Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Role of General Adversarial Networks in Mammogram Analysis: A Review

Author(s): Annapoorani Gopal*, Lathaselvi Gandhimaruthian and Javid Ali

Volume 16, Issue 7, 2020

Page: [863 - 877] Pages: 15

DOI: 10.2174/1573405614666191115102318

Price: $65

Abstract

The Deep Neural Networks have gained prominence in the biomedical domain, becoming the most commonly used networks after machine learning technology. Mammograms can be used to detect breast cancers with high precision with the help of Convolutional Neural Network (CNN) which is deep learning technology. An exhaustive labeled data is required to train the CNN from scratch. This can be overcome by deploying Generative Adversarial Network (GAN) which comparatively needs lesser training data during a mammogram screening. In the proposed study, the application of GANs in estimating breast density, high-resolution mammogram synthesis for clustered microcalcification analysis, effective segmentation of breast tumor, analysis of the shape of breast tumor, extraction of features and augmentation of the image during mammogram classification have been extensively reviewed.

Keywords: General adversarial networks, breast density estimation, microcalcification, breast tumour segmentation, feature extraction, mammogram augmentation.

Graphical Abstract

[1]
Turkington C, Krag KJ. The encyclopedia of breast cancer. Facts on file 2005.
[2]
Rosen L, Rosen G. Breast cancer: early detection. The importance of finding breast cancer early. American Cancer Society, Inc. Retrieved from: American Cancer Society/Learn about cancer.Breast Cancer/Early Detection 2011.
[3]
Kopans DB. Breast imaging. Philadelphia, Pa: Lippincott 1989; pp. 274-7.
[4]
Rangayyan RM, Banik S, Desautels JE. Computer-aided detection of architectural distortion in prior mammograms of interval cancer. J Digit Imaging 2010; 23(5): 611-31.
[http://dx.doi.org/10.1007/s10278-009-9257-x] [PMID: 20127270]
[5]
Tang J, Rangayyan RM, Xu J, El Naqa I, Yang Y. Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans Inf Technol Biomed 2009; 13(2): 236-51.
[http://dx.doi.org/10.1109/TITB.2008.2009441] [PMID: 19171527]
[6]
Elmore JG, Jackson SL, Abraham L, et al. Variability in interpretive performance at screening mammography and radiologists’ characteristics associated with accuracy. Radiology 2009; 253(3): 641-51.
[http://dx.doi.org/10.1148/radiol.2533082308] [PMID: 19864507]
[7]
Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: A review. Med Image Anal 2019; 58: 101552.
[http://dx.doi.org/10.1016/j.media.2019.101552] [PMID: 31521965]
[8]
Harvey H, Karpati E, Khara G, et al. The role of deep learning in breast screening. Curr Breast Cancer Rep 2019; 11(1): 17-22.
[http://dx.doi.org/10.1007/s12609-019-0301-7]
[9]
Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017; 42: 60-88.
[http://dx.doi.org/10.1016/j.media.2017.07.005] [PMID: 28778026]
[10]
Lo SC, Chan HP, Lin JS, Li H, Freedman MT, Mun SK. Artificial convolution neural network for medical image pattern recognition. Neural Netw 1995; 8(7-8): 1201-14.
[http://dx.doi.org/10.1016/0893-6080(95)00061-5]
[11]
Jamieson AR, Drukker K, Giger ML. Breast image feature learning with adaptive deconvolutional networks. In: SPIE Medical imaging; 2012; San Diego, California, USA.
[http://dx.doi.org/10.1117/12.910710]
[12]
Erhan D, Manzagol PA, Bengio Y, Bengio S, Vincent P. The difficulty of training deep architectures and the effect of unsupervised pre-training. Comp Sci 2009; 2009: 153-60.
[13]
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Comp Sci 2012; 2012: 1-9.
[14]
Hamidinekoo A, Denton E, Rampun A, Honnor K, Zwiggelaar R. Deep learning in mammography and breast histology, an overview and future trends. Med Image Anal 2018; 47: 45-67.
[http://dx.doi.org/10.1016/j.media.2018.03.006] [PMID: 29679847]
[15]
Shin HC, Roth HR, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016; 35(5): 1285-98.
[http://dx.doi.org/10.1109/TMI.2016.2528162] [PMID: 26886976]
[16]
Pinto N, Cox DD, DiCarlo JJ. Why is real-world visual object recognition hard? PLOS Comput Biol 2008; 4(1): e27.
[http://dx.doi.org/10.1371/journal.pcbi.0040027] [PMID: 18225950]
[17]
Goodfellow I, Pouget-Abadie J, Mirza M. et al. Generative adversarial nets. Mach Learn 2014; arXiv:1406.2661.
[18]
Hong Y, Hwang U, Yoo J, Yoon S. How generative adversarial networks and their variants work: an overview. ACM Comput Surv 2019; 52(1): 10.
[http://dx.doi.org/10.1145/3301282]
[19]
Wang C, Xu C, Wanga C, Tao D. Perceptual adversarial networks for image-to-image transformation. IEEE Trans Image Process 2018; 27(8): 4066-79.
[http://dx.doi.org/10.1109/TIP.2018.2836316] [PMID: 29993743]
[20]
Yi Z, Zhang H, Tan P, Gong M, et al. Dualgan: unsupervised dual learning for image-to-image translation. Proceedings of the IEEE international conference on computer vision 2017 Oct 22-29; Venice, Italy New Jersey: IEEE 2017.
[http://dx.doi.org/10.1109/ICCV.2017.310]
[21]
Li J, Liang X, Wei Y, Xu T, Feng J, Yan S, et al. Perceptual generative adversarial networks for small object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017 July 21-26 Honolulu, HI, USA New Jersey: IEEE 2017.
[http://dx.doi.org/10.1109/CVPR.2017.211]
[22]
Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017 July 21-26 Honolulu, HI, USA New Jersey: IEEE 2017.
[http://dx.doi.org/10.1109/CVPR.2017.19]
[23]
Xue Y, Xu T, Zhang H, Long LR, Huang X. Segan: Adversarial network with multi-scale L1 loss for medical image segmentation. Neuroinformatics 2018; 16(3-4): 383-92.
[http://dx.doi.org/10.1007/s12021-018-9377-x] [PMID: 29725916]
[24]
Yang D, Xiong T, Xu D, et al. Automatic vertebra labeling in large-scale 3D CT using deep image-to-image network with message passing and sparsity regularization. International Conference on Information Processing in Medical Imaging 2017 June 25-30 Boone, NC, USA. Berlin: Springer 2017.
[http://dx.doi.org/10.1007/978-3-319-59050-9_50]
[25]
Dai W, Dong N, Wang Z, Liang X, Zhang H, Xing EP. Scan: Structure correcting adversarial network for organ segmentation in chest x-rays. In: Stoyanov D, Zeike Taylor, Gustavo Carneiro, et al., Eds. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer 2018; pp. 263-73.
[http://dx.doi.org/10.1007/978-3-030-00889-5_30]
[26]
Kamnitsas K, Baumgartner C, Ledig C, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks.Niethammer M, Styner M, Aylward S,. et al. International Conference on Information Processing in Medical Imaging Cham Springer pp.597-609.
[http://dx.doi.org/10.1007/978-3-319-59050-9_47]
[27]
Lafarge MW, Pluim JP, Eppenhof KA, Moeskops P, Veta M. Domain-adversarial neural networks to address the appearance variability of histopathology images. In: Cardoso MJ, Arbel T, Carneiro G, et al., Eds Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.Cham: Springer 2017; pp. 83-91.
[http://dx.doi.org/10.1007/978-3-319-67558-9_10]
[28]
Salehinejad H, Valaee S, Dowdell T, Colak E, Barfett J. Generalization of deep neural networks for chest pathology classification in x-rays using generative adversarial networks. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2018 Apr 15-20 Calgary, Canada New Jersey: IEEE 2018.
[http://dx.doi.org/10.1109/ICASSP.2018.8461430]
[29]
Frid-Adar M, Klang E, Amitai M, Goldberger J, Greenspan H. Synthetic data augmentation using GAN for improved liver lesion classification. IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018); 2018 April 4-7; Washington, DC, USA. New Jersey: IEEE 2018.
[http://dx.doi.org/10.1109/ISBI.2018.8363576]
[30]
Costa P, Galdran A, Meyer MI, et al. End-to-end adversarial retinal image synthesis. IEEE Trans Med Imaging 2018; 37(3): 781-91.
[http://dx.doi.org/10.1109/TMI.2017.2759102] [PMID: 28981409]
[31]
Wolterink JM, Leiner T, Viergever MA, Išgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 2017; 36(12): 2536-45.
[http://dx.doi.org/10.1109/TMI.2017.2708987] [PMID: 28574346]
[32]
Yang Q, Yan P, Zhang Y, et al. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging 2018; 37(6): 1348-57.
[http://dx.doi.org/10.1109/TMI.2018.2827462] [PMID: 29870364]
[33]
Yi X, Babyn P. Sharpness-aware low-dose CT denoising using conditional generative adversarial network. J Digit Imaging 2018; 31(5): 655-69.
[http://dx.doi.org/10.1007/s10278-018-0056-0] [PMID: 29464432]
[34]
Kang E, Koo HJ, Yang DH, Seo JB, Ye JC. Cycle-consistent adversarial denoising network for multiphase coronary CT angiography. Med Phys 2019; 46(2): 550-62.
[http://dx.doi.org/10.1002/mp.13284] [PMID: 30449055]
[35]
You C, Yang Q, Shan H, et al. Structurally-sensitive multi-scale deep neural network for low-dose CT denoising. IEEE Access 2018; 6: 41839-55.
[http://dx.doi.org/10.1109/ACCESS.2018.2858196] [PMID: 30906683]
[36]
Shan H, Zhang Y, Yang Q, et al. Cong W, Wang G. 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network. IEEE Trans Med Imaging 2018; 37(6): 1522-34.
[http://dx.doi.org/10.1109/TMI.2018.2832217] [PMID: 29870379]
[37]
Tang Y, Cai J, Lu L, et al. CT image enhancement using stacked generative adversarial networks and transfer learning for lesion segmentation improvement. International MachLearn Med Imaging 2018; 2018: 46-54.
[http://dx.doi.org/10.1007/978-3-030-00919-9_6]
[38]
Liu Z, Bicer T, Kettimuthu R, Gursoy D, De Carlo F, Foster I. TomoGAN: low-dose X-ray tomography with generative adversarial networks. arXiv preprint arXiv:190207582.
[39]
Yan P, Xu S, Rastinehad AR, Wood BJ. Adversarial image registration with application for MR and TRUS image fusion. International Workshop on Machine Learning in Medical Imaging 2018 Sep 16; Granada, Spain. Cham: Springer 2018.
[http://dx.doi.org/10.1007/978-3-030-00919-9_23]
[40]
Mahapatra D, Antony B, Sedai S, Garnavi R. Deformable medical image registration using generative adversarial networks. 15th International Symposium on Biomedical Imaging (ISBI 2018) 2018 April 4-7 Washington, DC, USA New Jersey: IEEE 2018.
[http://dx.doi.org/10.1109/ISBI.2018.8363845]
[41]
Tanner C, Ozdemir F, Profanter R, Vishnevsky V, Konukoglu E, Goksel O. Generative adversarial networks for MR-CT deformable image registration arXiv preprint arXiv:180707349. 1807.
[42]
Hu Y, Gibson E, Ghavami N, et al. Adversarial deformation regularization for training image registration neural networks. International Conference on Medical Image Computing and Computer-Assisted Intervention 2018 Sep 16-20 Granada, Spain Cham Springer 2018.
[43]
Fan J, Cao X, Xue Z, Yap PT, Shen D. Adversarial similarity network for evaluating image alignment in deep learning based registration. International Conference on Medical Image Computing and Computer-Assisted Intervention 2019 Oct 13-17 Shenzhen, China. Cham: Springer 2019.
[http://dx.doi.org/10.1007/978-3-030-00928-1_83]
[44]
Mahapatra D, Ge Z, Sedai S, Chakravorty R. Joint registration and segmentation of xray images using generative adversarial networks. 9th Proceedings of 9th International Workshop on Machine Learning in Medical Imaging. 2018 Sep16; Granada, Spain. Cham: Springer 2018
[45]
Zhang L, Gooya A, Frangi AF. Semi-supervised assessment of incomplete LV coverage in cardiac MRI using generative adversarial nets. International Workshop on Simulation and Synthesis in Medical Imaging 2017 Sep 10; Québec, QC, Canada Cham: Springer 2017.
[http://dx.doi.org/10.1007/978-3-319-68127-6_7]
[46]
Hu B, Tang Y, Chang EI, et al. Unsupervised learning for cell-level visual representation in histopathology images with generative adversarial networks. IEEE J Biomed Health Inform 2019; 23(3): 1316-28.
[http://dx.doi.org/10.1109/JBHI.2018.2852639] [PMID: 29994411]
[47]
Madani A, Moradi M, Karargyris A, Syeda-Mahmood T. Semi-supervised learning with generative adversarial networks for chest X-ray classification with ability of data domain adaptation. 15th International Symposium on Biomedical Imaging 2018 Apr 4-7 Washington, DC, USA New Jersey IEEE 2018.
[48]
Lahiri A, Ayush K, Kumar Biswas P, Mitra P. Generative adversarial learning for reducing manual annotation in semantic segmentation on large scale miscroscopy images: Automated vessel segmentation in retinal fundus image as test case. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops 2017 July 21-26 Honolulu, HI, USA New Jersey: IEEE 2017.
[http://dx.doi.org/10.1109/CVPRW.2017.110]
[49]
Lecouat B, Chang K, Foo CS, et al. Semi-supervised deep learning for abnormality classification in retinal images. arXiv preprint arXiv:181207832.
[50]
Madani A, Ong JR, Tibrewal A, Mofrad MR. Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease NPJ Dig Med 2018; 18; 1(1): 59.
[51]
Koga T, Nonaka N, Sakuma J, Seita J. General-to-detailed GAN for infrequent class medical images. arXiv preprint arXiv:181201690.
[52]
Finlayson SG, Lee H, Kohane IS, Oakden-Rayner L. Towards generative adversarial networks as a new paradigm for radiology education arXiv preprint arXiv:181201547.
[53]
Tang Y, Tang Y, Han M, Xiao J, Summers RM. Abnormal chest X-ray identification with generative adversarial one-class classifier. arXiv preprint arXiv:190302040.
[54]
Schlegl T, Seeböck P, Waldstein SM, Schmidt-Erfurth U, Langs G. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery International Conference on Information Processing in Medical Imaging 2017 June 25-30. Boone, NC, USA. Cham: Springer 2017.
[http://dx.doi.org/10.1007/978-3-319-59050-9_12]
[55]
Alex V. KP MS, Chennamsetty SS, Krishnamurthi G. Generative adversarial networks for brain lesion detection. In Medical Imaging 2017: Image Processing 2017 Feb 24 (Vol. 10133, p. 101330G). International Society for Optics and Photonics.
[56]
Baumgartner CF, Koch LM, Can Tezcan K, Xi Ang J, Konukoglu E. Visual feature attribution using Wasserstein Gans. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; pp. 8309-19; arXiv:1711.08998.
[57]
Chen X, Konukoglu E. Unsupervised Detection of Lesions in Brain MRI using constrained adversarial auto-encod ers arXiv preprint arXiv:180604972. 1806.
[58]
Sekuboyina A, Rempfler M, Kukačka J, et al. Btrfly net: Vertebrae labelling with energy-based adversarial learning of local spine prior. International Conference on Medical Image Computing and Computer-Assisted Intervention 2018 Sept 16-20 Granada, Spain Berlin Springer pp.649-57.
[59]
Tuysuzoglu A, Tan J, Eissa K, Kiraly AP, Diallo M, Kamen A. Deep adversarial context-aware landmark detection for ultrasound imaging. International Conference on Medical Image Computing and Computer-Assisted Intervention 2018 Sept 16-20 Granada, Spain Berlin Springer pp.151-8.
[http://dx.doi.org/10.1007/978-3-030-00937-3_18]
[60]
Quan TM, Nguyen-Duc T, Jeong WK. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans Med Imaging 2018; 37(6): 1488-97.
[http://dx.doi.org/10.1109/TMI.2018.2820120] [PMID: 29870376]
[61]
Mardani M, Gong E, Cheng JY, et al. Deep generative adversarial networks for compressed sensing automates MRI. arXiv preprint arXiv:170600051.
[62]
Shitrit O, Raviv TR. Accelerated magnetic resonance imaging by adversarial neural network Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer 2017; pp. 30-8.
[http://dx.doi.org/10.1007/978-3-319-67558-9_4]
[63]
Yu S, Dong H, Yang G, et al. Deep de-aliasing for fast compressive sensing MRI. arXiv preprint arXiv:170507137.
[64]
Wang Y, Yu B, Wang L, et al. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage 2018; 174: 550-62.
[http://dx.doi.org/10.1016/j.neuroimage.2018.03.045] [PMID: 29571715]
[65]
Kim KH, Do WJ, Park SH. Improving resolution of MR images with an adversarial network incorporating images with different contrast. Med Phys 2018; 45(7): 3120-31.
[http://dx.doi.org/10.1002/mp.12945] [PMID: 29729006]
[66]
You C, Li G, Zhang Y, et al. Vannier MW. CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE). IEEE Trans Med Imaging 2020; 39(1): 188-203.
[http://dx.doi.org/10.1109/TMI.2019.2922960] [PMID: 31217097]
[67]
Ran M, Hu J, Chen Y, et al. Denoising of 3D magnetic resonance images using a residual encoder-decoder Wasserstein generative adversarial network. Med Image Anal 2019; 55: 165-80.
[http://dx.doi.org/10.1016/j.media.2019.05.001] [PMID: 31085444]
[68]
Thaler F, Hammernik K, Payer C, Urschler M, Štern D. Sparse-view CT reconstruction using wasserstein GANs. International Workshop on Machine Learning for Medical Image Reconstruction 2018 Sept 16-20; Granada, Spain. Berlin: Springer
[http://dx.doi.org/10.1007/978-3-030-00129-2_9]
[69]
Yang G, Yu S, Dong H, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans Med Imaging 2018; 37(6): 1310-21.
[http://dx.doi.org/10.1109/TMI.2017.2785879] [PMID: 29870361]
[70]
Seitzer M, Yang G, Schlemper J, et al. Adversarial and perceptual refinement for compressed sensing MRI reconstruction. International Conference on Medical Image Computing and Computer- Assisted Intervention. arXiv:1806.11216.
[http://dx.doi.org/10.1007/978-3-030-00928-1_27]
[71]
Abramian D, Eklund A. Refacing: reconstructing anonymized facial features using GANs 16th International Symposium on Biomedical Imaging (ISBI 2019) 2019 Apr 8-11Venice, Italy New Jersey: IEEE. 2019.
[http://dx.doi.org/10.1109/ISBI.2019.8759515]
[72]
Armanious K, Mecky Y, Gatidis S, Yang B. Adversarial inpainting of medical image modalities. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2019 May 12-17; Brighton, UK. New Jersey: IEEE 2019.
[http://dx.doi.org/10.1109/ICASSP.2019.8682677]
[73]
Liao H, Huo Z, Sehnert WJ, Zhou SK, Luo J. Adversarial sparse-view CBCT artifact reduction. International Conference on Medical Image Computing and Computer-Assisted Intervention; pp. 154-62. arXiv:1812.03503
[74]
Oksuz I, Clough J, Bustin A, et al. Cardiac MR motion artefact correction from k-space using deep learning-based reconstruction. International Workshop on Machine Learning for Medical Image Reconstruction 2018 Sept 16 Granada, Spain Berlin: Springer 2018; pp. 21-9.
[http://dx.doi.org/10.1007/978-3-030-00129-2_3]
[75]
Wang J, Zhao Y, Noble JH, Dawant BM. Conditional generative adversarial networks for metal artifact reduction in CT images of the ear International Conference on Medical Image Computing and Computer-Assisted Intervention 2018 Sept 16; Granada, Spain Berlin: Springer 2018; pp. 3-11.
[http://dx.doi.org/10.1007/978-3-030-00928-1_1]
[76]
Chen Y, Shi F, Christodoulou AG, Xie Y, Zhou Z, Li D. Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. International Conference on Medical Image Computing and Computer-Assisted Intervention 2018 Sept 16 Granada, Spain . Berlin: Springer 2018.
[http://dx.doi.org/10.1007/978-3-030-00928-1_11]
[77]
Zhang P, Wang F, Xu W, Li Y. Multi-channel generative adversarial network for parallel magnetic resonance image reconstruction in k-space. International Conference on Medical Image Computing and Computer-Assisted Intervention 2018; Sept 16 Granada, Spain Berlin: Springer. 2018; pp. 180-8.
[http://dx.doi.org/10.1007/978-3-030-00928-1_21]
[78]
Armanious K, Gatidis S, Nikolaou K, Yang B, Kustner T. Retrospective correction of rigid and non-rigid MR motion artifacts using GANs. 16th International Symposium on Biomedical Imaging (ISBI 2019) 2019 Apr 8-11 Venice, Italy New Jersey: IEEE 2019.
[http://dx.doi.org/10.1109/ISBI.2019.8759509]
[79]
Sánchez I, Vilaplana V. Brain MRI super-resolution using 3D generative adversarial networks. arXiv preprint arXiv:181211440.
[80]
Mahapatra D, Bozorgtabar B. Retinal vasculature segmentation using local saliency maps and generative adversarial networks for image super resolution. arXiv preprint arXiv:171004783.
[81]
Ravì D, Szczotka AB, Pereira SP, Vercauteren T. Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy. Med Image Anal 2019; 53: 123-31.
[http://dx.doi.org/10.1016/j.media.2019.01.011] [PMID: 30769327]
[82]
Zhu J, Yang G, Lio P. How can we make GAN perform better in single medical image super-resolution? A Lesion Focused Multi- Scale Approach arXiv preprint arXiv:190103419.
[83]
Ying X, Guo H, Ma K, Wu J, Weng Z, Zheng Y. X2CT-GAN: reconstructing CT from biplanar x-rays with generative adversarial networks. IEEE 2019; 2019: 10619-28.
[84]
Hu Y, Gibson E, Vercauteren T, et al. Intraoperative organ motion models with an ensemble of conditional generative adversarial networks. International Conference on Medical Image Computing and Computer-Assisted Intervention 2017 Sept 11-13 Quebec City, QC, Canada Berlin Springer pp.368-76.
[http://dx.doi.org/10.1007/978-3-319-66185-8_42]
[85]
Pandhe N, Rada B, Quinn S. Generative spatiotemporal modeling of neutrophil behavior. 15th International Symposium on Biomedical Imaging (ISBI 2018) 2018 Apr 4-7 Washington, DC, USA New Jersey: IEEE 2018.
[http://dx.doi.org/10.1109/ISBI.2018.8363732]
[86]
Ross T, Zimmerer D, Vemuri A, et al. Exploiting the potential of unlabeled endoscopic video data with self-supervised learning. Int J CARS 2018; 13(6): 925-33.
[http://dx.doi.org/10.1007/s11548-018-1772-0] [PMID: 29704196]
[87]
Finlayson SG, Chung HW, Kohane IS, Beam AL. Adversarial attacks against medical deep learning systems. arXiv preprint arXiv:180405296.
[88]
Cohen JP, Luck M, Honari S. Distribution matching losses can hallucinate features in medical image translation. International Conference on Medical Image Computing and Computer-Assisted Intervention 2018 Sept 16-20 Granada, Spain Berlin Springer pp.529-36.
[http://dx.doi.org/10.1007/978-3-030-00928-1_60]
[89]
Paschali M, Conjeti S, Navarro F, Navab N. Generalizability vs. robustness: investigating medical imaging networks using adversarial examples. International Conference on Medical Image Computing and Computer-Assisted Intervention 2018 Sept 16-20; Granada, Spain. Berlin: Springer 493-501.
[http://dx.doi.org/10.1007/978-3-030-00928-1_56]
[90]
Mirsky Y, Mahler T, Shelef I, Elovici YCT-GAN. Malicious tampering of 3D medical imagery using deep learning. arXiv preprint arXiv:190103597.
[91]
Mahmood R, Babier A, McNiven A, Diamant A, Chan TC. Automated treatment planning in radiation therapy using generative adversarial networks arXiv preprint arXiv:180706489.
[92]
Bowles C, Gunn R, Hammers A, Rueckert D. Modelling the progression of Alzheimer’s disease in MRI using generative adversarial networks. SPIE Dig Lib 2018; 2018: 1-10.
[http://dx.doi.org/10.1117/12.2293256]
[93]
Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ. Automated analysis of mammographic densities. Phys Med Biol 1996; 41(5): 909-23.
[http://dx.doi.org/10.1088/0031-9155/41/5/007] [PMID: 8735257]
[94]
Oliver A, Freixenet J, Martí R, et al. A novel breast tissue density classification methodology. IEEE Trans Inf Technol Biomed 2008; 12(1): 55-65.
[http://dx.doi.org/10.1109/TITB.2007.903514] [PMID: 18270037]
[95]
Mac Parthaláin N, Jensen R, Shen Q, Zwiggelaar R. Fuzzy-rough approaches for mammographic risk analysis. Intell Data Anal 2010; 14(2): 225-44.
[http://dx.doi.org/10.3233/IDA-2010-0418]
[96]
He W, Denton ER, Stafford K, Zwiggelaar R. Mammographic image segmentation and risk classification based on mammographic parenchymal patterns and geometric moments. Biomed Signal Process Control 2011; 6(3): 321-9.
[http://dx.doi.org/10.1016/j.bspc.2011.03.008]
[97]
Oliver A, Tortajada M, Lladó X, et al. Breast density analysis using an automatic density segmentation algorithm. J Digit Imaging 2015; 28(5): 604-12.
[http://dx.doi.org/10.1007/s10278-015-9777-5] [PMID: 25720749]
[98]
Cil T, Fishell E, Hanna W, et al. Mammographic density and the risk of breast cancer recurrence after breast-conserving surgery. Cancer 2009; 115(24): 5780-7.
[http://dx.doi.org/10.1002/cncr.24638] [PMID: 19902459]
[99]
McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2006; 15(6): 1159-69.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0034] [PMID: 16775176]
[100]
Keller BM, Nathan DL, Wang Y, et al. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation. Med Phys 2012; 39(8): 4903-17.
[http://dx.doi.org/10.1118/1.4736530] [PMID: 22894417]
[101]
Boyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med 2007; 356(3): 227-36.
[http://dx.doi.org/10.1056/NEJMoa062790] [PMID: 17229950]
[102]
Gamdonkar Z, Tay K, Ryder W, Brennan PC, Mello-Thoms C. 2015.
[103]
Zheng Y, Keller BM, Ray S, et al. Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment. Med Phys 2015; 42(7): 4149-60.
[http://dx.doi.org/10.1118/1.4921996] [PMID: 26133615]
[104]
Petroudi S, Constantinou I, Pattichis M, Tziakouri C, Marias K, Pattichis C. Evaluation of spatial dependence matrices on multiscale instantaneous amplitude for mammogram classification. 6th European Conference of the International Federation for Medical and Biological Engineering 2014 Sept 7-11; Dubrovnik, Croatia Berlin: Springer 2014; pp. 156-9..
[http://dx.doi.org/10.1007/978-3-319-11128-5_39]
[105]
Kallenberg M, Petersen K, Nielsen M, et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging 2016; 35(5): 1322-31.
[http://dx.doi.org/10.1109/TMI.2016.2532122] [PMID: 26915120]
[106]
Ahn CK, Heo C, Jin H, Kim JH. A novel deep learning-based approach to high accuracy breast density estimation in digital mammography. SPIE Dig Lib 2017; 2017: 1-8.
[107]
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Conference on Computer Vision and Pattern Recognition (CVPR) 2015 June 7-12 Boston, MA, USA New Jersey: IEEE 2015; pp.3431-40.
[108]
Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 2017; 39(12): 2481-95.
[http://dx.doi.org/10.1109/TPAMI.2016.2644615] [PMID: 28060704]
[109]
Saffari N, Rashwan HA, Herrera B, Romani S, Arenas M, Puig D. On improving breast density segmentation using conditional generative adversarial networks. In: Artificial intelligence research and development. Amsterdam IOS press 2018; pp. 386-93.
[110]
Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS. INbreast: toward a full-field digital mammographic database. Acad Radiol 2012; 19(2): 236-48.
[http://dx.doi.org/10.1016/j.acra.2011.09.014] [PMID: 22078258]
[111]
Cheng HD, Cai X, Chen X, Hu L, Lou X. Computer-aided detection and classification of microcalcifications in mammograms: a survey. Pattern Recognit 2003; 36(12): 2967-91.
[http://dx.doi.org/10.1016/S0031-3203(03)00192-4]
[112]
Korkinof D, Rijken T, O’Neill M, Yearsley J, Harvey H, Glocker B. High-resolution mammogram synthesis using progressive generative adversarial networks arXiv preprint arXiv:180703401.
[113]
Rouhi R, Jafari M, Kasaei S, Keshavarzian P. Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst Appl 2015; 42(3): 990-1002.
[http://dx.doi.org/10.1016/j.eswa.2014.09.020]
[114]
Dhungel N, Carneiro G, Bradley AP. Tree re-weighted belief propagation using deep learning potentials for mass segmentation from mammograms. 12th International Symposium on Biomedical Imaging (ISBI) 2015 Apr 16-19; New York, NY, USA New Jersey: IEEE 2015 .
[http://dx.doi.org/10.1109/ISBI.2015.7163983]
[115]
Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition 2016 June 27-30 Las Vegas, NV, USA New Jersey: IEEE 2016; pp. 779-88.
[http://dx.doi.org/10.1109/CVPR.2016.91]
[116]
Dhungel N, Carneiro G, Bradley AP. Deep learning and structured prediction for the segmentation of mass in mammograms. International Conference on Medical Image Computing and Computer-Assisted Intervention 2015 Oct 5-9; Munich, Germany. Berlin: Springer pp. 605-12.
[http://dx.doi.org/10.1007/978-3-319-24553-9_74]
[117]
Cardoso JS, Domingues I, Oliveira HP. Closed shortest path in the original coordinates with an application to breast cancer. Int J Pattern Recognit Artif Intell 2015; 29(01): 1555002.
[http://dx.doi.org/10.1142/S0218001415550022]
[118]
Cardoso JS, Marques N, Dhungel N, Carneiro G, Bradley AP. Mass segmentation in mammograms: A cross-sensor comparison of deep and tailored features. International Conference on Image Processing (ICIP) 2017 Sept 17-20 Beijing, China New Jersey: IEEE 2018 pp. 1737 41
[http://dx.doi.org/10.1109/ICIP.2017.8296579]
[119]
Zhu W, Xiang X, Tran TD, Hager GD, Xie X. Adversarial deep structured nets for mass segmentation from mammograms. International Symposium on Biomedical Imaging (ISBI 2018) 2018 Apr 4-7 Washington, DC, USA New Jersey: IEEE 2018
[http://dx.doi.org/10.1109/ISBI.2018.8363704]
[120]
Liu Z, Zhuo C, Xu X. Efficient segmentation method using quantised and non-linear CeNN for breast tumour classification. Electron Lett 2018; 54(12): 737-8.
[http://dx.doi.org/10.1049/el.2018.1213]
[121]
Al-Antari MA, Al-Masni MA, Choi MT, Han SM, Kim TS. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int J Med Inform 2018; 117: 44-54.
[http://dx.doi.org/10.1016/j.ijmedinf.2018.06.003] [PMID: 30032964]
[122]
Singh VK, Romani S, Rashwan HA, et al. Conditional generative adversarial and convolutional networks for x-ray breast mass segmentation and shape classification. International Conference on Medical Image Computing and Computer-Assisted Intervention 2018 Sept 16-20 Granada: Spain Berlin: Springer 2018; pp. 833-40.
[http://dx.doi.org/10.1007/978-3-030-00934-2_92]
[123]
Singh VK, Rashwan HA, Romani S, et al. Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network. Expert Syst Appl 2020; 139: 112855.
[http://dx.doi.org/10.1016/j.eswa.2019.112855]
[124]
Matos CE, Souza JC, Diniz JO, et al. Diagnosis of breast tissue in mammography images based local feature descriptors. Multimedia Tools Appl 2019; 78(10): 12961-86.
[http://dx.doi.org/10.1007/s11042-018-6390-x]
[125]
Hofer C, Kwitt R, Niethammer M, Uhl A. Deep learning with topological signatures. 31st Conference on Neural Information Processing Systems (NIPS 2017) Long Beach, CA, USA.
[126]
Masoumi M, Hamza AB. Spectral shape classification: A deep learning approach. J Vis Commun Image Represent 2017; 43: 198-211.
[http://dx.doi.org/10.1016/j.jvcir.2017.01.001]
[127]
Fang Y, Xie J, Dai G, et al. 3D deep shape descriptor. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2015 June 7-12 Boston, MA, USA New Jersey IEEE pp. 2319-28
[128]
Qi CR, Su H, Mo K, Guibas LJ. Pointnet: Deep learning on point sets for 3D classification and segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017 July 21-26 Honolulu, HI, USA New Jersey: IEEE 2017 pp. 652-60
[129]
Luciano L, Hamza AB. Deep learning with geodesic moments for 3D shape classification. Pattern Recognit Lett 2018; 105: 182-90.
[http://dx.doi.org/10.1016/j.patrec.2017.05.011]
[130]
Kisilev P, Walach E, Hashoul SY, Barkan E, Ophir B, Alpert S. Semantic description of medical image findings: structured learning approach. Proceedings of the British Machine Vision Conference 2015 Sept 7-10 Swansea: UK 2015 pp. 171.1-.11.
[http://dx.doi.org/10.5244/C.29.171]
[131]
Kisilev P, Sason E, Barkan E, Hashoul S. Medical image description using multi-task-loss CNN Deep learning and data labeling for medical applications. Cham: Springer 2016; pp. 121-9.
[132]
Kim ST, Lee H, Kim HG, Ro YM. ICADx: interpretable computer aided diagnosis of breast masses. SPIE Dig Lib 2018; 2018: 1-10.
[http://dx.doi.org/10.1117/12.2293570]
[133]
Ball JE, Bruce LM. Digital mammographic computer aided diagnosis (cad) using adaptive level set segmentation. Conf Proc IEEE Eng Med Biol Soc 2007; 2007: 4973-8.
[134]
Varela C, Timp S, Karssemeijer N. Use of border information in the classification of mammographic masses. Phys Med Biol 2006; 51(2): 425-41.
[http://dx.doi.org/10.1088/0031-9155/51/2/016] [PMID: 16394348]
[135]
Domingues I, Sales E, Cardoso J, Pereira W. Inbreast-database masses characterization XXIII CBEB 2012 Available from. https://www.cisuc.uc.pt/publication/show/5590
[136]
Dhungel N, Carneiro G, Bradley AP. The automated learning of deep features for breast mass classification from mammograms. International Conference on Medical Image Computing and Computer-Assisted Intervention 2016 Oct 17-21 Athens, Greece. Berlin: Springer; pp. 106-14.
[http://dx.doi.org/10.1007/978-3-319-46723-8_13]
[137]
Zhu W, Lou Q, Vang YS, Xie X. Deep multi-instance networks with sparse label assignment for whole mammogram classification. International Conference on Medical Image Computing and Computer-Assisted Intervention 2017 Sep 11-13 Quebec City, QC, Canada Berlin Springer pp. 603-11
[http://dx.doi.org/10.1007/978-3-319-66179-7_69]
[138]
Shams S, Platania R, Zhang J, Kim J, Lee K, Park SJ. Deep generative breast cancer screening and diagnosis. International Conference on Medical Image Computing and Computer-Assisted Intervention 2018 Sept 16-20 Granada, Spain Berlin Springer pp. 859-67
[http://dx.doi.org/10.1007/978-3-030-00934-2_95]
[139]
Wu E, Wu K, Cox D, Lotter W. Conditional infilling GANs for data augmentation in mammogram classification Image Analysis for Moving Organ, Breast, and Thoracic Images. Cham: Springer 2018; pp. 98-106.
[http://dx.doi.org/10.1007/978-3-030-00946-5_11]
[140]
Guan S, Loew M. Breast cancer detection using synthetic mammograms from generative adversarial networks in convolutional neural networks. J Med Imaging (Bellingham) 2019; 6(3): 031411.
[http://dx.doi.org/10.1117/12.2318100]
[141]
Heath M, Bowyer K, Kopans D, Moore R, Kegelmeyer WP. The digital database for screening mammography Available from: https://core.ac.uk/download/pdf/21748057.pdf
[142]
Guan S, Loew M. Breast cancer detection using synthetic mammograms from generative adversarial networks in convolutional neural networks. J Med Imaging (Bellingham) 2019; 6(3): 031411.
[http://dx.doi.org/10.1117/1.JMI.6.3.031411] [PMID: 30915386]
[143]
Guan S, Loew M. Using generative adversarial networks and transfer learning for breast cancer detection by convolutional neural networks In: Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and Applications. International Society for Optics and Photonics 2019; 10954: pp. 109541C..
[http://dx.doi.org/10.1117/12.2512671]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy