Review Article

Non-coding RNA Associated Competitive Endogenous RNA Regulatory Network: Novel Therapeutic Approach in Liver Fibrosis

Author(s): Farooq Riaz and Dongmin Li*

Volume 19, Issue 5, 2019

Page: [305 - 317] Pages: 13

DOI: 10.2174/1566523219666191107113046

Price: $65

Abstract

Liver fibrosis or scarring is the most common pathological feature caused by chronic liver injury, and is widely considered one of the primary causes of morbidity and mortality. It is primarily characterised by hepatic stellate cells (HSC) activation and excessive extracellular matrix (ECM) protein deposition. Overwhelming evidence suggests that the dysregulation of several noncoding RNAs (ncRNAs), mainly long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) contributes to the activation of HSC and progression of liver fibrosis. These ncRNAs not only bind to their target genes for the development and regression of liver fibrosis but also act as competing endogenous RNAs (ceRNAs) by sponging with miRNAs to form signaling cascades. Among these signaling cascades, lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA are critical modulators for the initiation, progression, and regression of liver fibrosis. Thus, targeting these interacting ncRNA cascades can serve as a novel and potential therapeutic target for inhibition of HSC activation and prevention and regression of liver fibrosis.

Keywords: Liver fibrosis, non-coding RNA, competing endogenous RNA, NAFLD, circular RNA, microRNA.

Graphical Abstract

[1]
Bogdanos DP, Gao B, Gershwin ME. Liver immunology. Compr Physiol 2013; 3(2): 567-98.
[PMID: 23720323]
[2]
Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275(4): 2247-50.
[http://dx.doi.org/10.1074/jbc.275.4.2247] [PMID: 10644669]
[3]
Kisseleva T, Brenner DA. Hepatic stellate cells and the reversal of fibrosis. J Gastroenterol Hepatol 2006; 21(Suppl. 3): S84-7.
[http://dx.doi.org/10.1111/j.1440-1746.2006.04584.x] [PMID: 16958681]
[4]
Sánchez-Valle V, Chávez-Tapia NC, Uribe M, Méndez-Sánchez N. Role of oxidative stress and molecular changes in liver fibrosis: A review. Curr Med Chem 2012; 19(28): 4850-60.
[http://dx.doi.org/10.2174/092986712803341520] [PMID: 22709007]
[5]
Zhou W-C, Zhang Q-B, Qiao L. Pathogenesis of liver cirrhosis. World J Gastroenterol 2014; 20(23): 7312-24.
[http://dx.doi.org/10.3748/wjg.v20.i23.7312] [PMID: 24966602]
[6]
Elpek GÖ. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World J Gastroenterol 2014; 20(23): 7260-76.
[http://dx.doi.org/10.3748/wjg.v20.i23.7260] [PMID: 24966597]
[7]
Tacke F, Trautwein C. Mechanisms of liver fibrosis resolution. J Hepatol 2015; 63(4): 1038-9.
[http://dx.doi.org/10.1016/j.jhep.2015.03.039] [PMID: 26232376]
[8]
Anthony PP, Ishak KG, Nayak NC, Poulsen HE, Scheuer PJ, Sobin LH. The morphology of cirrhosis. Recommendations on definition, nomenclature, and classification by a working group sponsored by the World Health Organization. J Clin Pathol 1978; 31(5): 395-414.
[http://dx.doi.org/10.1136/jcp.31.5.395] [PMID: 649765]
[9]
Ferrell L. Liver pathology: Cirrhosis, hepatitis, and primary liver tumors. Update and diagnostic problems. Mod Pathol 2000; 13(6): 679-704.
[http://dx.doi.org/10.1038/modpathol.3880119] [PMID: 10874674]
[10]
van Dijk F, Olinga P, Poelstra K, Beljaars L. Targeted therapies in liver fibrosis: Combining the best parts of platelet-derived growth factor bb and interferon gamma. Front Med (Lausanne) 2015; 2: 72.
[http://dx.doi.org/10.3389/fmed.2015.00072] [PMID: 26501061]
[11]
Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860-921.
[http://dx.doi.org/10.1038/35057062] [PMID: 11237011]
[12]
Eddy SR. Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2001; 2(12): 919-29.
[http://dx.doi.org/10.1038/35103511] [PMID: 11733745]
[13]
Stahlhut C, Slack FJ. MicroRNAs and the cancer phenotype: Profiling, signatures and clinical implications. Genome Med 2013; 5(12): 111.
[http://dx.doi.org/10.1186/gm516] [PMID: 24373327]
[14]
Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: A new frontier of translational research? Oncogene 2012; 31(43): 4577-87.
[http://dx.doi.org/10.1038/onc.2011.621] [PMID: 22266873]
[15]
Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: A new frontier in the study of human diseases. Cancer Lett 2013; 339(2): 159-66.
[http://dx.doi.org/10.1016/j.canlet.2013.06.013] [PMID: 23791884]
[16]
Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature 2009; 457(7228): 413-20.
[http://dx.doi.org/10.1038/nature07756] [PMID: 19158787]
[17]
Roy S, Trautwein C, Luedde T, Roderburg C. A general overview on Non-coding RNA-based diagnostic and therapeutic approaches for liver diseases. Front Pharmacol 2018; 9: 805-5.
[http://dx.doi.org/10.3389/fphar.2018.00805] [PMID: 30158867]
[18]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843-54.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[19]
Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 2006; 13(12): 1097-101.
[http://dx.doi.org/10.1038/nsmb1167] [PMID: 17099701]
[20]
Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129(7): 1401-14.
[http://dx.doi.org/10.1016/j.cell.2007.04.040] [PMID: 17604727]
[21]
Bandiera S, Pfeffer S, Baumert TF, Zeisel MB. miR-122--a key factor and therapeutic target in liver disease. J Hepatol 2015; 62(2): 448-57.
[http://dx.doi.org/10.1016/j.jhep.2014.10.004] [PMID: 25308172]
[22]
Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 2013; 10(9): 542-52.
[http://dx.doi.org/10.1038/nrgastro.2013.87] [PMID: 23689081]
[23]
Jiang X-P, Ai W-B, Wan L-Y, Zhang Y-Q, Wu J-F. The roles of microRNA families in hepatic fibrosis. Cell Biosci 2017; 7(1): 34.
[http://dx.doi.org/10.1186/s13578-017-0161-7] [PMID: 28680559]
[24]
He Y, Huang C, Zhang SP, Sun X, Long XR, Li J. The potential of microRNAs in liver fibrosis. Cell Signal 2012; 24(12): 2268-72.
[http://dx.doi.org/10.1016/j.cellsig.2012.07.023] [PMID: 22884954]
[25]
Ambros V. The functions of animal microRNAs. Nature 2004; 431(7006): 350-5.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[26]
Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development 2005; 132(21): 4653-62.
[http://dx.doi.org/10.1242/dev.02073] [PMID: 16224045]
[27]
Lee UE, and Friedman SL. Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol 2011; 25(2): 195-206.
[http://dx.doi.org/10.1016/j.cellsig.2012.07.023] [PMID: 22884954]
[28]
Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14(7): 397-411.
[http://dx.doi.org/10.1038/nrgastro.2017.38] [PMID: 28487545]
[29]
Friedman SL. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008; 88(1): 125-72.
[http://dx.doi.org/10.1152/physrev.00013.2007] [PMID: 18195085]
[30]
Kitano M, Bloomston PM. Hepatic stellate cells and microRNAs in pathogenesis of liver fibrosis. J Clin Med 2016; 5(3): 38.
[http://dx.doi.org/10.3390/jcm5030038] [PMID: 26999230]
[31]
Murakami Y, Toyoda H, Tanaka M, et al. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS One 2011; 6(1)e16081
[http://dx.doi.org/10.1371/journal.pone.0016081] [PMID: 21283674]
[32]
Zhang Y, Liu J, Ma Y, et al. Integration of high-throughput data of microRNA and mRNA expression profiles reveals novel insights into the mechanism of liver fibrosis. Mol Med Rep 2019; 19(1): 115-24.
[PMID: 30431126]
[33]
Hyun J, Park J, Wang S, et al. MicroRNA expression profiling in CCl4-induced liver fibrosis of mus musculus. Int J Mol Sci 2016; 17(6)E961
[http://dx.doi.org/10.3390/ijms17060961] [PMID: 27322257]
[34]
Ogawa T, Enomoto M, Fujii H, et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut 2012; 61(11): 1600-9.
[http://dx.doi.org/10.1136/gutjnl-2011-300717] [PMID: 22267590]
[35]
Sinigaglia A, Lavezzo E, Trevisan M, et al. Changes in microRNA expression during disease progression in patients with chronic viral hepatitis. Liver Int 2015; 35(4): 1324-33.
[http://dx.doi.org/10.1111/liv.12737] [PMID: 25417901]
[36]
Zhao J, Tang N, Wu K, et al. MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis. PLoS One 2014; 9(10)e108005
[http://dx.doi.org/10.1371/journal.pone.0108005] [PMID: 25303175]
[37]
Lakner AM, Steuerwald NM, Walling TL, et al. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology 2012; 56(1): 300-10.
[http://dx.doi.org/10.1002/hep.25613] [PMID: 22278637]
[38]
Roderburg C, Urban GW, Bettermann K, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 2011; 53(1): 209-18.
[http://dx.doi.org/10.1002/hep.23922] [PMID: 20890893]
[39]
Leti F, Malenica I, Doshi M, et al. High-throughput sequencing reveals altered expression of hepatic microRNAs in nonalcoholic fatty liver disease-related fibrosis. Transl Res 2015; 166(3): 304-14.
[http://dx.doi.org/10.1016/j.trsl.2015.04.014] [PMID: 26001595]
[40]
Chen W, Zhao W, Yang A, et al. Integrated analysis of microRNA and gene expression profiles reveals a functional regulatory module associated with liver fibrosis. Gene 2017; 636: 87-95.
[http://dx.doi.org/10.1016/j.gene.2017.09.027] [PMID: 28919164]
[41]
Kocabayoglu P, Lade A, Lee YA, et al. β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J Hepatol 2015; 63(1): 141-7.
[http://dx.doi.org/10.1016/j.jhep.2015.01.036] [PMID: 25678385]
[42]
Shah R, Reyes-Gordillo K, Arellanes-Robledo J, et al. TGF-β1 up-regulates the expression of PDGF-β receptor mRNA and induces a delayed PI3K-, AKT-, and p70(S6K) -dependent proliferative response in activated hepatic stellate cells. Alcohol Clin Exp Res 2013; 37(11): 1838-48.
[http://dx.doi.org/10.1111/acer.12167] [PMID: 23895226]
[43]
Tang N, Zhang YP, Ying W, Yao XX. Interleukin-1β upregulates matrix metalloproteinase-13 gene expression via c-Jun N-terminal kinase and p38 MAPK pathways in rat hepatic stellate cells. Mol Med Rep 2013; 8(6): 1861-5.
[http://dx.doi.org/10.3892/mmr.2013.1719] [PMID: 24126863]
[44]
Robert S, Gicquel T, Bodin A, Lagente V, Boichot E. Characterization of the MMP/TIMP imbalance and collagen production induced by IL-1β or TNF-α release from human hepatic stellate cells. PLoS One 2016; 11(4)e0153118
[http://dx.doi.org/10.1371/journal.pone.0153118] [PMID: 27046197]
[45]
Ceccarelli S, Panera N, Mina M, et al. LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease. Oncotarget 2015; 6(39): 41434-52.
[http://dx.doi.org/10.18632/oncotarget.5163] [PMID: 26573228]
[46]
Naim A, Pan Q, Baig MS. Matrix Metalloproteinases (MMPs) in liver diseases. J Clin Exp Hepatol 2017; 7(4): 367-72.
[http://dx.doi.org/10.1016/j.jceh.2017.09.004] [PMID: 29234202]
[47]
Ogawa T, Iizuka M, Sekiya Y, Yoshizato K, Ikeda K, Kawada N. Suppression of type I collagen production by microRNA-29b in cultured human stellate cells. Biochem Biophys Res Commun 2010; 391(1): 316-21.
[http://dx.doi.org/10.1016/j.bbrc.2009.11.056] [PMID: 19913496]
[48]
Zhang Z, Gao Z, Hu W, et al. 3, 3′-Diindolylmethane ameliorates experimental hepatic fibrosis via inhibiting miR-21 expression. Br J Pharmacol 2013; 170(3): 649-60.
[http://dx.doi.org/10.1111/bph.12323] [PMID: 23902531]
[49]
Wang B, Li W, Guo K, Xiao Y, Wang Y, Fan J. miR-181b promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients. Biochem Biophys Res Commun 2012; 421(1): 4-8.
[http://dx.doi.org/10.1016/j.bbrc.2012.03.025] [PMID: 22446332]
[50]
Iizuka M, Ogawa T, Enomoto M, et al. Induction of microRNA-214-5p in human and rodent liver fibrosis. Fibrogenesis Tissue Repair 2012; 5(1): 12.
[http://dx.doi.org/10.1186/1755-1536-5-12] [PMID: 22849305]
[51]
Venugopal SK, Jiang J, Kim TH, et al. Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells, and their overexpression causes decreased stellate cell activation. Am J Physiol Gastrointest Liver Physiol 2010; 298(1): G101-6.
[http://dx.doi.org/10.1152/ajpgi.00220.2009] [PMID: 19892940]
[52]
Maher B. ENCODE: The human encyclopaedia. Nature 2012; 489(7414): 46-8.
[http://dx.doi.org/10.1038/489046a] [PMID: 22962707]
[53]
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009; 136(4): 629-41.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[54]
Yoon JH, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol 2013; 425(19): 3723-30.
[http://dx.doi.org/10.1016/j.jmb.2012.11.024] [PMID: 23178169]
[55]
DiStefano JK. The emerging role of long noncoding RNAs in human disease. Methods Mol Biol 2018; 1706: 91-110.
[http://dx.doi.org/10.1007/978-1-4939-7471-9_6] [PMID: 29423795]
[56]
Zhao XY, Lin JD. Long noncoding RNAs: A new regulatory code in metabolic control. Trends Biochem Sci 2015; 40(10): 586-96.
[http://dx.doi.org/10.1016/j.tibs.2015.08.002] [PMID: 26410599]
[57]
Maeda N, Kasukawa T, Oyama R, et al. Transcript annotation in FANTOM3: Mouse gene catalog based on physical cDNAs. PLoS Genet 2006; 2(4)e62
[http://dx.doi.org/10.1371/journal.pgen.0020062] [PMID: 16683036]
[58]
Kapranov P, Cawley SE, Drenkow J, et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science 2002; 296(5569): 916-9.
[http://dx.doi.org/10.1126/science.1068597] [PMID: 11988577]
[59]
Rinn JL, Euskirchen G, Bertone P, et al. The transcriptional activity of human Chromosome 22. Genes Dev 2003; 17(4): 529-40.
[http://dx.doi.org/10.1101/gad.1055203] [PMID: 12600945]
[60]
Guttman M, Garber M, Levin JZ, et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 2010; 28(5): 503-10.
[http://dx.doi.org/10.1038/nbt.1633] [PMID: 20436462]
[61]
Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009; 458(7235): 223-7.
[http://dx.doi.org/10.1038/nature07672] [PMID: 19182780]
[62]
Guo CJ, Xiao X, Sheng L, et al. RNA sequencing and bioinformatics analysis implicate the regulatory role of a long noncoding RNA-mRNA network in hepatic stellate cell activation. Cell Physiol Biochem 2017; 42(5): 2030-42.
[http://dx.doi.org/10.1159/000479898] [PMID: 28803234]
[63]
Zhou C, York SR, Chen JY, et al. Long noncoding RNAs expressed in human hepatic stellate cells form networks with extracellular matrix proteins. Genome Med 2016; 8(1): 31.
[http://dx.doi.org/10.1186/s13073-016-0285-0] [PMID: 27007663]
[64]
Oliva J, Bardag-Gorce F, French BA, Li J, French SW. The regulation of non-coding RNA expression in the liver of mice fed DDC. Exp Mol Pathol 2009; 87(1): 12-9.
[http://dx.doi.org/10.1016/j.yexmp.2009.03.006] [PMID: 19362547]
[65]
Yuan X, Wang J, Tang X, Li Y, Xia P, Gao X. Berberine ameliorates nonalcoholic fatty liver disease by a global modulation of hepatic mRNA and lncRNA expression profiles. J Transl Med 2015; 13: 24.
[http://dx.doi.org/10.1186/s12967-015-0383-6] [PMID: 25623289]
[66]
Zhang K, Han X, Zhang Z, et al. The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways. Nat Commun 2017; 8(1): 144.
[http://dx.doi.org/10.1038/s41467-017-00204-4] [PMID: 28747678]
[67]
Atanasovska B, Rensen SS, van der Sijde MR, et al. A liver-specific long noncoding RNA with a role in cell viability is elevated in human nonalcoholic steatohepatitis. Hepatology 2017; 66(3): 794-808.
[http://dx.doi.org/10.1002/hep.29034] [PMID: 28073183]
[68]
Li C, Chen J, Zhang K, Feng B, Wang R, Chen L. Progress and prospects of long noncoding RNAs (lncRNAs) in hepatocellular carcinoma. Cell Physiol Biochem 2015; 36(2): 423-34.
[http://dx.doi.org/10.1159/000430109] [PMID: 25968300]
[69]
Leti F, Legendre C, Still CD, et al. Altered expression of MALAT1 lncRNA in nonalcoholic steatohepatitis fibrosis regulates CXCL5 in hepatic stellate cells Transl Res 2017; 190: 25-39 e21..
[http://dx.doi.org/10.1016/j.trsl.2017.09.001]
[70]
Yu F, Lu Z, Cai J, et al. MALAT1 functions as a competing endogenous RNA to mediate Rac1 expression by sequestering miR-101b in liver fibrosis. Cell Cycle 2015; 14(24): 3885-96.
[http://dx.doi.org/10.1080/15384101.2015.1120917] [PMID: 26697839]
[71]
He Y, Luo Y, Liang B, Ye L, Lu G, He W. Potential applications of MEG3 in cancer diagnosis and prognosis. Oncotarget 2017; 8(42): 73282-95.
[http://dx.doi.org/10.18632/oncotarget.19931] [PMID: 29069869]
[72]
He Y, Wu YT, Huang C, et al. Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis. Biochim Biophys Acta 2014; 1842(11): 2204-15.
[http://dx.doi.org/10.1016/j.bbadis.2014.08.015] [PMID: 25201080]
[73]
Zhang L, Yang Z, Trottier J, Barbier O, Wang L. Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay. Hepatology 2017; 65(2): 604-15.
[http://dx.doi.org/10.1002/hep.28882] [PMID: 27770549]
[74]
Hanson A, Wilhelmsen D, DiStefano JK. The role of long non-coding RNAs (lncRNAs) in the development and progression of fibrosis associated with nonalcoholic fatty liver disease (NAFLD). Noncoding RNA 2018; 4(3)E18
[http://dx.doi.org/10.3390/ncrna4030018] [PMID: 30134610]
[75]
Zhou B, Yuan W, Li X. LncRNA Gm5091 alleviates alcoholic hepatic fibrosis by sponging miR-27b/23b/24 in mice. Cell Biol Int 2018; 42(10): 1330-9.
[http://dx.doi.org/10.1002/cbin.11021] [PMID: 29935035]
[76]
Yu F, Geng W, Dong P, Huang Z, Zheng J. LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death Dis 2018; 9(10): 1014.
[http://dx.doi.org/10.1038/s41419-018-1068-x] [PMID: 30282972]
[77]
Zheng J, Dong P, Mao Y, et al. lincRNA-p21 inhibits hepatic stellate cell activation and liver fibrogenesis via p21. FEBS J 2015; 282(24): 4810-21.
[http://dx.doi.org/10.1111/febs.13544] [PMID: 26433205]
[78]
Li Z, Wang J, Zeng Q, et al. Long noncoding RNA HOTTIP Promotes mouse hepatic stellate cell activation via downregulating miR-148a. Cell Physiol Biochem 2018; 51(6): 2814-28.
[http://dx.doi.org/10.1159/000496012] [PMID: 30562760]
[79]
Wu JC, Luo SZ, Liu T, Lu LG, Xu MY. linc-SCRG1 accelerates liver fibrosis by decreasing RNA-binding protein tristetraprolin. FASEB J 2019; 33(2): 2105-15.
[http://dx.doi.org/10.1096/fj.201800098RR] [PMID: 30226813]
[80]
Gong Z, Tang J, Xiang T, et al. Genome-wide identification of long noncoding RNAs in CCl4-induced liver fibrosis via RNA sequencing. Mol Med Rep 2018; 18(1): 299-307.
[http://dx.doi.org/10.3892/mmr.2018.8986] [PMID: 29749545]
[81]
Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 2012; 7(2)e30733
[http://dx.doi.org/10.1371/journal.pone.0030733] [PMID: 22319583]
[82]
Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 2017; 27(5): 626-41.
[http://dx.doi.org/10.1038/cr.2017.31] [PMID: 28281539]
[83]
Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAsMol Cell 2017; 66(1): 9-21. e7.
[http://dx.doi.org/10.1016/j.molcel.2017.02.021]
[84]
Starke S, Jost I, Rossbach O, et al. Exon circularization requires canonical splice signals. Cell Rep 2015; 10(1): 103-11.
[http://dx.doi.org/10.1016/j.celrep.2014.12.002] [PMID: 25543144]
[85]
Wilusz JEA A. 360° view of circular RNAs: From biogenesis to functions. Wiley Interdiscip Rev RNA 2018; 9(4): e1478.
[http://dx.doi.org/10.1002/wrna.1478] [PMID: 29655315]
[86]
Lasda E, Parker R. Circular RNAs: Diversity of form and function. RNA 2014; 20(12): 1829-42.
[http://dx.doi.org/10.1261/rna.047126.114] [PMID: 25404635]
[87]
Abu N, Jamal R. Circular RNAs as promising biomarkers: A mini-review. Front Physiol 2016; 7: 355.
[http://dx.doi.org/10.3389/fphys.2016.00355] [PMID: 27588005]
[88]
Jin X, Feng C-Y, Xiang Z, Chen Y-P, Li Y-M. CircRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of nonalcoholic steatohepatitis. Oncotarget 2016; 7(41): 66455-67.
[http://dx.doi.org/10.18632/oncotarget.12186] [PMID: 27677588]
[89]
Zhou Y, Lv X, Qu H, et al. Differential expression of circular RNAs in hepatic tissue in a model of liver fibrosis and functional analysis of their target genes. Hepatol Res 2019; 49(3): 324-34.
[http://dx.doi.org/10.1111/hepr.13284] [PMID: 30379383]
[90]
Chen Y, Yuan B, Wu Z, Dong Y, Zhang L, Zeng Z. Microarray profiling of circular RNAs and the potential regulatory role of hsa_circ_0071410 in the activated human hepatic stellate cell induced by irradiation. Gene 2017; 629: 35-42.
[http://dx.doi.org/10.1016/j.gene.2017.07.078] [PMID: 28774651]
[91]
Wang SL, Yang CQ, Qi XL, et al. Inhibitory effect of bone morphogenetic protein-7 on hepatic fibrosis in rats. Int J Clin Exp Pathol 2013; 6(5): 897-903.
[PMID: 23638221]
[92]
Yao T, Chen Q, Fu L, Guo J. Circular RNAs: Biogenesis, properties, roles, and their relationships with liver diseases. Hepatol Res 2017; 47(6): 497-504.
[http://dx.doi.org/10.1111/hepr.12871] [PMID: 28185365]
[93]
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell 2011; 146(3): 353-8.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[94]
Bian EB, Xiong ZG, Li J. New advances of lncRNAs in liver fibrosis, with specific focus on lncRNA-miRNA interactions. J Cell Physiol 2019; 234(3): 2194-203.
[http://dx.doi.org/10.1002/jcp.27069] [PMID: 30229908]
[95]
Franco-Zorrilla JM, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 2007; 39(8): 1033-7.
[http://dx.doi.org/10.1038/ng2079] [PMID: 17643101]
[96]
Chiyomaru T, Yamamura S, Fukuhara S, et al. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One 2013; 8(8)e70372
[http://dx.doi.org/10.1371/journal.pone.0070372] [PMID: 23936419]
[97]
Jia LF, Wei SB, Gan YH, et al. Expression, regulation and roles of miR-26a and MEG3 in tongue squamous cell carcinoma. Int J Cancer 2014; 135(10): 2282-93.
[http://dx.doi.org/10.1002/ijc.28667] [PMID: 24343426]
[98]
Braconi C, Kogure T, Valeri N, et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 2011; 30(47): 4750-6.
[http://dx.doi.org/10.1038/onc.2011.193] [PMID: 21625215]
[99]
Wang J, Liu X, Wu H, et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 2010; 38(16): 5366-83.
[http://dx.doi.org/10.1093/nar/gkq285] [PMID: 20423907]
[100]
Liu Q, Huang J, Zhou N, et al. LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res 2013; 41(9): 4976-87.
[http://dx.doi.org/10.1093/nar/gkt182] [PMID: 23558749]
[101]
Zheng J, Yu F, Dong P, et al. Long non-coding RNA PVT1 activates hepatic stellate cells through competitively binding microRNA-152. Oncotarget 2016; 7(39): 62886-97.
[http://dx.doi.org/10.18632/oncotarget.11709] [PMID: 27588491]
[102]
Bian EB, Wang YY, Yang Y, et al. Hotair facilitates hepatic stellate cells activation and fibrogenesis in the liver. Biochim Biophys Acta Mol Basis Dis 2017; 1863(3): 674-86.
[http://dx.doi.org/10.1016/j.bbadis.2016.12.009] [PMID: 27979710]
[103]
Yu F, Chen B, Dong P, Zheng J. HOTAIR epigenetically modulates PTEN expression via MicroRNA-29b: A novel mechanism in regulation of liver fibrosis. Mol Ther 2017; 25(1): 205-17.
[http://dx.doi.org/10.1016/j.ymthe.2016.10.015] [PMID: 28129115]
[104]
Yu F, Lu Z, Chen B, Dong P, Zheng J. Identification of a novel lincRNA-p21-miR-181b-PTEN signaling cascade in liver fibrosis. Mediators Inflamm 2016; 2016: 9856538.
[http://dx.doi.org/10.1155/2016/9856538] [PMID: 27610008]
[105]
Yu F, Guo Y, Chen B, et al. LincRNA-p21 inhibits the Wnt/β-catenin pathway in activated hepatic stellate cells via sponging microRNA-17-5p. Cell Physiol Biochem 2017; 41(5): 1970-80.
[http://dx.doi.org/10.1159/000472410] [PMID: 28391277]
[106]
Fu N, Zhao SX, Kong LB, et al. LncRNA-ATB/microRNA-200a/β-catenin regulatory axis involved in the progression of HCV-related hepatic fibrosis. Gene 2017; 618: 1-7.
[http://dx.doi.org/10.1016/j.gene.2017.03.008] [PMID: 28302418]
[107]
Yu F, Zheng J, Mao Y, et al. Long non-coding RNA growth arrest-specific transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism of competing endogenous RNA. J Biol Chem 2015; 290(47): 28286-98.
[http://dx.doi.org/10.1074/jbc.M115.683813] [PMID: 26446789]
[108]
Yu F, Jiang Z, Chen B, Dong P, Zheng J. NEAT1 accelerates the progression of liver fibrosis via regulation of microRNA-122 and Kruppel-like factor 6. J Mol Med (Berl) 2017; 95(11): 1191-202.
[http://dx.doi.org/10.1007/s00109-017-1586-5] [PMID: 28864835]
[109]
Zheng J, Mao Y, Dong P, Huang Z, Yu F. Long noncoding RNA HOTTIP mediates SRF expression through sponging miR-150 in hepatic stellate cells. J Cell Mol Med 2019; 23(2): 1572-80.
[PMID: 30548190]
[110]
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[111]
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495(7441): 384-8.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[112]
Wilusz JE, Sharp PA. Molecular biology. A circuitous route to noncoding RNA. Science 2013; 340(6131): 440-1.
[http://dx.doi.org/10.1126/science.1238522] [PMID: 23620042]
[113]
Guo XY, Chen JN, Sun F, Wang YQ, Pan Q, Fan JG. circRNA_ 0046367 Prevents hepatoxicity of lipid peroxidation: An inhibitory role against hepatic steatosis. Oxid Med Cell Longev . 2017; 2017: 3960197.
[http://dx.doi.org/10.1155/2017/3960197] [PMID: 29018509]
[114]
Guo XY, Sun F, Chen JN, Wang YQ, Pan Q, Fan JG. circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling. World J Gastroenterol 2018; 24(3): 323-37.
[http://dx.doi.org/10.3748/wjg.v24.i3.323] [PMID: 29391755]
[115]
Guo XY, He CX, Wang YQ, et al. Circular RNA profiling and bioinformatic modeling identify its regulatory role in hepatic steatosis. BioMed Res Int 2017; 2017: 5936171.
[http://dx.doi.org/10.1155/2017/5936171] [PMID: 28717649]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy