Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

CDK12通过激活c-myc /β-catenin信号传导促进乳腺癌的进展并保持茎直

卷 20, 期 2, 2020

页: [156 - 165] 页: 10

弟呕挨: 10.2174/1568009619666191118113220

价格: $65

摘要

背景:CDK12是具有有效维持癌细胞干性能力的乳腺癌的有希望的治疗靶标。 目的:我们旨在研究CDK12维持乳腺癌干性的机制。 方法:通过RT-qPCR和IHC检测CDK12表达水平。然后建立CDK12改变的乳腺癌细胞系MDA-MB-231-shCDK12和SkBr-3-CDK12。使用CCK8,集落形成测定法和异种移植模型来评估CDK12对致瘤性的影响。确定了Transwell测定法,乳球形成,FACS和体内肺转移模型。蛋白质印迹进一步通过c-myc /β-catenin途径表征CDK12在乳腺癌干中的机制。 结果:我们的结果显示乳腺癌样品中CDK12的含量较高。在CDK12high组中,肿瘤形成,癌细胞移动性,球体形成和上皮-间质转化将得到增强。此外,CDK12与肺转移有关,并维持乳腺癌细胞的干性。与CDK12low细胞相比,CDK12high癌细胞具有更高的致瘤性和CD44 +亚群。我们的研究表明c-myc与CDK12阳性表达。 CDK12激活c-myc /β-catenin信号传导,这是启动乳腺癌干细胞更新的潜在机制,并可能成为乳腺癌预后的潜在生物标志物。 结论:CDK12的过表达通过激活c-myc /β-catenin信号传导促进乳腺癌的肿瘤发生并维持乳腺癌的干性。抑制CDK12表达可能成为乳腺癌的潜在疗法。

关键词: 乳腺癌,干癌,转移瘤,CDK12,c-myc,β-catenin。

图形摘要

[1]
Lytle, N.K.; Barber, A.G.; Reya, T. Stem cell fate in cancer growth, progression and therapy resistance. Nat. Rev. Cancer, 2018, 18(11), 669-680.
[http://dx.doi.org/10.1038/s41568-018-0056-x] [PMID: 30228301]
[2]
Tang, H.; Chen, B.; Liu, P.; Xie, X.; He, R.; Zhang, L.; Huang, X.; Xiao, X.; Xie, X. SOX8 acts as a prognostic factor and mediator to regulate the progression of triple-negative breast cancer. Carcinogenesis, 2019, 40(10), 1278-1287.
[http://dx.doi.org/10.1093/carcin/bgz034] [PMID: 30810729]
[3]
Tang, H.; Huang, X.; Wang, J.; Yang, L.; Kong, Y.; Gao, G.; Zhang, L.; Chen, Z.S.; Xie, X. circKIF4A acts as a prognostic factor and mediator to regulate the progression of triple-negative breast cancer. Mol. Cancer, 2019, 18(1), 23.
[http://dx.doi.org/10.1186/s12943-019-0946-x] [PMID: 30744636]
[4]
Ekumi, K.M.; Paculova, H.; Lenasi, T.; Pospichalova, V.; Bösken, C.A.; Rybarikova, J.; Bryja, V.; Geyer, M.; Blazek, D.; Barboric, M. Ovarian carcinoma CDK12 mutations misregulate expression of DNA repair genes via deficient formation and function of the Cdk12/CycK complex. Nucleic Acids Res., 2015, 43(5), 2575-2589.
[http://dx.doi.org/10.1093/nar/gkv101] [PMID: 25712099]
[5]
Wu, Y.M.; Cieslik, M.; Lonigro, R.J.; Vats, P.; Reimers, M.A.; Cao, X.; Ning, Y.; Wang, L.; Kunju, L.P.; de Sarkar, N.; Heath, E.I.; Chou, J.; Feng, F.Y.; Nelson, P.S.; de Bono, J.S.; Zou, W.; Montgomery, B.; Alva, A.; Robinson, D.R.; Chinnaiyan, A.M. Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer Cell,, 2018, 173(2018) 1770- 1782.e1714.
[6]
Blazek, D.; Kohoutek, J.; Bartholomeeusen, K.; Johansen, E.; Hulinkova, P.; Luo, Z.; Cimermancic, P.; Ule, J.; Peterlin, B.M. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev., 2011, 25(20), 2158-2172.
[http://dx.doi.org/10.1101/gad.16962311] [PMID: 22012619]
[7]
Chen, H.H.; Wang, Y.C.; Fann, M.J. Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol. Cell. Biol., 2006, 26(7), 2736-2745.
[http://dx.doi.org/10.1128/MCB.26.7.2736-2745.2006] [PMID: 16537916]
[8]
Davidson, L.; Muniz, L.; West, S. 3′ end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells. Genes Dev., 2014, 28(4), 342-356.
[http://dx.doi.org/10.1101/gad.231274.113] [PMID: 24478330]
[9]
Eifler, T.T.; Shao, W.; Bartholomeeusen, K.; Fujinaga, K.; Jäger, S.; Johnson, J.R.; Luo, Z.; Krogan, N.J.; Peterlin, B.M. Cyclin-dependent kinase 12 increases 3′ end processing of growth factor-induced c-FOS transcripts. Mol. Cell. Biol., 2015, 35(2), 468-478.
[http://dx.doi.org/10.1128/MCB.01157-14] [PMID: 25384976]
[10]
Krajewska, M.; Dries, R.; Grassetti, A.V.; Dust, S.; Gao, Y.; Huang, H.; Sharma, B.; Day, D.S.; Kwiatkowski, N.; Pomaville, M.; Dodd, O.; Chipumuro, E.; Zhang, T.; Greenleaf, A.L.; Yuan, G.C.; Gray, N.S.; Young, R.A.; Geyer, M.; Gerber, S.A.; George, R.E. CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation. Nat. Commun., 2019, 10(1), 1757.
[http://dx.doi.org/10.1038/s41467-019-09703-y] [PMID: 30988284]
[11]
Naidoo, K.; Wai, P.T.; Maguire, S.L.; Daley, F.; Haider, S.; Kriplani, D.; Campbell, J.; Mirza, H.; Grigoriadis, A.; Tutt, A.; Moseley, P.M.; Abdel-Fatah, T.M.A.; Chan, S.Y.T.; Madhusudan, S.; Rhaka, E.A.; Ellis, I.O.; Lord, C.J.; Yuan, Y.; Green, A.R.; Natrajan, R. Evaluation of CDK12 protein expression as a potential novel biomarker for DNA damage response-targeted therapies in breast cancer. Mol. Cancer Ther., 2018, 17(1), 306-315.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0760] [PMID: 29133620]
[12]
Johnson, S.F.; Cruz, C.; Greifenberg, A.K.; Dust, S.; Stover, D.G.; Chi, D.; Primack, B.; Cao, S.; Bernhardy, A.J.; Coulson, R.; Lazaro, J.B.; Kochupurakkal, B.; Sun, H.; Unitt, C.; Moreau, L.A.; Sarosiek, K.A.; Scaltriti, M.; Juric, D.; Baselga, J.; Richardson, A.L.; Rodig, S.J.; D’Andrea, A.D.; Balmaña, J.; Johnson, N.; Geyer, M.; Serra, V.; Lim, E.; Shapiro, G.I. CDK12 inhibition reverses de novo and acquired PARP inhibitor resistance in BRCA wild-type and mutated models of triple-negative breast cancer. Cell Rep., 2016, 17(9), 2367-2381.
[http://dx.doi.org/10.1016/j.celrep.2016.10.077] [PMID: 27880910]
[13]
Bartkowiak, B.; Liu, P.; Phatnani, H.P.; Fuda, N.J.; Cooper, J.J.; Price, D.H.; Adelman, K.; Lis, J.T.; Greenleaf, A.L. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev., 2010, 24(20), 2303-2316.
[http://dx.doi.org/10.1101/gad.1968210] [PMID: 20952539]
[14]
Tien, J.F.; Mazloomian, A.; Cheng, S.G.; Hughes, C.S.; Chow, C.C.T.; Canapi, L.T.; Oloumi, A.; Trigo-Gonzalez, G.; Bashashati, A.; Xu, J.; Chang, V.C.; Shah, S.P.; Aparicio, S.; Morin, G.B. CDK12 regulates alternative last exon mRNA splicing and promotes breast cancer cell invasion. Nucleic Acids Res., 2017, 45(11), 6698-6716.
[http://dx.doi.org/10.1093/nar/gkx187] [PMID: 28334900]
[15]
Cowling, V.H.; D’Cruz, C.M.; Chodosh, L.A.; Cole, M.D. c-Myc transforms human mammary epithelial cells through repression of the Wnt inhibitors DKK1 and SFRP1. Mol. Cell. Biol., 2007, 27(14), 5135-5146.
[http://dx.doi.org/10.1128/MCB.02282-06] [PMID: 17485441]
[16]
Deming, S.L.; Nass, S.J.; Dickson, R.B.; Trock, B.J. C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br. J. Cancer, 2000, 83(12), 1688-1695.
[http://dx.doi.org/10.1054/bjoc.2000.1522] [PMID: 11104567]
[17]
Zeng, Y.A.; Nusse, R. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell, 2010, 6(6), 568-577.
[http://dx.doi.org/10.1016/j.stem.2010.03.020] [PMID: 20569694]
[18]
Teissedre, B.; Pinderhughes, A.; Incassati, A.; Hatsell, S.J.; Hiremath, M.; Cowin, P. MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors. PLoS One, 2009, 4(2)e4537
[http://dx.doi.org/10.1371/journal.pone.0004537] [PMID: 19225568]
[19]
Li, Y.; Welm, B.; Podsypanina, K.; Huang, S.; Chamorro, M.; Zhang, X.; Rowlands, T.; Egeblad, M.; Cowin, P.; Werb, Z.; Tan, L.K.; Rosen, J.M.; Varmus, H.E. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Natl. Acad. Sci. USA, 2003, 100(26), 15853-15858.
[http://dx.doi.org/10.1073/pnas.2136825100] [PMID: 14668450]
[20]
Incassati, A.; Chandramouli, A.; Eelkema, R.; Cowin, P. Key signaling nodes in mammary gland development and cancer: β-catenin. Breast Cancer Res., 2010, 12(6), 213.
[http://dx.doi.org/10.1186/bcr2723] [PMID: 21067528]
[21]
Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature, 2001, 414(6859), 105-111.
[http://dx.doi.org/10.1038/35102167] [PMID: 11689955]
[22]
Visvader, J.E.; Lindeman, G.J. Cancer stem cells: current status and evolving complexities. Cell Stem Cell, 2012, 10(6), 717-728.
[http://dx.doi.org/10.1016/j.stem.2012.05.007] [PMID: 22704512]
[23]
Trimboli, A.J.; Fukino, K.; de Bruin, A.; Wei, G.; Shen, L.; Tanner, S.M.; Creasap, N.; Rosol, T.J.; Robinson, M.L.; Eng, C.; Ostrowski, M.C.; Leone, G. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res., 2008, 68(3), 937-945.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2148] [PMID: 18245497]
[24]
Thiery, J.P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer, 2002, 2(6), 442-454.
[http://dx.doi.org/10.1038/nrc822] [PMID: 12189386]
[25]
Wu, Y.; Zhou, B.P. New insights of epithelial-mesenchymal transition in cancer metastasis. Acta Biochim. Biophys. Sin. (Shanghai), 2008, 40(7), 643-650.
[http://dx.doi.org/10.1111/j.1745-7270.2008.00443.x] [PMID: 18604456]
[26]
Huber, M.A.; Kraut, N.; Beug, H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol., 2005, 17(5), 548-558.
[http://dx.doi.org/10.1016/j.ceb.2005.08.001] [PMID: 16098727]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy