Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

One-Step Fabrication of Three Metals Zif and its Application for Adsorption of Levofloxacin in Aqueous Solution

Author(s): Abdolraouf Samadi-Maybodi* and Afshin Rahmati

Volume 16, Issue 7, 2020

Page: [933 - 946] Pages: 14

DOI: 10.2174/1573411015666191116120818

Price: $65

Abstract

Background: Zeolitic imidazolate frameworks with three metals Zn, Co and Ag (ZIF-3M) and ZIF-67 were synthesized at room temperature and characterized with different techniques such as FESEM, BET, EDX and XRD. Then, the synthesized nanoparticles were successfully applied for the removal of levofloxacin from aqueous solutions.

Methods: To optimize the significant factors (i.e., pH, adsorbent dose and contact time), the response surface methodology (RSM) was implemented based on Box-Behnken design (BBD) in each step, an appropriate amount of adsorbent was added to 30 ppm of a solution containing levofloxacin and the pH was adjusted to the desired value with 0.1 M HCl or 0.1 M NaOH. The mixture was stirred at room temperature and then centrifuged at 7500 rpm for 3 min.

Results: The optimal conditions for each variable were performed using Box-Behnken design. Results revealed that ZIF-3M nanoparticles more efficiently remove levofloxacin than ZIF-67 in aqueous solution.

Conclusion: In this research, new three metals ZIF (ZIF-3M) nanoparticles were synthesized with Ag, Zn and Co in aqueous solution and characterized by different techniques. Results indicated successful synthesis with preserving ZIF framework. Results indicated that ZIF-3M has more ability for the removal of levofloxacin than ZIF-67. Isotherm studies showed that the most suitable model for the adsorption of levofloxacin onto ZIF-3M has a good agreement with the Langmuier model.

Keywords: Adsorption, box-behnken design, free solvent synthesis, levofloxacine, three metals ZIF, zeolitic imidazolate frameworks.

Graphical Abstract

[1]
Peng, X.; Wang, Z.; Kuang, W.; Tan, J.; Li, K. A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. Sci. Total Environ., 2006, 371(1-3), 314-322.
[http://dx.doi.org/10.1016/j.scitotenv.2006.07.001] [PMID: 16899277]
[2]
Werner, N.L.; Hecker, M.T.; Sethi, A.K.; Donskey, C.J. Unnecessary use of fluoroquinolone antibiotics in hospitalized patients. BMC Infect. Dis., 2011, 11(1), 187.
[http://dx.doi.org/10.1186/1471-2334-11-187] [PMID: 21729289]
[3]
Ballesteros, O.; Toro, I.; Sanz-Nebot, V.; Navalón, A.; Vílchez, J.L.; Barbosa, J. Determination of fluoroquinolones in human urine by liquid chromatography coupled to pneumatically assisted electrospray ionization mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 798(1), 137-144.
[http://dx.doi.org/10.1016/j.jchromb.2003.09.019] [PMID: 14630368]
[4]
Pejin, B.; Savic, A.; Sokovic, M.; Glamoclija, J.; Ciric, A.; Nikolic, M.; Radotic, K.; Mojovic, M. Further in vitro evaluation of antiradical and antimicrobial activities of phytol. Nat. Prod. Res., 2014, 28(6), 372-376.
[http://dx.doi.org/10.1080/14786419.2013.869692] [PMID: 24422895]
[5]
Pejin, B.; Ciric, A.; Glamoclija, J.; Nikolic, M.; Sokovic, M. In vitro anti-quorum sensing activity of phytol. Nat. Prod. Res., 2015, 29(4), 374-377.
[http://dx.doi.org/10.1080/14786419.2014.945088] [PMID: 25103916]
[6]
Banerjee, S.; Wang, Z.; Mohammad, M.; Sarkar, F.H.; Mohammad, R.M. Efficacy of selected natural products as therapeutic agents against cancer. J. Nat. Prod., 2008, 71(3), 492-496.
[http://dx.doi.org/10.1021/np0705716] [PMID: 18302335]
[7]
Solomkin, J.S.; Mazuski, J.E.; Bradley, J.S.; Rodvold, K.A.; Goldstein, E.J.; Baron, E.J.; O’Neill, P.J.; Chow, A.W.; Dellinger, E.P.; Eachempati, S.R.; Gorbach, S.; Hilfiker, M.; May, A.K.; Nathens, A.B.; Sawyer, R.G.; Bartlett, J.G. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Surg. Infect. (Larchmt.), 2010, 11(1), 79-109.
[http://dx.doi.org/10.1089/sur.2009.9930] [PMID: 20163262]
[8]
Kim, J.W.; Jang, H.S.; Kim, J.G.; Ishibashi, H.; Hirano, M.; Nasu, K. Occurrence of pharmaceutical and personal care products (PPCPs) in surface water from mankyung river, South Korea. J. Health Sci., 2009, 55(2), 249-258.
[http://dx.doi.org/10.1248/jhs.55.249]
[9]
Göbel, A.; McArdell, C.S.; Suter, M.J.F.; Giger, W. Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry. Anal. Chem., 2004, 76(16), 4756-4764.
[http://dx.doi.org/10.1021/ac0496603] [PMID: 15307787]
[10]
Yang, S.; Cha, J.; Carlson, K. Trace analysis and occurrence of anhydroerythromycin and tylosin in influent and effluent wastewater by liquid chromatography combined with electrospray tandem mass spectrometry. Anal. Bioanal. Chem., 2006, 385(3), 623-636.
[http://dx.doi.org/10.1007/s00216-006-0416-3] [PMID: 16715282]
[11]
Turiel, E.; Bordin, G.; Rodríguez, A.R. Determination of quinolones and fluoroquinolones in hospital sewage water by off-line and on-line solid-phase extraction procedures coupled to HPLC-UV. J. Sep. Sci., 2005, 28(3), 257-267.
[http://dx.doi.org/10.1002/jssc.200400018] [PMID: 15776928]
[12]
Liu, W.; Zhang, J.; Zhang, C.; Ren, L. Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina: mechanisms, isotherms and kinetics. Chem. Eng. J., 2011, 171(2), 431-438.
[http://dx.doi.org/10.1016/j.cej.2011.03.099]
[13]
Rivera-Utrilla, J.; Prados-Joya, G.; Sánchez-Polo, M.; Ferro-García, M.A.; Bautista-Toledo, I. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. J. Hazard. Mater., 2009, 170(1), 298-305.
[http://dx.doi.org/10.1016/j.jhazmat.2009.04.096] [PMID: 19464791]
[14]
Ay, F.; Kargi, F. Advanced oxidation of amoxicillin by Fenton’s reagent treatment. J. Hazard. Mater., 2010, 179(1-3), 622-627.
[http://dx.doi.org/10.1016/j.jhazmat.2010.03.048] [PMID: 20363555]
[15]
Hamdi El Najjar, N.; Touffet, A.; Deborde, M.; Journel, R.; Leitner, N.K.V. Levofloxacin oxidation by ozone and hydroxyl radicals: kinetic study, transformation products and toxicity. Chemosphere, 2013, 93(4), 604-611.
[http://dx.doi.org/10.1016/j.chemosphere.2013.05.086] [PMID: 23850240]
[16]
Xiong, J.Q.; Kurade, M.B.; Patil, D.V.; Jang, M.; Paeng, K.J.; Jeon, B.H. Biodegradation and metabolic fate of levofloxacin via a freshwater green alga, scenedesmus obliquus in synthetic saline wastewater. Algal Res., 2017, 25, 54-61.
[http://dx.doi.org/10.1016/j.algal.2017.04.012]
[17]
Rocha, R.S.; Valim, R.B.; Trevelin, L.C.; Silva, F.L.; Steter, J.R.; Zaiat, M.; Lanza, M.R. New operational mode of an electrochemical reactor and its application to the degradation of levofloxacin. J. Environ. Chem. Eng., 2017, 5(5), 4441-4446.
[http://dx.doi.org/10.1016/j.jece.2017.08.041]
[18]
Guo, W.; Shi, Y.; Wang, H.; Yang, H.; Zhang, G. Sonochemical decomposition of levofloxacin in aqueous solution. Water Environ. Res., 2010, 82(8), 696-700.
[http://dx.doi.org/10.2175/106143010X12609736966801] [PMID: 20853748]
[19]
Yu, Y.; Wang, W.; Shi, J.; Zhu, S.; Yan, Y. Enhanced levofloxacin removal from water using zirconium (IV) loaded corn bracts. Environ. Sci. Pollut. Res. Int., 2017, 24(11), 10685-10694.
[http://dx.doi.org/10.1007/s11356-017-8700-7] [PMID: 28283978]
[20]
Limbikai, S.S.; Deshpande, N.A.; Kulkarni, R.M.; Khan, A.A.P.; Khan, A. Kinetics and adsorption studies on the removal of levofloxacin using coconut coir charcoal impregnated with Al2O3 nanoparticles. Desalination Water Treat., 2016, 57(50), 23918-23926.
[http://dx.doi.org/10.1080/19443994.2016.1138330]
[21]
Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ., 2015, 532, 112-126.
[http://dx.doi.org/10.1016/j.scitotenv.2015.05.130] [PMID: 26057999]
[22]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149) 1230444
[http://dx.doi.org/10.1126/science.1230444] [PMID: 23990564]
[23]
Van de Voorde, B.; Bueken, B.; Denayer, J.; De Vos, D. Adsorptive separation on metal-organic frameworks in the liquid phase. Chem. Soc. Rev., 2014, 43(16), 5766-5788.
[http://dx.doi.org/10.1039/C4CS00006D] [PMID: 24647892]
[24]
Sarker, M.; Ahmed, I.; Jhung, S.H. Adsorptive removal of herbicides from water over nitrogen-doped carbon obtained from ionic liquid@ ZIF-8. Chem. Eng. J., 2017, 323, 203-211.
[http://dx.doi.org/10.1016/j.cej.2017.04.103]
[25]
Sun, C.Y.; Qin, C.; Wang, X.L.; Yang, G.S.; Shao, K.Z.; Lan, Y.Q.; Su, Z.M.; Huang, P.; Wang, C.G.; Wang, E.B. Zeolitic Imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans., 2012, 41(23), 6906-6909.
[http://dx.doi.org/10.1039/c2dt30357d] [PMID: 22580798]
[26]
Yao, J.; Wang, H. Zeolitic imidazolate framework composite membranes and thin films: Synthesis and applications. Chem. Soc. Rev., 2014, 43(13), 4470-4493.
[http://dx.doi.org/10.1039/C3CS60480B] [PMID: 24668302]
[27]
Butova, V.V.; Polyakov, V.A.; Budnyk, A.P.; Aboraia, A.M.; Bulanova, E.A.; Guda, A.A. Polyhedron, 2018, 154, 457-464.
[http://dx.doi.org/10.1016/j.poly.2018.08.006]
[28]
Liu, Y.; Liu, Y.J. Biosorption isotherms, kinetics and thermodynamics. Separ. Purif. Tech., 2008, 61(3), 229-242.
[http://dx.doi.org/10.1016/j.seppur.2007.10.002]
[29]
Mall, I.D.; Srivastava, V.C.; Agarwal, N.K. Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash-kinetic study and equilibrium isotherm analyses. Dyes Pigments, 2006, 69(3), 210-223.
[http://dx.doi.org/10.1016/j.dyepig.2005.03.013]
[30]
Febrianto, J.; Kosasih, A.N.; Sunarso, J.; Ju, Y.H.; Indraswati, N.; Ismadji, S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J. Hazard. Mater., 2009, 162(2-3), 616-645.
[http://dx.doi.org/10.1016/j.jhazmat.2008.06.042] [PMID: 18656309]
[31]
Jiang, C.; Fu, B.; Cai, H.; Cai, T. Efficient adsorptive removal of Congo red from aqueous solution by synthesized zeolitic imidazolate framework-8. Chem. Spec. Bioavail., 2016, 28(1-4), 199-208.
[http://dx.doi.org/10.1080/09542299.2016.1224983]
[32]
Guan, W.; Gao, X.; Ji, G.; Xing, Y.; Du, C.; Liu, Z. Fabrication of a magnetic nanocomposite photocatalysts Fe3O4@ ZIF-67 for degradation of dyes in water under visible light irradiation. J. Solid State Chem., 2017, 255, 150-156.
[http://dx.doi.org/10.1016/j.jssc.2017.08.012]
[33]
Khan, A.; Ali, M.; Ilyas, A.; Naik, P.; Vankelecom, I.F.; Gilani, M.A.; Khan, A.L. ZIF-67 filled PDMS mixed matrix membranes for recovery of ethanol via pervaporation. Separ. Purif. Tech., 2018, 2018(206), 50-58.
[http://dx.doi.org/10.1016/j.seppur.2018.05.055]
[34]
Amirilargani, M.; Sadatnia, B. Poly (vinyl alcohol)/zeoliticimida-zolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of isopropanol. J. Membr. Sci., 2018, 469, 1-10.
[http://dx.doi.org/10.1016/j.memsci.2014.06.034]
[35]
Hibbert, D.B. Experimental design in chromatography: A tutorial review. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 910, 2-13.
[http://dx.doi.org/10.1016/j.jchromb.2012.01.020] [PMID: 22333438]
[36]
Zolgharnein, J.; Shahmoradi, A.; Ghasemi, J.B. Comparative study of Box–Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb (II) adsorption onto Robinia tree leaves. J. Chemometr., 2013, 27(1-2), 12-20.
[http://dx.doi.org/10.1002/cem.2487]
[37]
Ferreira, S.L.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; dos Santos, W.N. Box-Behnken design: an alternative for the optimization of analytical methods. Anal. Chim. Acta, 2007, 597(2), 179-186.
[http://dx.doi.org/10.1016/j.aca.2007.07.011] [PMID: 17683728]
[38]
Babazadeh, M.; Hosseinzadeh, K.R.; Abolhasani, J.; Ghorbani-Kalhor, E.; Hassanpour, A. Solid phase extraction of heavy metal ions from agricultural samples with the aid of a novel functionalized magnetic metal–organic framework. RSC Advances, 2015, 5(26), 19884-19892.
[http://dx.doi.org/10.1039/C4RA15532G]
[39]
Massart, D.L.; Vandeginste, B.G.; Buydens, L.M.C.; De Jong, S.; Lewi, P.J.; Smeyers-Verbeke, J.; Mann, C.K. Handbook of chemometrics and qualimetrics: Part A. Appl. Spectrosc., 1998, 52, 302A.
[http://dx.doi.org/10.1366/0003702981944896]
[40]
Ferreira, S.L.C.; Bruns, R.E.; da Silva, E.G.P.; Dos Santos, W.N.L.; Quintella, C.M.; David, J.M.; de Andrade, J.B.; Breitkreitz, M.C.; Jardim, I.C.; Neto, B.B. Statistical designs and response surface techniques for the optimization of chromatographic systems. J. Chromatogr. A, 2007, 1158(1-2), 2-14.
[http://dx.doi.org/10.1016/j.chroma.2007.03.051] [PMID: 17416377]
[41]
Wu, C.S.; Xiong, Z.H.; Li, C.; Zhang, J.M. Zeoliticimidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution. RSC Adv., 2015, 5(100), 82127-82137.
[http://dx.doi.org/10.1039/C5RA15497A]
[42]
Qin, X.; Liu, F.; Wang, G.; Weng, L.; Li, L. Adsorption of levofloxacin onto goethite: Effects of pH, calcium and phosphate. Colloids Surf. B Biointerfaces, 2014, 116, 591-596.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.056] [PMID: 24269055]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy