batel, R.; Schröder, H.C.; Müller, W.E. Porifera lectins: diversity, physiological roles and biotechnological potential. Mar. Drugs, 2015, 13(8), 5059-5101. [http://dx.doi.org/10.3390/md13085059]. [PMID: 26262628].
[20]
Chernikov, O.V.; Molchanova, V.I.; Chikalovets, I.V.; Kondrashina, A.S.; Li, W.; Lukyanov, P.A. Lectins of marine hydrobionts. Biochemistry (Mosc.), 2013, 78(7), 760-770. [http://dx.doi.org/10.1134/S0006297913070080]. [PMID: 24010839].
[21]
Evandro, F.F.; Tzi, B.N. Antitumor Potential and other Emerging Medicinal Properties of Natural Compounds; Springer Dordrecht Heidelberg New York London, 2013.
[22]
Pati, D.; Lorusso, L.N.; Lorusso, L.N.; Arch, M.S. How to write a systematic review of the literature. HERD, 2018, 11(1), 15-30. [http://dx.doi.org/10.1177/1937586717747384]. [PMID: 29283007].
[23]
McHugh, M.L. Interrater reliability: the kappa statistic. Biochem. Med. (Zagreb), 2012, 22(3), 276-282. [http://dx.doi.org/10.11613/BM.2012.031]. [PMID: 23092060].
[24]
Schneider, K.; Schwarz, M.; Burkholder, I. “ToxRTool”, a new tool to assess the reliability of toxicological data. Toxicol. Lett., 2009, 189(2), 138-144. [http://dx.doi.org/10.1016/j.toxlet.2009.05.013]. [PMID: 19477248].
[25]
Galluzzi, L.; Vitale, I.; Aaronson, S.A. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ., 2018, 25(3), 486-541. [http://dx.doi.org/10.1038/s41418-017-0012-4]. [PMID: 29362479].
[26]
Rabelo, L.; Monteiro, N.; Serquiz, R. A lactose-binding lectin from the marine sponge Cinachyrella apion (Cal) induces cell death in human cervical adenocarcinoma cells. Mar. Drugs, 2012, 10(4), 727-743. [http://dx.doi.org/10.3390/md10040727]. [PMID: 22690140].
[27]
Chaves, R.P.; Roberta, S.; Gonzaga, N.L.; Carneiro, R.F.; Luis, A. Structural characterization of two isolectins from the marine red alga Solieria filiformis (Kützing) PW Gabrielson and their anticancer effect on MCF-7 breast cancer cells; Int J Biol Macromol. Elsevier B.V., 2017.
[28]
Baig, S; Seevasant, I; Mohamad, J; Mukheem, A; Huri, HZ; Kamarul, T T. Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand? Cell Death Dis 2016; 7e2058
[http://dx.doi.org/10.1038/cddis.2015.275] [PMID: 26775709]
[29]
Hasan, I.; Ozeki, Y. Histochemical localization of N- acetylhexosamine-binding lectin HOL-18 in Halichondria okadai (Japanese black sponge), and its antimicrobial and cytotoxic anticancer effects. Int. J. Biol. Macromol., 2018. [PMID: 30496858].
[30]
Kovbasnjuk, O; Mourtazina, R; Baibakov, B; Wang, T; Elowsky, C; Choti, MA The glycosphingolipid globotriaosylceramide in the metastatic transformation of colon cancer., 2005, 1(14), 1-16.
[http://dx.doi.org/10.1073/pnas.0506474102]
[31]
Stimmer, L; Dehay, S; Nemati, F; Massonnet, G; Richon, S; Decaudin, D Human breast cancer and lymph node metastases express Gb3 and can be targeted by STxB- vectorized chemotherapeutic compounds. 2014; 1-11.
[32]
Desselle, A.; Chaumette, T.; Gaugler, M. Anti- gb3 monoclonal antibody inhibits angiogenesis and tumor development. PlosOne. 2012;7(11):1–14. 12. Curr. Drug Targets, 2019, 0(0) [FERREIRA, HJ. et al.].
[33]
Geyer, P.E.; Maak, M.; Nitsche, U.; Perl, M.; Novotny, A.; Slotta-huspenina, J. Gastric Adenocarcinomas Express the Glycosphingolipid Gb 3 / CD77. Targeting of Gastric Cancer Cells with Shiga Toxin B-Subunit, 2016, 15(May), 1008-1018.
[34]
Liao, J.H.; Chien, C.T.; Wu, H.Y. A multivalent marine lectin from Crenomytilus grayanus possesses anti- cancer activity through recognizing globotriose Gb3. J. Am. Chem. Soc., 2016, 138(14), 4787-4795. [http://dx.doi.org/10.1021/jacs.6b00111]. [PMID: 27010847].
[35]
Chernikov, A.O.; Kuzmich, A.; Molchanova, V.; Hua, K. Lectin CGL from the sea mussel Crenomytilus grayanus induces Burkitt’s lymphoma cells death via interaction with surface glycan; Int J Biol Macromol. Elsevier B.V., 2017.
[36]
Morales, J.; Li, L.; Fattah, F.J. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit. Rev. Eukaryot. Gene Expr., 2014, 24(1), 15-28. [http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2013006875]. [PMID: 24579667].
[37]
Agarwal, A; Mahfouz, RZ; Sharma, RK; Sarkar, O; Mangrola, D; Mathur, PP . Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes 2009; 20: 1-20.
[38]
Fujii, Y.; Dohmae, N.; Takio, K.; Kawsar, S.M.A.; Matsumoto, R.; Hasan, I. A Lectin from the Mussel Mytilus galloprovincialis Has a Highly Novel Primary Structure and Induces Glycan-mediated Cytotoxicity of Globotriaosylceramide-expressing Lymphoma Cells. J. Biol. Chem., 2012, 287(53), 44772-44783.
[39]
Terada, D.; Kawai, F.; Noguchi, H.; Unzai, S.; Hasan, I.; Fujii, Y. Crystal structure of MytiLec, a galactose-binding lectin from the mussel Mytilus galloprovincialis with cytotoxicity against certain cancer cell types; Nature Publishing Group, 2016, pp. 1-11.
[40]
Omokawa, Y.; Miyazaki, T.; Walde, P. In vitro and in vivo anti-tumor effects of novel Span 80 vesicles containing immobilized Eucheuma serra agglutinin. Int. J. Pharm., 2010, 389(1-2), 157-167. [http://dx.doi.org/10.1016/j.ijpharm.2010.01.033]. [PMID: 20100554].
[41]
Anam, C.; Chasanah, E.; Perdhana, B.P. Cytotoxicity of Crude Lectins from Red Macroalgae from the Southern Coast of Java Island, Gunung Kidul Regency, Yogyakarta, Cytotoxicity of Crude Lectins from Red Macroalgae from the Southern Coast of Java Island, Gunung Kidul Regency Yogyakarta Indonesia IOP Conf Series: Materials Science and Engineering,
[42]
Nascimento, K.S.; Cunha, A.I.; Nascimento, K.S.; Cavada, B.S.; Azevedo, A.M.; Aires-Barros, M.R. An overview of lectins purification strategies. J. Mol. Recognit., 2012, 25(11), 527-541. [http://dx.doi.org/10.1002/jmr.2200]. [PMID: 23108612].
[43]
Sugawara, S.; Im, C.; Kawano, T.; Tatsuta, T. Catfish rhamnose-binding lectin induces G 0 / 1 cell cycle arrest in Burkitt’ s lymphoma cells via membrane surface Gb3. Glycoconj. J., 2016. [PMID: 27796613].
[44]
García-Reyes, B.; Kretz, A.L.; Ruff, J.P. The Emerging Role of Cyclin-Dependent Kinases (CDKs) in Pancreatic Ductal Adenocarcinoma. Int. J. Mol. Sci., 2018, 19(10), 3219. [http://dx.doi.org/10.3390/ijms19103219]. [PMID: 30340359].
[45]
García-Gutiérrez, L.; Delgado, M.D.; León, J. MYC Oncogene Contributions to Release of Cell Cycle Brakes. Genes (Basel), 2019, 10(3), 244. [http://dx.doi.org/10.3390/genes10030244]. [PMID: 30909496].
[46]
Coqueret, O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol., 2003, 13(2), 65-70. [http://dx.doi.org/10.1016/S0962-8924(02)00043-0]. [PMID: 12559756].
[47]
Goitre, L. The Ras Superfamily of Small GTPases: The Unlocked Secrets.Ras Signaling Methods in Molecular Biology (Methods and Protocols); Totowa, NJ Humana Press, 2014, p. 1120. [http://dx.doi.org/10.1007/978-1-62703-791-4_1]
[48]
Yue, J Integrator orchestrates RAS / ERK1 / 2 signaling transcriptional programs 2017; 1809-20
[49]
Turk, V; Stoka, V; Vasiljeva, O; Renko, M; Sun, T; Turk, B. Biochimica et Biophysica Acta Cysteine cathepsins: From structure, function and regulation to new frontiers ☆ 2012; 1824: 68-88.
[50]
Queiroz, AFS; Silva, RA; Moura, RM; Dreyfuss, JL; Ana, EJP; Ivarne, CSS Growth inhibitory activity of a novel lectin from Cliona varians against K562 human erythroleukemia cells., 2009, 1023-33.
[http://dx.doi.org//10.1007/s00280-008-0825-4]
[51]
Chen, Q; Kang, J; Fu, C The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther. Springer US 2017; 2018 [Internet].,
[http://dx.doi.org/10.1038/s41392-018-0018-5] [PMID: 29967689]
[52]
Neto, LGN; Cabral, MG; Carneiro, RF et al. Halilectin-3, a lectin from the marine sponge Haliclona caerulea, induces apoptosis and autophagy in human breast cancer MCF7 cells through a caspase-9 and LC3 pathway. 2018; 18(4): 521-8
[53]
Yu, L.; Chen, Y.; Tooze, S.A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 2018, 14(2), 207-215. [http://dx.doi.org/10.1080/15548627.2017.1378838]. [PMID: 28933638].
[54]
Kang, R.; Zeh, H.J.; Lotze, M.T.; Tang, D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ., 2011, 18(4), 571-580. [http://dx.doi.org/10.1038/cdd.2010.191]. [PMID: 21311563].
[55]
Chude, C.I.; Amaravadi, R.K. Targeting autophagy in cancer: Update on clinical trials and novel inhibitors. Int. J. Mol. Sci., 2017, 18(6)E1279 [http://dx.doi.org/10.3390/ijms18061279]. [PMID: 28621712].
[56]
Pierzyńska-Mach, A.; Janowski, P.A.; Dobrucki, J.W. Evaluation of acridine orange, LysoTracker Red, and quinacrine as fluorescent probes for long-term tracking of acidic vesicles. Cytometry A, 2014, 85(8), 729-737. [http://dx.doi.org/10.1002/cyto.a.22495]. [PMID: 24953340].
[57]
Wu, L.; Yang, X.; Duan, X.; Cui, L.; Li, G. Exogenous expression of marine lectins DlFBL and SpRBL induces cancer cell apoptosis possibly through PRMT5-E2F-1 pathway. Sci. Rep., 2014, 4, 4505. [http://dx.doi.org/10.1038/srep04505]. [PMID: 24675921].
[58]
Tait, S.W.G.; Green, D.R. Caspase-independent cell death: leaving the set without the final cut. Oncogene, 2008, 27(50), 6452-6461. [http://dx.doi.org/10.1038/onc.2008.311]. [PMID: 18955972].
[59]
Vuillier, C. E2F1 interacts with BCL‐xL and regulates its subcellular localization dynamics to trigger cell death. EMBO Rep., 2017, •••, 44046. [PMID: 29233828].
[60]
Zheng, S.; Moehlenbrink, J.; Lu, Y.C. Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1. Mol. Cell, 2013, 52(1), 37-51. [http://dx.doi.org/10.1016/j.molcel.2013.08.039]. [PMID: 24076217].
[61]
Li, G.; Gao, Y.; Cui, L.; Wu, L.; Yang, X.; Chen, J. Anguilla japonica lectin 1 delivery through adenovirus vector induces apoptotic cancer cell death through interaction with PRMT5. J. Gene Med., 2016, 18(4-6), 65-74. [http://dx.doi.org/10.1002/jgm.2878]. [PMID: 26990556].
[62]
Burotto, M.; Chiou, V.L.; Lee, J.M.; Kohn, E.C. The MAPK pathway across different malignancies: a new perspective. Cancer, 2014, 120(22), 3446-3456. [http://dx.doi.org/10.1002/cncr.28864]. [PMID: 24948110].
[63]
Lake, D.; Corrêa, S.A.L.; Müller, J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell. Mol. Life Sci., 2016, 73(23), 4397-4413. [http://dx.doi.org/10.1007/s00018-016-2297-8]. [PMID: 27342992].
[64]
Arkun, Y.; Yasemi, M. Dynamics and control of the ERK signaling pathway: Sensitivity, bistability, and oscillations. PLoS One, 2018, 13(4)e0195513 [http://dx.doi.org/10.1371/journal.pone.0195513]. [PMID: 29630631].
[65]
Ryan, M.B.; Der, C.J.; Wang-Gillam, A.; Cox, A.D. Targeting RAS-mutant cancers: is ERK the key? Trends Cancer, 2015, 1(3), 183-198. [http://dx.doi.org/10.1016/j.trecan.2015.10.001]. [PMID: 26858988].
[66]
Liu, F.; Yang, X.; Geng, M.; Huang, M. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharm. Sin. B, 2018, 8(4), 552-562. [http://dx.doi.org/10.1016/j.apsb.2018.01.008]. [PMID: 30109180].
[67]
Yu, Q.; Wu, M.; Sheng, L.; Li, Q.; Xie, F. Therapeutic effects of targeting RAS-ERK signaling in giant congenital melanocytic nevi. Am. J. Transl. Res., 2018, 10(4), 1184-1194. [PMID: 29736211].
[68]
Bahrami, A; Hassanian, SM Targeting RAS signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J. Cell. Physiol., 2018, 233(3), 2058-2066. [http://dx.doi.org/10.1002/jcp.25890]. [PMID: 28262927].
[69]
García-Gómez, R.; Bustelo, X.R.; Crespo, P. Protein-Protein Interactions: Emerging Oncotargets in the RAS-ERK Pathway. Trends Cancer, 2018, 4(9), 616-633. [http://dx.doi.org/10.1016/j.trecan.2018.07.002]. [PMID: 30149880].
[70]
Li, G.; Zhao, Z.; Wu, B. Ulva pertusa lectin 1 delivery through adenovirus vector affects multiple signaling pathways in cancer cells. Glycoconj. J., 2017, 34(4), 489-498. [http://dx.doi.org/10.1007/s10719-017-9767-6]. [PMID: 28349379].
[71]
Pasquier, E; Kavallaris, M. Critical Review Microtubules: A Dynamic Target in Cancer Therapy., 2008, 60, 165-71.
[72]
Ganguly, A.; Cabral, F. New insights into mechanisms of resistance to microtubule inhibitors. Biochim. Biophys. Acta, 2011, 1816(2), 164-171. [PMID: 21741453].
[73]
Yang, X.; Wu, L.; Duan, X.; Cui, L.; Luo, J.; Li, G. Adenovirus Carrying Gene Encoding Haliotis discus Sialic Acid Binding Lectin Induces Cancer Cell Apoptosis; MDPI, 2014, pp. 3994-4004. [http://dx.doi.org/10.3390/md12073994]
[74]
Rodrigues, E.; Macauley, M.S. Hypersialylation in cancer: Modulation of inflammation and therapeutic opportunities. Cancers (Basel), 2018, 10(6), 1-19. [http://dx.doi.org/10.3390/cancers10060207]. [PMID: 29912148].
[75]
Pinho, S.S.; Reis, C.A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer, 2015, 15(9), 540-555. [http://dx.doi.org/10.1038/nrc3982]. [PMID: 26289314].
[76]
Boligan, K.F.; Mesa, C.; Fernandez, L.E.; von Gunten, S. Cancer intelligence acquired (CIA): tumor glycosylation and sialylation codes dismantling antitumor defense. Cell. Mol. Life Sci., 2015, 72(7), 1231-1248. [http://dx.doi.org/10.1007/s00018-014-1799-5]. [PMID: 25487607].
[77]
Pearce, O.M.T.; Läubli, H. Sialic acids in cancer biology and immunity. Glycobiology, 2016, 26(2), 111-128. [http://dx.doi.org/10.1093/glycob/cwv097]. [PMID: 26518624].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy