[1]
Narayanan, K.B.; Sakthivel, N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid Interface Sci., 2011, 169, 59-79.
[2]
Mansouri, S.S.; Ghader, S. Experimental study on effect of different parameters on size and shape of triangular silver nanoparticles prepared by a simple and rapid method in aqueous solution. Arab. J. Chem., 2009, 2, 47-53.
[3]
Kumar, K.M.; Mandal, B.K.; Kumar, K.S.; Reddy, P.S.; Sreedhar, B. Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 102, 128-133.
[4]
Poguberovic, S.S.; Krčmar, D.M.; Maletic, S.P.; Konya, Z.; Pilipovic, D.D.T.; Kerkez, D.V.; Roncevic, S.D. Removal of As (III) and Cr (VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecol. Eng., 2016, 90, 42-49.
[5]
Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 2013, 31, 346-356.
[6]
Weng, X.; Huang, L.; Chen, Z.; Megharaj, M.; Naidu, R. Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Ind. Crops Prod., 2013, 51, 342-347.
[7]
Makarov, V.; Love, A.; Sinitsyna, O.; Makarova, S.; Yaminsky, I.; Taliansky, M.; Kalinina, N. Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 2014, 6, 35-44.
[8]
Kharissova, O.V.; Dias, H.R.; Kharisov, B.I.; Pérez, B.O.; Pérez, V.M.J. The greener synthesis of nanoparticles. Trends Biotechnol., 2013, 31, 240-248.
[9]
Xiao, Z.; Yuan, M.; Yang, B.; Liu, Z.; Huang, J.; Sun, D. Plant-mediated synthesis of highly active iron nanoparticles for Cr (VI) removal: Investigation of the leading biomolecules. Chemosphere, 2016, 150, 357-364.
[10]
Kumar, B.; Smita, K.; Cumbal, L.; Debut, A.; Galeas, S.; Guerrero, V.H. Phytosynthesis and photocatalytic activity of magnetite (Fe3O4) nanoparticles using the Andean blackberry leaf. Mater. Chem. Phys., 2016, 179, 310-315.
[11]
Njagi, E.C.; Huang, H.; Stafford, L.; Genuino, H.; Galindo, H.M.; Collins, J.B.; Hoag, G.E.; Suib, S.L. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 2010, 27, 264-271.
[12]
Prasad, A.S. Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of garlic vine (Mansoa alliacea). Mater. Sci. Semicond. Process., 2016, 53, 79-83.
[13]
Pattanayak, M.; Nayak, P. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Azadirachta indica (Neem). World J. Nano Sci. Technol., 2013, 2, 06-09.
[14]
Wang, Z.; Fang, C.; Megharaj, M. Characterization of iron-polyphenol nanoparticles synthesized by three plant extracts and their Fenton oxidation of azo dye. ACS Sustain. Chem. Eng., 2014, 2, 1022-1025.
[15]
Prasad, C.; Yuvaraja, G.; Venkateswarlu, P. Biogenic synthesis of Fe3O4 magnetic nanoparticles using Pisum sativum peels extract and its effect on magnetic and methyl orange dye degradation studies. J. Magn. Magn. Mater., 2017, 424, 376-381.
[16]
Nadejde, C.; Neamtu, M.; Hodoroaba, V.D.; Schneider, R.J.; Paul, A.; Ababei, G.; Panne, U. Tannic acid-and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants. J. Nanopart. Res., 2015, 17, 476.
[17]
Khataee, A.; Taseidifar, M.; Khorram, S.; Sheydaei, M.; Joo, S.W. Preparation of nanostructured magnetite with plasma for degradation of a cationic textile dye by the heterogeneous Fenton process. J. Taiwan Inst. Chem. Eng., 2015, 53, 132-139.
[18]
Sangami, S.; Manu, B. Synthesis of Green Iron Nanoparticles using Laterite and their application as a Fenton-like catalyst for the degradation of herbicide Ametryn in water. Environ. Technol. Innov., 2017, 8, 150-163.
[19]
Haghzade, Z.; Pajootan, E.; Bahrami, H.; Arami, M. Facile synthesis of Fe3O4 nanoparticles via aqueous based electro chemical route for heterogeneous electro-Fenton removal of azo dyes. J. Taiwan Inst. Chem. Eng., 2017, 71, 91-105.
[20]
Chen, F.; Xie, S.; Huang, X.; Qiu, X. Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2. J. Hazard. Mater., 2017, 322, 152-162.
[21]
Prasad, C.; Karlapudi, S.; Venkateswarlu, P.; Bahadur, I.; Kumar, S. Green arbitrated synthesis of Fe3O4 magnetic nanoparticles with nanorod structure from pomegranate leaves and Congo red dye degradation studies for water treatment. J. Mol. Liq., 2017, 240, 322-328.
[22]
Cheera, P.; Karlapudi, S.; Sellola, G.; Ponneri, V. A facile green synthesis of spherical Fe3O4 magnetic nanoparticles and their effect on degradation of methylene blue in aqueous solution. J. Mol. Liq., 2016, 221, 993-998.
[23]
Harifi, T.; Montazer, M. A novel magnetic reusable nanocomposite with enhanced photocatalytic activities for dye degradation. Sep. Purif. Technol., 2014, 134, 210-219.
[24]
Wang, W.; Cheng, Y.; Kong, T.; Cheng, G. Iron nanoparticles decoration onto three-dimensional graphene for rapid and efficient degradation of azo dye. J. Hazard. Mater., 2015, 299, 50-58.
[25]
Huang, L.; Luo, F.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 154-159.
[26]
Horst, M.F.; Lassalle, V.; Ferreira, M.L. Nanosized magnetite in low cost materials for remediation of water polluted with toxic metals, azo-and antraquinonic dyes. Front. Environ. Sci. Eng., 2015, 9, 746-769.
[27]
Loizzo, M.R.; Said, A.; Tundis, R.; Hawas, U.W.; Rashed, K.; Menichini, F.; Frega, N.G.; Menichini, F. Antioxidant and antiproliferative activity of Diospyros lotus L. extract and isolated compounds. Plant Foods Hum. Nutr., 2009, 64, 264-270.
[28]
Uddin, G.; Rauf, A.; Siddiqui, B.S.; Muhammad, M.; Khan, A.; Shah, S.U.A. Anti-nociceptive, anti-inflammatory and sedative activities of the extracts and chemical constituents of Diospyros lotus L. Phytomedicine, 2014, 21, 954-959.
[29]
Shahwan, T.; Sirriah, S.A.; Nairat, M.; Boyacı, E.; Eroglu, A.E.; Scott, T.B.; Hallam, K.R. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J., 2011, 172, 258-266.
[30]
Prabhakar, R.; Samadder, S.R. Aquatic and terrestrial weed mediated synthesis of iron nanoparticles for possible application in wastewater remediation. J. Clean. Prod., 2017, 168, 1201-1210.
[31]
Groiss, S.; Selvaraj, R.; Varadavenkatesan, T.; Vinayagam, R. Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora. J. Mol. Struct., 2017, 1128, 572-578.
[32]
Bishnoi, S.; Kumar, A.; Selvaraj, R. Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye. Mater. Res. Bull., 2018, 97, 121-127.
[33]
Prasad, K.S.; Gandhi, P.; Selvaraj, K. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As (III) and As (V) from aqueous solution. Appl. Surf. Sci., 2014, 317, 1052-1059.
[34]
Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci. Total Environ., 2014, 466, 210-213.
[35]
Lingamdinne, L.P.; Chang, Y.Y.; Yang, J.K.; Singh, J.; Choi, E.H.; Shiratani, M.; Koduru, J.R.; Attri, P. Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem. Eng. J., 2017, 307, 74-84.
[36]
Singh, S.; Srivastava, V.C.; Mandal, T.K.; Mall, I.D.; Lo, S.L. Synthesis and application of green mixed-metal oxide nano-composite materials from solid waste for dye degradation. J. Environ. Manag., 2016, 181, 146-156.
[37]
Chiou, J.R.; Lai, B.H.; Hsu, K.C.; Chen, D.H. One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. J. Hazard. Mater., 2013, 248, 394-400.
[38]
Pal, P.; Syed, S.S.; Banat, F. Soxhlet extraction of neem pigment to synthesize iron oxide nanoparticles and its catalytic and adsorption activity for methylene blue removal. BioNanoScience., 2017, 7, 546-553.
[39]
Muthukumar, H.; Chandrasekaran, N.I.; Mohammed, S.N.; Pichiah, P.; Manickam, M. Iron oxide nano-material: physicochemical traits and in vitro antibacterial propensity against multidrug resistant bacteria. Ind. Eng. Chem., 2017, 45, 121-130.
[40]
Wei, Y.; Fanga, Z.; Zheng, L.; Tsang, E.P. Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal. Appl. Surf. Sci., 2017, 399, 322-329.
[41]
Kumar, R.; Singh, N.; Pandey, S.N. Potential of green synthesized zero-valent iron nanoparticles for remediation of lead-contaminated water. Int. J. Environ. Sci. Technol., 2015, 12, 3943-3950.
[42]
Onal, E.S.; Yatkin, T.; Ergut, M.; Ozer, A. Green synthesis of Iron Nanoparticles by aqueous extract of Eriobotrya japonica leaves as a heterogeneous Fenton-like catalyst: Degradation of basic red 46. Int. J. Chem. Eng. Appl., 2017, 8, 327-333.
[43]
haghzade, Z.; Pajootan, E.; Bahrami, H.; Arami, M. Facile synthesis of Fe3O4 nanoparticles via aqueous based electro chemical route for heterogeneous electro-Fenton removal of azo dyes. J. Taiwan Inst. Chem. Eng., 2017, 71, 91-105.
[44]
Tang, L.; Tang, J.; Zeng, G.; Yang, G.; Xie, X.; Zhou, Y.; Pang, Y.; Fang, Y.; Wang, J.; Xiong, W. Rapid reductive degradation of aqueous p-nitrophenol using nanoscale zero-valent iron particles immobilized on mesoporous silica with enhanced antioxidation effect. Appl. Surf. Sci., 2015, 333, 220-228.
[45]
Luo, F.; Yang, D.; Chen, Z.; Megharaj, M.; Naidu, R. The mechanism for degrading Orange II based on adsorption and reduction by ion-based nanoparticles synthesized by grape leaf extract. J. Hazard. Mater., 2015, 296, 37-45.
[46]
Gao, Y.; Wang, F.; Wu, Y.; Naidu, R.; Chen, Z. Comparison of degradation mechanisms of microcystin-LR using nanoscale zero-valent iron (nZVI) and bimetallic Fe/Ni and Fe/Pd nanoparticles. Chem. Eng. J., 2016, 285, 459-466.
[47]
Al-Sabagh, A.; Moustafa, Y.; Hamdy, A.; Killa, H.; Ghanem, R.; Morsi, R. Preparation and characterization of sulfonated polystyrene/magnetite nanocomposites for organic dye adsorption. Egypt. J. Pet., 2017, 27(3), 403-413.