Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Gut-Amygdala Interactions in Autism Spectrum Disorders: Developmental Roles via regulating Mitochondria, Exosomes, Immunity and microRNAs

Author(s): Moonsang Seo and George Anderson*

Volume 25, Issue 41, 2019

Page: [4344 - 4356] Pages: 13

DOI: 10.2174/1381612825666191105102545

Price: $65

Abstract

Background: Autism Spectrum Disorders (ASD) have long been conceived as developmental disorder. A growing body of data highlights a role for alterations in the gut in the pathoetiology and/or pathophysiology of ASD. Recent work shows alterations in the gut microbiome to have a significant impact on amygdala development in infancy, suggesting that the alterations in the gut microbiome may act to modulate not only amygdala development but how the amygdala modulates the development of the frontal cortex and other brain regions.

Methods: This article reviews wide bodies of data pertaining to the developmental roles of the maternal and foetal gut and immune systems in the regulation of offspring brain development.

Results: A number of processes seem to be important in mediating how genetic, epigenetic and environmental factors interact in early development to regulate such gut-mediated changes in the amygdala, wider brain functioning and inter-area connectivity, including via regulation of microRNA (miR)-451, 14-3-3 proteins, cytochrome P450 (CYP)1B1 and the melatonergic pathways. As well as a decrease in the activity of monoamine oxidase, heightened levels of in miR-451 and CYP1B1, coupled to decreased 14-3-3 act to inhibit the synthesis of N-acetylserotonin and melatonin, contributing to the hyperserotonemia that is often evident in ASD, with consequences for mitochondria functioning and the content of released exosomes. These same factors are likely to play a role in regulating placental changes that underpin the association of ASD with preeclampsia and other perinatal risk factors, including exposure to heavy metals and air pollutants. Such alterations in placental and gut processes act to change the amygdala-driven biological underpinnings of affect-cognitive and affect-sensory interactions in the brain.

Conclusion: Such a perspective readily incorporates previously disparate bodies of data in ASD, including the role of the mu-opioid receptor, dopamine signaling and dopamine receptors, as well as the changes occurring to oxytocin and taurine levels. This has a number of treatment implications, the most readily applicable being the utilization of sodium butyrate and melatonin.

Keywords: Autism spectrum disorder, amygdala, prefrontal cortex, gut, melatonin, microRNA, N-acetylserotonin, mitochondria, immune, treatment.

[1]
Kopec AM, Fiorentino MR, Bilbo SD. Gut-immune-brain dysfunction in Autism: Importance of sex. Brain Res 2018; 1693B: 214-7.
[http://dx.doi.org/10.1016/j.brainres.2018.01.009] [PMID: 29360468]
[2]
Horvath K, Perman JA. Autism and gastrointestinal symptoms. Curr Gastroenterol Rep 2002; 4(3): 251-8.
[http://dx.doi.org/10.1007/s11894-002-0071-6] [PMID: 12010627]
[3]
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross talk: the microbiota and neurodevelopmental disorders. Front Neurosci 2017; 11: 490.
[http://dx.doi.org/10.3389/fnins.2017.00490] [PMID: 28966571]
[4]
Li Q, Han Y, Dy ABC, Hagerman RJ. The gut microbiota and autism spectrum disorders. Front Cell Neurosci 2017; 11: 120.
[http://dx.doi.org/10.3389/fncel.2017.00120] [PMID: 28503135]
[5]
Yang Y, Tian J, Yang B. Targeting gut microbiome: a novel and potential therapy for autism. Life Sci 2018; 194: 111-9.
[http://dx.doi.org/10.1016/j.lfs.2017.12.027] [PMID: 29277311]
[6]
Slyepchenko A, Maes M, Köhler CA, et al. T helper 17 cells may drive neuroprogression in major depressive disorder: proposal of an integrative model. Neurosci Biobehav Rev 2016; 64: 83-100.
[http://dx.doi.org/10.1016/j.neubiorev.2016.02.002] [PMID: 26898639]
[7]
Anderson G, Seo M, Berk M, Carvalho AF, Maes M. Gut permeability and microbiota in Parkinson’s disease: role of depression, tryptophan catabolites, oxidative and nitrosative stress and melatonergic pathways. Curr Pharm Des 2016; 22(40): 6142-51.
[http://dx.doi.org/10.2174/1381612822666160906161513] [PMID: 27604608]
[8]
Rodriguez M, Wootla B, Anderson G. Multiple sclerosis, gut microbiota and permeability: role of tryptophan catabolites, depression and the driving down of local melatonin. Curr Pharm Des 2016; 22(40): 6134-41.
[http://dx.doi.org/10.2174/1381612822666160915160520] [PMID: 27634184]
[9]
Anderson G, Maes M. The gut-brain axis: the role of melatonin in linking psychiatric, inflammatory and neurodegenerative conditions. Adv Integr Med 2015; 2(1): 31-7.
[http://dx.doi.org/10.1016/j.aimed.2014.12.007]
[10]
Chen MH, Pan TL, Lan WH, et al. Risk of suicide attempts among adolescents and young adults with autism spectrum disorder: a nationwide longitudinal follow-up study. J Clin Psychiatry 2017; 78(9): e1174-9.
[http://dx.doi.org/10.4088/JCP.16m11100] [PMID: 28872268]
[11]
Constantino JN, Charman T. Diagnosis of autism spectrum disorder: reconciling the syndrome, its diverse origins, and variation in expression. Lancet Neurol 2016; 15(3): 279-91.
[http://dx.doi.org/10.1016/S1474-4422(15)00151-9] [PMID: 26497771]
[12]
Swann JR, Garcia-Perez I, Braniste V, et al. Application of 1H NMR spectroscopy to the metabolic phenotyping of rodent brain extracts: a metabonomic study of gut microbial influence on host brain metabolism. J Pharm Biomed Anal 2017; 143: 141-6.
[http://dx.doi.org/10.1016/j.jpba.2017.05.040] [PMID: 28595107]
[13]
Gogou M, Kolios G. Are therapeutic diets an emerging additional choice in autism spectrum disorder management? World J Pediatr 2018; 14(3): 215-23.
[http://dx.doi.org/10.1007/s12519-018-0164-4] [PMID: 29846886]
[14]
Anderson G, Maes M. How immune-inflammatory processes link CNS and psychiatric disorders: classification and treatment implications. CNS Neurol Disord Drug Targets 2017; 16(3): 266-78.
[http://dx.doi.org/10.2174/1871527315666161122144659] [PMID: 27875954]
[15]
Herrington JD, Miller JS, Pandey J, Schultz RT. Anxiety and social deficits have distinct relationships with amygdala function in autism spectrum disorder. Soc Cogn Affect Neurosci 2016; 11(6): 907-14.
[http://dx.doi.org/10.1093/scan/nsw015] [PMID: 26865425]
[16]
Anderson G, Maes M. Redox regulation and the autistic spectrum: role of tryptophan catabolites, immuno-inflammation, autoimmunity and the amygdala. Curr Neuropharmacol 2014; 12(2): 148-67.
[http://dx.doi.org/10.2174/1570159X11666131120223757] [PMID: 24669209]
[17]
Tottenham N, Hertzig ME, Gillespie-Lynch K, Gilhooly T, Millner AJ, Casey BJ. Elevated amygdala response to faces and gaze aversion in autism spectrum disorder. Soc Cogn Affect Neurosci 2014; 9(1): 106-17.
[http://dx.doi.org/10.1093/scan/nst050] [PMID: 23596190]
[18]
Avino TA, Barger N, Vargas MV, et al. Neuron numbers increase in the human amygdala from birth to adulthood, but not in autism. Proc Natl Acad Sci USA 2018; 115(14): 3710-5.
[http://dx.doi.org/10.1073/pnas.1801912115] [PMID: 29559529]
[19]
Tottenham N, Gabard-Durnam LJ. The developing amygdala: a student of the world and a teacher of the cortex. Curr Opin Psychol 2017; 17: 55-60.
[http://dx.doi.org/10.1016/j.copsyc.2017.06.012] [PMID: 28950973]
[20]
Bouwmeester H, Smits K, Van Ree JM. Neonatal development of projections to the basolateral amygdala from prefrontal and thalamic structures in rat. J Comp Neurol 2002; 450(3): 241-55.
[http://dx.doi.org/10.1002/cne.10321] [PMID: 12209853]
[21]
Bouwmeester H, Wolterink G, van Ree JM. Neonatal development of projections from the basolateral amygdala to prefrontal, striatal, and thalamic structures in the rat. J Comp Neurol 2002 b; 442(3): 239-49.
[http://dx.doi.org/10.1002/cne.10084] [PMID: 11774339]
[22]
Bertolino A, Saunders RC, Mattay VS, Bachevalier J, Frank JA, Weinberger DR. Altered development of prefrontal neurons in rhesus monkeys with neonatal mesial temporo-limbic lesions: a proton magnetic resonance spectroscopic imaging study. Cereb Cortex 1997; 7(8): 740-8.
[http://dx.doi.org/10.1093/cercor/7.8.740] [PMID: 9408038]
[23]
Hamann SB, Adolphs R. Normal recognition of emotional similarity between facial expressions following bilateral amygdala damage. Neuropsychologia 1999; 37(10): 1135-41.
[http://dx.doi.org/10.1016/S0028-3932(99)00027-5] [PMID: 10509835]
[24]
Ibrahim K, Eilbott JA, Ventola P, et al. Reduced amygdala-prefrontal functional connectivity in children with autism spectrum disorder and co-occurring disruptive behavior. Biol Psychiatry Cogn Neurosci Neuroimaging 2019; 9022(19): 30023.
[http://dx.doi.org/10.1016/j.bpsc.2019.01.009]
[25]
Li Y, Missig G, Finger BC, et al. Maternal and early postnatal immune activation produce dissociable effects on neurotransmission in mPFC-amygdala circuits. J Neurosci 2018; 38(13): 3358-72.
[http://dx.doi.org/10.1523/JNEUROSCI.3642-17.2018] [PMID: 29491010]
[26]
Fuxe K, Jacobsen KX, Höistad M, et al. The dopamine D1 receptor-rich main and paracapsular intercalated nerve cell groups of the rat amygdala: relationship to the dopamine innervation. Neuroscience 2003; 119(3): 733-46.
[http://dx.doi.org/10.1016/S0306-4522(03)00148-9] [PMID: 12809694]
[27]
Anderson G. Neuronal-immune interactions in mediating stress effects in the etiology and course of schizophrenia: role of the amygdala in developmental co-ordination. Med Hypotheses 2011; 76(1): 54-60.
[http://dx.doi.org/10.1016/j.mehy.2010.08.029] [PMID: 20843610]
[28]
Matsuzaki J, Ku M, Berman JI, et al. Abnormal auditory mismatch fields in adults with autism spectrum disorder. Neurosci Lett 2019; 698: 140-5.
[http://dx.doi.org/10.1016/j.neulet.2018.12.043] [PMID: 30599264]
[29]
Bigler ED, Mortensen S, Neeley ES, et al. Superior temporal gyrus, language function, and autism. Dev Neuropsychol 2007; 31(2): 217-38.
[http://dx.doi.org/10.1080/87565640701190841] [PMID: 17488217]
[30]
Hettinger JA, Liu X, Schwartz CE, Michaelis RC, Holden JJA. A DRD1 haplotype is associated with risk for autism spectrum disorders in male-only affected sib-pair families. Am J Med Genet B Neuropsychiatr Genet 2008; 147B(5): 628-36.
[http://dx.doi.org/10.1002/ajmg.b.30655] [PMID: 18205172]
[31]
Hettinger JA, Liu X, Hudson ML, et al. DRD2 and PPP1R1B (DARPP-32) polymorphisms independently confer increased risk for autism spectrum disorders and additively predict affected status in male-only affected sib-pair families. Behav Brain Funct 2012; 8: 19.
[http://dx.doi.org/10.1186/1744-9081-8-19] [PMID: 22559203]
[32]
Kim D, Paré D, Nair SS. Mechanisms contributing to the induction and storage of Pavlovian fear memories in the lateral amygdala. Learn Mem 2013; 20(8): 421-30.
[http://dx.doi.org/10.1101/lm.030262.113] [PMID: 23864645]
[33]
Milne E, Dickinson A, Smith R. Adults with autism spectrum conditions experience increased levels of anomalous perception. PLoS One 2017; 12(5) e0177804
[http://dx.doi.org/10.1371/journal.pone.0177804] [PMID: 28542171]
[34]
Foss-Feig JH, Velthorst E, Smith L, et al. Clinical profiles and conversion rates among young individuals with autism spectrum disorder who present to clinical high risk for psychosis services. J Am Acad Child Adolesc Psychiatry 2019; 8567(19): 30121-2.
[35]
Mazurek MO, Vasa RA, Kalb LG, et al. Anxiety, sensory over-responsivity, and gastrointestinal problems in children with autism spectrum disorders. J Abnorm Child Psychol 2013; 41(1): 165-76.
[http://dx.doi.org/10.1007/s10802-012-9668-x] [PMID: 22850932]
[36]
Luchicchi A, Lecca S, Melis M, et al. Maternal immune activation disrupts dopamine system in the offspring. Int J Neuropsychopharmacol 2016; 19(7) pyw007
[http://dx.doi.org/10.1093/ijnp/pyw007] [PMID: 26819283]
[37]
McGinty VB, Grace AA. Activity-dependent depression of medial prefrontal cortex inputs to accumbens neurons by the basolateral amygdala. Neuroscience 2009; 162(4): 1429-36.
[http://dx.doi.org/10.1016/j.neuroscience.2009.05.028] [PMID: 19460420]
[38]
Yang H, de Jong JW, Tak Y, Peck J, Bateup HS, Lammel S. Nucleus accumbens subnuclei regulate motivated behavior via direct inhibition and disinhibition of VTA dopamine subpopulations. Neuron 2018; 97(2): 434-449.e4.
[http://dx.doi.org/10.1016/j.neuron.2017.12.022] [PMID: 29307710]
[39]
Roomruangwong C, Simeonova DS, Stoyanov DS, Anderson G, Carvalho A, Maes M. Common environmental factors may underpin the comorbidity between generalized anxiety disorder and mood disorders via activated nitro-oxidative pathways. Curr Top Med Chem 2018; 18(19): 1621-40.
[http://dx.doi.org/10.2174/1568026618666181115101625] [PMID: 30430941]
[40]
Salazar F, Baird G, Chandler S, et al. Co-occurring psychiatric disorders in preschool and elementary school-aged children with autism spectrum disorder. J Autism Dev Disord 2015; 45(8): 2283-94.
[http://dx.doi.org/10.1007/s10803-015-2361-5] [PMID: 25737019]
[41]
White SW, Oswald D, Ollendick T, Scahill L. Anxiety in children and adolescents with autism spectrum disorders. Clin Psychol Rev 2009; 29(3): 216-29.
[http://dx.doi.org/10.1016/j.cpr.2009.01.003] [PMID: 19223098]
[42]
Grossberg S, Kishnan D. Neural dynamics of autistic repetitive behaviors and fragile X syndrome: basal ganglia movement gating and mGluR-modulated adaptively timed learning. Front Psychol 2018; 9: 269.
[http://dx.doi.org/10.3389/fpsyg.2018.00269] [PMID: 29593596]
[43]
Chang CH, Grace AA. Inhibitory modulation of orbitofrontal cortex on medial prefrontal cortex-amygdala information flow. Cereb Cortex 2018; 28(1): 1-8.
[http://dx.doi.org/10.1093/cercor/bhw342] [PMID: 29253248]
[44]
Inagaki TK, Ray LA, Irwin MR, Way BM, Eisenberger NI. Opioids and social bonding: naltrexone reduces feelings of social connection. Soc Cogn Affect Neurosci 2016; 11(5): 728-35.
[http://dx.doi.org/10.1093/scan/nsw006] [PMID: 26796966]
[45]
Anderson G, Maes M, Berk M. Inflammation-related disorders in the tryptophan catabolite pathway in depression and somatization. Adv Protein Chem Struct Biol 2012; 88: 27-48.
[http://dx.doi.org/10.1016/B978-0-12-398314-5.00002-7] [PMID: 22814705]
[46]
Pellissier LP, Gandía J, Laboute T, Becker JAJ, Le Merrer J. μ opioid receptor, social behaviour and autism spectrum disorder: reward matters. Br J Pharmacol 2018; 175(14): 2750-69.
[http://dx.doi.org/10.1111/bph.13808] [PMID: 28369738]
[47]
Lichtenberg NT, Wassum KM. Amygdala mu-opioid receptors mediate the motivating influence of cue-triggered reward expectations. Eur J Neurosci 2017; 45(3): 381-7.
[http://dx.doi.org/10.1111/ejn.13477] [PMID: 27862489]
[48]
Nummenmaa L, Manninen S, Tuominen L, et al. Adult attachment style is associated with cerebral μ-opioid receptor availability in humans. Hum Brain Mapp 2015; 36(9): 3621-8.
[http://dx.doi.org/10.1002/hbm.22866] [PMID: 26046928]
[49]
Troisi A, Frazzetto G, Carola V, et al. Variation in the μ-opioid receptor gene (OPRM1) moderates the influence of early maternal care on fearful attachment. Soc Cogn Affect Neurosci 2012; 7(5): 542-7.
[http://dx.doi.org/10.1093/scan/nsr037] [PMID: 21742765]
[50]
van Hoof MJ, Riem MME, Garrett AS, van der Wee NJA, van IJzendoorn MH, Vermeiren RRJM. Unresolved-disorganized attachment adjusted for a general psychopathology factor associated with atypical amygdala resting-state functional connectivity. Eur J Psychotraumatol 2019; 10(1) 1583525
[http://dx.doi.org/10.1080/20008198.2019.1583525] [PMID: 30891161]
[51]
Gregoriou GC, Kissiwaa SA, Patel SD, Bagley EE. Dopamine and opioids inhibit synaptic outputs of the main island of the intercalated neurons of the amygdala. Eur J Neurosci 2018; 50(3): 2065-74.
[http://dx.doi.org/10.1111/ejn.14107] [PMID: 30099803]
[52]
Recht LD, Kent J, Pasternak GW. Quantitative autoradiography of the development of mu opiate binding sites in rat brain. Cell Mol Neurobiol 1985; 5(3): 223-9.
[http://dx.doi.org/10.1007/BF00711008] [PMID: 2998624]
[53]
Dodds L, Fell DB, Shea S, Armson BA, Allen AC, Bryson S. The role of prenatal, obstetric and neonatal factors in the development of autism. J Autism Dev Disord 2011; 41(7): 891-902.
[http://dx.doi.org/10.1007/s10803-010-1114-8] [PMID: 20922473]
[54]
Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 2010; 151(10): 4756-64.
[http://dx.doi.org/10.1210/en.2010-0505] [PMID: 20685869]
[55]
Thanos PK, Zhuo J, Robison L, et al. Suboptimal maternal diets alter mu opioid receptor and dopamine type 1 receptor binding but exert no effect on dopamine transporters in the offspring brain. Int J Dev Neurosci 2018; 64: 21-8.
[http://dx.doi.org/10.1016/j.ijdevneu.2016.09.008] [PMID: 27666382]
[56]
Wang M, Sun X, Guo F, Luan X, Wang C, Xu L. Activation of orexin-1 receptors in the amygdala enhances feeding in the diet-induced obesity rats: blockade with μ-opioid antagonist. Biochem Biophys Res Commun 2018; 503(4): 3186-91.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.120] [PMID: 30144975]
[57]
Kamal Nor N, Ghozali AH, Ismail J. Prevalence of overweight and obesity among children and adolescents with autism spectrum disorder and associated risk factors. Front Pediatr 2019; 7: 38.
[http://dx.doi.org/10.3389/fped.2019.00038] [PMID: 30842939]
[58]
Paysour MJ, Bolte AC, Lukens JR. Crosstalk between the microbiome and gestational immunity in autism-related disorders. DNA Cell Biol 2019; 38(5): 405-9.
[http://dx.doi.org/10.1089/dna.2019.4653] [PMID: 30817175]
[59]
Atzil S, Touroutoglou A, Rudy T, et al. Dopamine in the medial amygdala network mediates human bonding. Proc Natl Acad Sci USA 2017; 114(9): 2361-6.
[http://dx.doi.org/10.1073/pnas.1612233114]
[60]
Toyama K, Kiyosawa N, Watanabe K, Ishizuka H. Identification of circulating miRNAs differentially regulated by opioid treatment. Int J Mol Sci 2017; 18(9) E1991
[http://dx.doi.org/10.3390/ijms18091991] [PMID: 28926935]
[61]
Meguro Y, Miyano K, Hirayama S, et al. Neuropeptide oxytocin enhances μ opioid receptor signaling as a positive allosteric modulator. J Pharmacol Sci 2018; 137(1): 67-75.
[http://dx.doi.org/10.1016/j.jphs.2018.04.002] [PMID: 29716811]
[62]
Abdulamir HA, Abdul-Rasheed OF, Abdulghani EA. Low oxytocin and melatonin levels and their possible role in the diagnosis and prognosis in Iraqi autistic children. Saudi Med J 2016; 37(1): 29-36.
[http://dx.doi.org/10.15537/smj.2016.1.13183] [PMID: 26739971]
[63]
Karjalainen T, Seppälä K, Glerean E, et al. Opioidergic regulation of emotional arousal: a combined PET-fMRI study. Cereb Cortex 2018; 29(9): 4000-16.
[http://dx.doi.org/10.1093/cercor/bhy281] [PMID: 30475982]
[64]
Gigliucci V, Leonzino M, Busnelli M, et al. Region specific up-regulation of oxytocin receptors in the opioid oprm1 (-/-) mouse model of autism. Front Pediatr 2014; 2: 91.
[http://dx.doi.org/10.3389/fped.2014.00091] [PMID: 25225634]
[65]
Higashida H, Munesue T, Kosaka H, Yamasue H, Yokoyama S, Kikuchi M. Social interaction improved by oxytocin in the subclass of autism with comorbid intellectual disabilities. Diseases 2019; 7(1) E24
[http://dx.doi.org/10.3390/diseases7010024] [PMID: 30813294]
[66]
Kruppa JA, Gossen A, Oberwelland Weiß E, et al. Neural modulation of social reinforcement learning by intranasal oxytocin in male adults with high-functioning autism spectrum disorder: a randomized trial. Neuropsychopharmacology 2019; 44(4): 749-56.
[http://dx.doi.org/10.1038/s41386-018-0258-7] [PMID: 30390065]
[67]
Keech B, Crowe S, Hocking DR. Intranasal oxytocin, social cognition and neurodevelopmental disorders: a meta-analysis. Psychoneuroendocrinology 2018; 87: 9-19.
[http://dx.doi.org/10.1016/j.psyneuen.2017.09.022] [PMID: 29032324]
[68]
Peris J, MacFadyen K, Smith JA, de Kloet AD, Wang L, Krause EG. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. J Comp Neurol 2017; 525(5): 1094-108.
[http://dx.doi.org/10.1002/cne.24116] [PMID: 27615433]
[69]
Alaerts K, Bernaerts S, Vanaudenaerde B, Daniels N, Wenderoth N. Amygdala-hippocampal connectivity is associated with endogenous levels of oxytocin and can be altered by exogenously administered oxytocin in adults with autism. Biol Psychiatry Cogn Neurosci Neuroimaging 2019; 4(7): 655-63.
[http://dx.doi.org/10.1016/j.bpsc.2019.01.008] [PMID: 30846366]
[70]
Spengler FB, Schultz J, Scheele D, et al. Kinetics and dose dependency of intranasal oxytocin effects on amygdala reactivity. Biol Psychiatry 2017; 82(12): 885-94.
[http://dx.doi.org/10.1016/j.biopsych.2017.04.015] [PMID: 28629540]
[71]
Erdman SE, Poutahidis T. Microbes and oxytocin: benefits for host physiology and behavior. Int Rev Neurobiol 2016; 131: 91-126.
[http://dx.doi.org/10.1016/bs.irn.2016.07.004] [PMID: 27793228]
[72]
Pagan C, Goubran-Botros H, Delorme R, et al. Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders. Sci Rep 2017; 7(1): 2096.
[http://dx.doi.org/10.1038/s41598-017-02152-x] [PMID: 28522826]
[73]
Anderson G. Gut dysbiosis dysregulates central and systemic homeostasis via decreased melatonin andsuboptimal mitochondria functioning: pathoetiological and pathophysiological implications. Melatonin Res 2019; 2(2): 70-85.
[http://dx.doi.org/10.32794/mr11250022]
[74]
Niu X, Zheng S, Liu H, Li S. Protective effects of taurine against inflammation, apoptosis, and oxidative stress in brain injury. Mol Med Rep 2018; 18(5): 4516-22.
[http://dx.doi.org/10.3892/mmr.2018.9465] [PMID: 30221665]
[75]
Ripps H, Shen W. Review: taurine: a “very essential” amino acid. Mol Vis 2012; 18: 2673-86.
[PMID: 23170060]
[76]
Jong CJ, Ito T, Prentice H, Wu JY, Schaffer SW. Role of mitochondria and endoplasmic reticulum in taurine-deficiency-mediated apoptosis. Nutrients 2017; 9(8) E795
[http://dx.doi.org/10.3390/nu9080795] [PMID: 28757580]
[77]
Park E, Cohen I, Gonzalez M, et al. Is taurine a biomarker in autistic spectrum disorder? Adv Exp Med Biol 2017; 975(Pt 1): 3-16.
[http://dx.doi.org/10.1007/978-94-024-1079-2_1] [PMID: 28849439]
[78]
Sartori T, Galvão Dos Santos G, Nogueira-Pedro A, et al. Effects of glutamine, taurine and their association on inflammatory pathway markers in macrophages. Inflammopharmacology 2018; 26(3): 829-38.
[http://dx.doi.org/10.1007/s10787-017-0406-4] [PMID: 29052795]
[79]
Akhalaya MY, Baizhumanov AA, Graevskaya EE. Effects of taurine, carnosine, and casomorphine on functional activity of rat peritoneal mast cells. Bull Exp Biol Med 2006; 141(3): 328-30.
[http://dx.doi.org/10.1007/s10517-006-0162-8] [PMID: 17073151]
[80]
Che Y, Hou L, Sun F, et al. Taurine protects dopaminergic neurons in a mouse Parkinson’s disease model through inhibition of microglial M1 polarization. Cell Death Dis 2018; 9(4): 435.
[http://dx.doi.org/10.1038/s41419-018-0468-2] [PMID: 29568078]
[81]
Choe KY, Olson JE, Bourque CW. Taurine release by astrocytes modulates osmosensitive glycine receptor tone and excitability in the adult supraoptic nucleus. J Neurosci 2012; 32(36): 12518-27.
[http://dx.doi.org/10.1523/JNEUROSCI.1380-12.2012] [PMID: 22956842]
[82]
Song NY, Shi HB, Li CY, Yin SK. Interaction between taurine and GABA(A)/glycine receptors in neurons of the rat anteroventral cochlear nucleus. Brain Res 2012; 1472: 1-10.
[http://dx.doi.org/10.1016/j.brainres.2012.07.001] [PMID: 22796293]
[83]
Robertson CE, Ratai EM, Kanwisher N. Reduced GABAergic action in the autistic brain. Curr Biol 2016; 26(1): 80-5.
[http://dx.doi.org/10.1016/j.cub.2015.11.019] [PMID: 26711497]
[84]
Li CT, Lu CF, Lin HC, et al. Cortical inhibitory and excitatory function in drug-naive generalized anxiety disorder. Brain Stimul 2017; 10(3): 604-8.
[http://dx.doi.org/10.1016/j.brs.2016.12.007] [PMID: 28040450]
[85]
McCool BA, Chappell A. Strychnine and taurine modulation of amygdala-associated anxiety-like behavior is ‘state’ dependent. Behav Brain Res 2007; 178(1): 70-81.
[http://dx.doi.org/10.1016/j.bbr.2006.12.002] [PMID: 17207866]
[86]
Kawase T, Nagasawa M, Ikeda H, Yasuo S, Koga Y, Furuse M. Gut microbiota of mice putatively modifies amino acid metabolism in the host brain. Br J Nutr 2017; 117(6): 775-83.
[http://dx.doi.org/10.1017/S0007114517000678] [PMID: 28393748]
[87]
Li X, Yang H, Sun H, et al. Taurine ameliorates particulate matter-induced emphysema by switching on mitochondrial NADH dehydrogenase genes. Proc Natl Acad Sci USA 2017; 114(45): E9655-64.
[http://dx.doi.org/10.1073/pnas.1712465114] [PMID: 29078374]
[88]
Raz R, Levine H, Pinto O, Broday DM. Yuval, Weisskopf MG. Traffic-related air pollution and autism spectrum disorder: a population-based nested case-control study in Israel. Am J Epidemiol 2018; 187(4): 717-25.
[http://dx.doi.org/10.1093/aje/kwx294] [PMID: 29020136]
[89]
Martin-Subero M, Anderson G, Kanchanatawan B, Berk M, Maes M. Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut-brain pathways. CNS Spectr 2016; 21(2): 184-98.
[http://dx.doi.org/10.1017/S1092852915000449] [PMID: 26307347]
[90]
Kim S, Goel R, Kumar A, et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond) 2018; 132(6): 701-18.
[http://dx.doi.org/10.1042/CS20180087] [PMID: 29507058]
[91]
Wu JL, Zou JY, Hu ED, et al. Sodium butyrate ameliorates S100/FCA-induced autoimmune hepatitis through regulation of intestinal tight junction and toll-like receptor 4 signaling pathway. Immunol Lett 2017; 190: 169-76.
[http://dx.doi.org/10.1016/j.imlet.2017.08.005] [PMID: 28811235]
[92]
Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci 2018; 12: 49.
[http://dx.doi.org/10.3389/fnins.2018.00049] [PMID: 29467611]
[93]
Engineer CT, Hays SA, Kilgard MP. Vagus nerve stimulation as a potential adjuvant to behavioral therapy for autism and other neurodevelopmental disorders. J Neurodev Disord 2017; 9: 20.
[http://dx.doi.org/10.1186/s11689-017-9203-z] [PMID: 28690686]
[94]
Bujnakova I, Ondrejka I, Mestanik M, et al. Autism spectrum disorder is associated with autonomic underarousal. Physiol Res 2016; 65(Suppl. 5): S673-82.
[PMID: 28006949]
[95]
Kaartinen M, Puura K, Himanen SL, Nevalainen J, Hietanen JK. Autonomic arousal response habituation to social stimuli among children with Asd. J Autism Dev Disord 2016; 46(12): 3688-99.
[http://dx.doi.org/10.1007/s10803-016-2908-0] [PMID: 27638648]
[96]
Taché Y, Bonaz B. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J Clin Invest 2007; 117(1): 33-40.
[http://dx.doi.org/10.1172/JCI30085] [PMID: 17200704]
[97]
Sommansson A, Nylander O, Sjöblom M. Melatonin decreases duodenal epithelial paracellular permeability via a nicotinic receptor-dependent pathway in rats in vivo. J Pineal Res 2013; 54(3): 282-91.
[http://dx.doi.org/10.1111/jpi.12013] [PMID: 23009576]
[98]
Kojima M, Costantini TW, Eliceiri BP, Chan TW, Baird A, Coimbra R. Gut epithelial cell-derived exosomes trigger posttrauma immune dysfunction. J Trauma Acute Care Surg 2018; 84(2): 257-64.
[http://dx.doi.org/10.1097/TA.0000000000001748] [PMID: 29194317]
[99]
Liu F, Bu Z, Zhao F, Xiao D. Increased T-helper 17 cell differentiation mediated by exosome-mediated microRNA-451 redistribution in gastric cancer infiltrated T cells. Cancer Sci 2018; 109(1): 65-73.
[http://dx.doi.org/10.1111/cas.13429] [PMID: 29059496]
[100]
Chen Y, Sun H, Bai Y, Zhi F. Gut dysbiosis-derived exosomes trigger hepatic steatosis by transiting HMGB1 from intestinal to liver in mice. Biochem Biophys Res Commun 2019; 509(3): 767-72.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.180] [PMID: 30616887]
[101]
Babinská K, Bucová M, Ďurmanová V, et al. Increased plasma levels of the high mobility group box 1 protein (HMGB1) are associated with a higher score of gastrointestinal dysfunction in individuals with autism. Physiol Res 2014; 63(Suppl. 4): S613-8.
[PMID: 25669692]
[102]
Tian J, Dai H, Deng Y, et al. The effect of HMGB1 on sub-toxic chlorpyrifos exposure-induced neuroinflammation in amygdala of neonatal rats. Toxicology 2015; 338: 95-103.
[http://dx.doi.org/10.1016/j.tox.2015.10.010] [PMID: 26524701]
[103]
Tache Y, Larauche M, Yuan PQ, Million M. Brain and gut CRF signaling: biological actions and role in the gastrointestinal tract. Curr Mol Pharmacol 2018; 11(1): 51-71.
[PMID: 28240194]
[104]
Vanuytsel T, van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014; 63(8): 1293-9.
[http://dx.doi.org/10.1136/gutjnl-2013-305690] [PMID: 24153250]
[105]
Yamamoto T, Kodama T, Lee J, et al. Anti-allergic role of cholinergic neuronal pathway via α7 nicotinic ACh receptors on mucosal mast cells in a murine food allergy model. PLoS One 2014; 9(1) e85888
[http://dx.doi.org/10.1371/journal.pone.0085888] [PMID: 24454942]
[106]
Theoharides TC, Stewart JM, Panagiotidou S, Melamed I. Mast cells, brain inflammation and autism. Eur J Pharmacol 2016; 778: 96-102.
[http://dx.doi.org/10.1016/j.ejphar.2015.03.086] [PMID: 25941080]
[107]
Kovács KJ. CRH: the link between hormonal-, metabolic- and behavioral responses to stress. J Chem Neuroanat 2013; 54: 25-33.
[http://dx.doi.org/10.1016/j.jchemneu.2013.05.003] [PMID: 23774011]
[108]
Fuenzalida J, Galaz P, Araya KA, et al. Dopamine D1 and corticotrophin-releasing hormone type-2α receptors assemble into functionally interacting complexes in living cells. Br J Pharmacol 2014; 171(24): 5650-64.
[http://dx.doi.org/10.1111/bph.12868] [PMID: 25073922]
[109]
Tsilioni I, Dodman N, Petra AI, et al. Elevated serum neurotensin and CRH levels in children with autistic spectrum disorders and tail-chasing Bull Terriers with a phenotype similar to autism Transl Psychiatry 2014; 4e466.
[http://dx.doi.org/10.1038/tp.2014.106] [PMID: 25313509]
[110]
Lau NM, Green PH, Taylor AK, et al. Markers of celiac disease and gluten sensitivity in children with autism. PLoS One 2013; 8(6) e66155
[http://dx.doi.org/10.1371/journal.pone.0066155] [PMID: 23823064]
[111]
Józefczuk J, Konopka E, Bierła JB, et al. The occurrence of antibodies against gluten in children with autism spectrum disorders does not correlate with serological markers of impaired intestinal permeability. J Med Food 2018; 21(2): 181-7.
[http://dx.doi.org/10.1089/jmf.2017.0069] [PMID: 29072974]
[112]
D’Eufemia P, Celli M, Finocchiaro R, et al. Abnormal intestinal permeability in children with autism. Acta Paediatr 1996; 85(9): 1076-9.
[http://dx.doi.org/10.1111/j.1651-2227.1996.tb14220.x] [PMID: 8888921]
[113]
Ma B, Liang J, Dai M, et al. Altered gut microbiota in chinese children with autism spectrum disorders. Front Cell Infect Microbiol 2019; 9: 40.
[http://dx.doi.org/10.3389/fcimb.2019.00040] [PMID: 30895172]
[114]
Singh VK, Warren RP, Odell JD, Cole P. Changes of soluble interleukin-2, interleukin-2 receptor, T8 antigen, and interleukin-1 in the serum of autistic children. Clin Immunol Immunopathol 1991; 61(3): 448-55.
[http://dx.doi.org/10.1016/S0090-1229(05)80015-7] [PMID: 1934632]
[115]
Small JG. EEG and neurophysiological studies of early infantile autism. Biol Psychiatry 1975; 10(4): 385-97.
[PMID: 169919]
[116]
Saresella M, Piancone F, Marventano I, et al. Multiple inflammasome complexes are activated in autistic spectrum disorders. Brain Behav Immun 2016; 57: 125-33.
[http://dx.doi.org/10.1016/j.bbi.2016.03.009] [PMID: 26979869]
[117]
El-Darawish Y, Li W, Yamanishi K, et al. Frontline science: IL-18 primes murine NK cells for proliferation by promoting protein synthesis, survival, and autophagy. J Leukoc Biol 2018; 104(2): 253-64.
[http://dx.doi.org/10.1002/JLB.1HI1017-396RR] [PMID: 29603367]
[118]
Rose S, Bennuri SC, Davis JE, et al. Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Transl Psychiatry 2018; 8(1): 42.
[http://dx.doi.org/10.1038/s41398-017-0089-z] [PMID: 29391397]
[119]
Liu S, Li E, Sun Z, et al. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci Rep 2019; 9(1): 287.
[http://dx.doi.org/10.1038/s41598-018-36430-z] [PMID: 30670726]
[120]
Jin CJ, Engstler AJ, Sellmann C, et al. Sodium butyrate protects mice from the development of the early signs of non-alcoholic fatty liver disease: role of melatonin and lipid peroxidation. Br J Nutr 2016; 1-12.
[http://dx.doi.org/10.1017/S0007114516004025] [PMID: 27876107]
[121]
Anderson G. Linking the biological underpinnings of depression: role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80(Pt C): 255-66.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.022] [PMID: 28433458]
[122]
Roohbakhsh A, Shamsizadeh A, Hayes AW, Reiter RJ, Karimi G. Melatonin as an endogenous regulator of diseases: the role of autophagy. Pharmacol Res 2018; 133: 265-76.
[http://dx.doi.org/10.1016/j.phrs.2018.01.022] [PMID: 29408249]
[123]
Evans M, Murofushi T, Tsuda H, et al. Combined effects of starvation and butyrate on autophagy-dependent gingival epithelial cell death. J Periodontal Res 2017; 52(3): 522-31.
[http://dx.doi.org/10.1111/jre.12418] [PMID: 27624546]
[124]
Muxel SM, Pires-Lapa MA, Monteiro AW, et al. NF-κB drives the synthesis of melatonin in RAW 264.7 macrophages by inducing the transcription of the arylalkylamine-N- acetyltransferase (AA-NAT) gene. PLoS One 2012; 7(12) e52010
[125]
Pozo D, García-Mauriño S, Guerrero JM, Calvo JR. mRNA expression of nuclear receptor RZR/RORalpha, melatonin membrane receptor MT, and hydroxindole-O-methyltransferase in different populations of human immune cells. J Pineal Res 2004; 37(1): 48-54.
[http://dx.doi.org/10.1111/j.1600-079X.2004.00135.x] [PMID: 15230868]
[126]
Rosenberger CM, Podyminogin RL, Navarro G, et al. miR-451 regulates dendritic cell cytokine responses to influenza infection. J Immunol 2012; 189(12): 5965-75.
[http://dx.doi.org/10.4049/jimmunol.1201437] [PMID: 23169590]
[127]
Bjorklund G, Saad K, Chirumbolo S, et al. Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol Exp (Warsz) 2016; 76(4): 257-68.
[http://dx.doi.org/10.21307/ane-2017-025] [PMID: 28094817]
[128]
Cheng C, Wei H, Xu C, Xie X, Jiang S, Peng J. Maternal soluble fiber diet during pregnancy changes the intestinal microbiota, improves growth performance, and reduces intestinal permeability in piglets. Appl Environ Microbiol 2018; 84(17): e01047-18.
[http://dx.doi.org/10.1128/AEM.01047-18] [PMID: 29959248]
[129]
Wallace JG, Bellissimo CJ, Yeo E, et al. Obesity during pregnancy results in maternal intestinal inflammation, placental hypoxia, and alters fetal glucose metabolism at mid-gestation. Sci Rep 2019; 9(1): 17621.
[http://dx.doi.org/10.1038/s41598-019-54098-x]
[130]
Bhagavata Srinivasan SP, Raipuria M, Bahari H, Kaakoush NO, Morris MJ. Impacts of diet and exercise on maternal gut microbiota are transferred to offspring. Front Endocrinol (Lausanne) 2018; 9: 716.
[http://dx.doi.org/10.3389/fendo.2018.00716] [PMID: 30559716]
[131]
Li X, Brejnrod AD, Ernst M, et al. Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites. Environ Int 2019; 126: 454-67.
[http://dx.doi.org/10.1016/j.envint.2019.02.048] [PMID: 30844581]
[132]
Mutlu EA, Engen PA, Soberanes S, et al. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice. Part Fibre Toxicol 2011; 8: 19.
[http://dx.doi.org/10.1186/1743-8977-8-19] [PMID: 21658250]
[133]
Hafez LM, Kishk AM. Level of lead and cadmium in infant formulae. J Egypt Public Health Assoc 2008; 83(3-4): 285-93.
[PMID: 19302780]
[134]
Choi J, Chang JY, Hong J, Shin S, Park JS, Oh S. Low-level toxic metal exposure in healthy weaning-age infants: association with growth, dietary intake, and iron deficiency. Int J Environ Res Public Health 2017; 14(4) E388
[http://dx.doi.org/10.3390/ijerph14040388] [PMID: 28383506]
[135]
Maghbooli Z, Hossein-Nezhad A, Adabi E, et al. Air pollution during pregnancy and placental adaptation in the levels of global DNA methylation. PLoS One 2018; 13(7) e0199772
[http://dx.doi.org/10.1371/journal.pone.0199772] [PMID: 29979694]
[136]
Lanoix D, Guérin P, Vaillancourt C. Placental melatonin production and melatonin receptor expression are altered in preeclampsia: new insights into the role of this hormone in pregnancy. J Pineal Res 2012; 53(4): 417-25.
[http://dx.doi.org/10.1111/j.1600-079X.2012.01012.x] [PMID: 22686298]
[137]
Vidal DO, Ramão A, Pinheiro DG, et al. Highly expressed placental miRNAs control key biological processes in human cancer cell lines. Oncotarget 2018; 9(34): 23554-63.
[http://dx.doi.org/10.18632/oncotarget.25264] [PMID: 29805755]
[138]
Fay MJ, Alt LAC, Ryba D, et al. Cadmium nephrotoxicity is associated with altered microRNA expression in the rat renal cortex. Toxics 2018; 6(1) E16
[http://dx.doi.org/10.3390/toxics6010016] [PMID: 29543730]
[139]
Dachew BA, Mamun A, Maravilla JC, Alati R. Pre-eclampsia and the risk of autism-spectrum disorder in offspring: meta-analysis. Br J Psychiatry 2018; 212(3): 142-7.
[http://dx.doi.org/10.1192/bjp.2017.27] [PMID: 29436313]
[140]
Jenabi E, Karami M, Khazaei S, Bashirian S. The association between preeclampsia and autism spectrum disorders among children: a meta-analysis. Korean J Pediatr 2019; 62(4): 126-30.
[http://dx.doi.org/10.3345/kjp.2018.07010] [PMID: 30590001]
[141]
Fujisawa TX, Nishitani S, Iwanaga R, et al. Association of aryl hydrocarbon receptor-related gene variants with the severity of autism spectrum disorders. Front Psychiatry 2016; 7: 184.
[http://dx.doi.org/10.3389/fpsyt.2016.00184] [PMID: 27899901]
[142]
Wakx A, Nedder M, Tomkiewicz-Raulet C, et al. Expression, localization, and activity of the aryl hydrocarbon receptor in the human placenta. Int J Mol Sci 2018; 19(12) E3762
[http://dx.doi.org/10.3390/ijms19123762] [PMID: 30486367]
[143]
Beischlag TV, Anderson G, Mazzoccoli G. Glioma: tryptophan catabolite and melatoninergic pathways link microRNA, 14-3- 3, chromosome 4q35, epigenetic processes and other glioma biochemical changes. Curr Pharm Des 2016; 22(8): 1033-48.
[http://dx.doi.org/10.2174/1381612822666151214104941] [PMID: 26654773]
[144]
Anderson G, Reiter RJ. Glioblastoma: role of mitochondria N-acetylserotonin/melatonin ratio in mediating effects of miR-451 and aryl hydrocarbon receptor and in coordinating wider biochemical changes. Int J Tryptophan Res 2019; 12 1178646919855942
[http://dx.doi.org/10.1177/1178646919855942] [PMID: 31244524]
[145]
Bansal S, Leu AN, Gonzalez FJ, et al. Mitochondrial targeting of cytochrome P450 (CYP) 1B1 and its role in polycyclic aromatic hydrocarbon-induced mitochondrial dysfunction. J Biol Chem 2014; 289(14): 9936-51.
[http://dx.doi.org/10.1074/jbc.M113.525659] [PMID: 24497629]
[146]
Sun M, Ma N, He T, Johnston LJ, Ma X. Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR). Crit Rev Food Sci Nutr 2019; 1-9.
[http://dx.doi.org/10.1080/10408398.2019.1598334] [PMID: 30924357]
[147]
Savage JH, Lee-Sarwar KA, Sordillo JE, et al. Diet during pregnancy and infancy and the infant intestinal microbiome. J Pediatr 2018; 203: 47-54.e4.
[http://dx.doi.org/10.1016/j.jpeds.2018.07.066] [PMID: 30173873]
[148]
Richardson JB, Dancy BCR, Horton CL, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep 2018; 8(1): 6578.
[http://dx.doi.org/10.1038/s41598-018-24931-w] [PMID: 29700420]
[149]
Jiang HY, Xu LL, Shao L, et al. Maternal infection during pregnancy and risk of autism spectrum disorders: a systematic review and meta-analysis. Brain Behav Immun 2016; 58: 165-72.
[http://dx.doi.org/10.1016/j.bbi.2016.06.005] [PMID: 27287966]
[150]
Hoban AE, Stilling RMM. M Moloney G, et al Microbial regulation of microRNA expression in the amygdala and prefrontal cortex. Microbiome 2017; 5(1): 102.
[http://dx.doi.org/10.1186/s40168-017-0321-3] [PMID: 28838324]
[151]
Gao W, Salzwedel AP, Carlson AL, et al. Gut microbiome and brain functional connectivity in infants-a preliminary study focusing on the amygdala. Psychopharmacology (Berl) 2019; 236(5): 1641-51.
[http://dx.doi.org/10.1007/s00213-018-5161-8] [PMID: 30604186]
[152]
Garvert MM, Friston KJ, Dolan RJ, Garrido MI. Subcortical amygdala pathways enable rapid face processing. Neuroimage 2014; 102(Pt 2): 309-16.
[http://dx.doi.org/10.1016/j.neuroimage.2014.07.047] [PMID: 25108179]
[153]
Chang J, Yu R. Alternations in functional connectivity of amygdalar subregions under acute social stress. Neurobiol Stress 2018; 9: 264-70.
[http://dx.doi.org/10.1016/j.ynstr.2018.06.001] [PMID: 30450390]
[154]
Shen L, Feng C, Zhang K, et al. Proteomics study of peripheral blood mononuclear cells (PBMCs) in autistic children. Front Cell Neurosci 2019; 13: 105.
[http://dx.doi.org/10.3389/fncel.2019.00105] [PMID: 30941018]
[155]
Griffiths KK, Levy RJ. Evidence of mitochondrial dysfunction in autism: biochemical links, genetic-based associations, and non-energy-related mechanisms. Oxid Med Cell Longev 2017; 2017 4314025
[http://dx.doi.org/10.1155/2017/4314025] [PMID: 28630658]
[156]
Tang G, Gutierrez Rios P, Kuo SH, et al. Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiol Dis 2013; 54: 349-61.
[http://dx.doi.org/10.1016/j.nbd.2013.01.006] [PMID: 23333625]
[157]
Bu X, Wu D, Lu X, et al. Role of SIRT1/PGC-1α in mitochondrial oxidative stress in autistic spectrum disorder. Neuropsychiatr Dis Treat 2017; 13: 1633-45.
[http://dx.doi.org/10.2147/NDT.S129081] [PMID: 28694700]
[158]
Hollis F, Kanellopoulos AK, Bagni C. Mitochondrial dysfunction in autism spectrum disorder: clinical features and perspectives. Curr Opin Neurobiol 2017; 45: 178-87.
[http://dx.doi.org/10.1016/j.conb.2017.05.018] [PMID: 28628841]
[159]
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D. Melatonin mitigates mitochondrial meltdown: interactions with SIRT3. Int J Mol Sci 2018; 19(8) E2439
[http://dx.doi.org/10.3390/ijms19082439] [PMID: 30126181]
[160]
Welberg LA, Seckl JR, Holmes MC. Inhibition of 11beta-hydroxysteroid dehydrogenase, the foeto-placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring. Eur J Neurosci 2000; 12(3): 1047-54.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00958.x] [PMID: 10762336]
[161]
Gur TL, Shay L, Palkar AV, et al. Prenatal stress affects placental cytokines and neurotrophins, commensal microbes, and anxiety-like behavior in adult female offspring. Brain Behav Immun 2017; 64: 50-8.
[http://dx.doi.org/10.1016/j.bbi.2016.12.021] [PMID: 28027927]
[162]
Gohir W, Kennedy KM, Wallace JG, et al. High-fat diet intake modulates maternal intestinal adaptations to pregnancy and results in placental hypoxia, as well as altered fetal gut barrier proteins and immune markers. J Physiol 2019; 597(12): 3029-51.
[http://dx.doi.org/10.1113/JP277353] [PMID: 31081119]
[163]
Anderson GM, Horne WC, Chatterjee D, Cohen DJ. The hyperserotonemia of autism. Ann N Y Acad Sci 1990; 600: 331-40.
[http://dx.doi.org/10.1111/j.1749-6632.1990.tb16893.x] [PMID: 2252319]
[164]
Gu F, Chauhan V, Chauhan A. Monoamine oxidase-A and B activities in the cerebellum and frontal cortex of children and young adults with autism. J Neurosci Res 2017; 95(10): 1965-72.
[http://dx.doi.org/10.1002/jnr.24027] [PMID: 28151561]
[165]
Bocchio M, McHugh SB, Bannerman DM, Sharp T, Capogna M. Serotonin, amygdala and fear: assembling the puzzle. Front Neural Circuits 2016; 10: 24.
[http://dx.doi.org/10.3389/fncir.2016.00024] [PMID: 27092057]
[166]
Israelyan N, Margolis KG. Reprint of: serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders. Pharmacol Res 2019; 140: 115-20.
[http://dx.doi.org/10.1016/j.phrs.2018.12.023] [PMID: 30658882]
[167]
Lim JS, Lim MY, Choi Y, Ko G. Modeling environmental risk factors of autism in mice induces IBD-related gut microbial dysbiosis and hyperserotonemia. Mol Brain 2017; 10(1): 14.
[http://dx.doi.org/10.1186/s13041-017-0292-0] [PMID: 28427452]
[168]
Dimova T, Brouwer M, Gosselin F, et al. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc Natl Acad Sci USA 2015; 112(6): E556-65.
[http://dx.doi.org/10.1073/pnas.1412058112] [PMID: 25617367]
[169]
Constantinides MG. Interactions between the microbiota and innate and innate-like lymphocytes. J Leukoc Biol 2018; 103(3): 409-19.
[http://dx.doi.org/10.1002/JLB.3RI0917-378R] [PMID: 29345366]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy