Review Article

miRNA替代疗法在肝细胞癌中的前景

卷 19, 期 5, 2019

页: [290 - 304] 页: 15

弟呕挨: 10.2174/1566523219666191023101433

价格: $65

摘要

肝细胞癌是一种毁灭性肿瘤,占全球死亡率的94%,每年约有780,000例新病例。 肿瘤抑制miRNA代表一类非编码RNA,在致癌作用下其表达降低或受到抑制。 因此,这些分子的替换导致数十至数百个致癌靶标的转录后调节并限制了肿瘤。 有趣的是,在HCC中已经突出显示了一组肿瘤沉默基因miRNA,在本文中,我们的综述将讨论这些miR的突出实例,包括使用载体,纳米递送系统,其体外或体外成功模型的有效递送。 体内和临床前试验。 总的来说,抑癌药miRNA可以作为HCC的新型疗法,因此,更多的研究应针对这些有前途的疗法。

关键词: RNA治疗,肿瘤抑制miRNA,纳米递送,肝细胞癌,慢性感染,基因治疗。

图形摘要

[1]
Soheir S. Potential ultrastructure predicting factors for hepatocellular carcinoma in HCV infected patients. Ultrastruct Pathol 2017; 41(3): 209-26.
[2]
Schütte K, Bornschein J, Malfertheiner P. Hepatocellular carcinoma--epidemiological trends and risk factors. Dig Dis 2009; 27(2): 80-92.
[http://dx.doi.org/10.1159/000218339] [PMID: 19546545]
[3]
Thomas MB, Zhu AX. Hepatocellular carcinoma: The need for progress. J Clin Oncol 2005; 23(13): 2892-9.
[http://dx.doi.org/10.1200/JCO.2005.03.196] [PMID: 15860847]
[4]
Croce CM. Oncogenes and cancer. N Engl J Med 2008; 358(5): 502-11.
[http://dx.doi.org/10.1056/NEJMra072367] [PMID: 18234754]
[5]
Sridharan K, Gogtay NJ. Therapeutic nucleic acids: Current clinical status. Br J Clin Pharmacol 2016; 82(3): 659-72.
[http://dx.doi.org/10.1111/bcp.12987] [PMID: 27111518]
[6]
Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[7]
Xue J, Yang J, Luo M, Cho WC, Liu X. MicroRNA-targeted therapeutics for lung cancer treatment. Expert Opin Drug Discov 2017; 12(2): 141-57.
[http://dx.doi.org/10.1080/17460441.2017.1263298] [PMID: 27866431]
[8]
Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: Tiny players in a big field. Immunity 2007; 26(2): 133-7.
[http://dx.doi.org/10.1016/j.immuni.2007.02.005] [PMID: 17307699]
[9]
Schickel R, Boyerinas B, Park SM, Peter ME. MicroRNAs: Key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 2008; 27(45): 5959-74.
[http://dx.doi.org/10.1038/onc.2008.274] [PMID: 18836476]
[10]
Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol 2007; 23(1): 175-205.
[http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123406] [PMID: 17506695]
[11]
Rothschild SI. microRNA therapies in cancer. Molecular and cellular therapies 2014; 7(1): 7.
[12]
Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425(6956): 415-9.
[http://dx.doi.org/10.1038/nature01957] [PMID: 14508493]
[13]
Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, function and role in cancer. Curr Genomics 2010; 11(7): 537-61.
[14]
Gregory RI, Yan KP, Amuthan G, et al. The microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432(7014): 235-40.
[http://dx.doi.org/10.1038/nature03120] [PMID: 15531877]
[15]
Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 2016; 17(10): 1712.
[http://dx.doi.org/10.3390/ijms17101712] [PMID: 27754357]
[16]
Gebert LF, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 2019; 20(1): 21-37.
[17]
Kato M, Slack FJ. microRNAs: Small molecules with big roles - C. elegans to human cancer. Biol Cell 2008; 100(2): 71-81.
[http://dx.doi.org/10.1042/BC20070078] [PMID: 18199046]
[18]
Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99(24): 15524-9.
[http://dx.doi.org/10.1073/pnas.242606799] [PMID: 12434020]
[19]
Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 2006; 25(17): 2537-45.
[http://dx.doi.org/10.1038/sj.onc.1209283] [PMID: 16331254]
[20]
Li C, Feng Y, Coukos G, Zhang L. Therapeutic microRNA strategies in human cancer. AAPS J 2009; 11(4): 747-57.
[http://dx.doi.org/10.1208/s12248-009-9145-9] [PMID: 19876744]
[21]
Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: Progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 2011; 11(12): 849-64.
[http://dx.doi.org/10.1038/nrc3166] [PMID: 22113163]
[22]
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1): 15-20.
[http://dx.doi.org/10.1016/j.cell.2004.12.035] [PMID: 15652477]
[23]
Aravalli RN. Development of MicroRNA therapeutics for hepatocellular carcinoma. Diagnostics (Basel) 2013; 3(1): 170-91.
[http://dx.doi.org/10.3390/diagnostics3010170] [PMID: 26835673]
[24]
Li Q, Li S, Wu Y, Gao F. miRNA-708 functions as a tumour suppressor in hepatocellular carcinoma by targeting SMAD3. Oncol Lett 2017; 14(2): 2552-8.
[http://dx.doi.org/10.3892/ol.2017.6429] [PMID: 28789462]
[25]
Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 2009; 28(40): 3526-36.
[http://dx.doi.org/10.1038/onc.2009.211] [PMID: 19617899]
[26]
Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL. miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 2008; 375(3): 315-20.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.154] [PMID: 18692484]
[27]
Bai S, Nasser MW, Wang B, et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem 2009; 284(46): 32015-27.
[http://dx.doi.org/10.1074/jbc.M109.016774] [PMID: 19726678]
[28]
Nassirpour R, Mehta PP, Yin MJ. miR-122 regulates tumorigenesis in hepatocellular carcinoma by targeting AKT3. PLoS One 2013; 8(11)e79655
[http://dx.doi.org/10.1371/journal.pone.0079655] [PMID: 24244539]
[29]
Nakao K, Miyaaki H, Ichikawa T. Antitumor function of microRNA-122 against hepatocellular carcinoma. J Gastroenterol 2014; 49(4): 589-93.
[http://dx.doi.org/10.1007/s00535-014-0932-4] [PMID: 24531873]
[30]
Fornari F, Milazzo M, Chieco P, et al. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 2010; 70(12): 5184-93.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0145] [PMID: 20501828]
[31]
Duan Q, Wang X, Gong W, et al. ER stress negatively modulates the expression of the miR-199a/214 cluster to regulates tumor survival and progression in human hepatocellular cancer. PLoS One 2012; 7(2): e31518-8.
[http://dx.doi.org/10.1371/journal.pone.0031518] [PMID: 22359598]
[32]
Song J, Gao L, Yang G, et al. MiR-199a regulates cell proliferation and survival by targeting FZD7. PLoS One 2014; 9(10): e110074-4.
[http://dx.doi.org/10.1371/journal.pone.0110074] [PMID: 25313882]
[33]
Jia XQ, Cheng HQ, Qian X, et al. Lentivirus-mediated overexpression of microRNA-199a inhibits cell proliferation of human hepatocellular carcinoma. Cell Biochem Biophys 2012; 62(1): 237-44.
[http://dx.doi.org/10.1007/s12013-011-9263-8] [PMID: 21847633]
[34]
Callegari E, D’Abundo L, Guerriero P, et al. miR-199a-3p modulates MTOR and PAK4 pathways and inhibits tumor growth in a hepatocellular carcinoma transgenic mouse model. Mol Ther Nucleic Acids 2018; 11: 485-93.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0145] [PMID: 20501828]
[35]
Shen Q, Cicinnati VR, Zhang X, et al. Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion. Mol Cancer 2010; 9: 227-7.
[http://dx.doi.org/10.1186/1476-4598-9-227] [PMID: 20799954]
[36]
Li L, Sun P, Zhang C, et al. MiR-98 suppresses the effects of tumor-associated macrophages on promoting migration and invasion of hepatocellular carcinoma cells by regulating IL-10. Biochimie 2018; 150: 23-30.
[http://dx.doi.org/10.18632/oncotarget.12190] [PMID: 27677076]
[37]
Zhou W, Zou B, Liu L, et al. MicroRNA-98 acts as a tumor suppressor in hepatocellular carcinoma via targeting SALL4. Oncotarget 2016; 7(45): 74059-73.
[http://dx.doi.org/10.18632/oncotarget.12190] [PMID: 27677076]
[38]
Jiang T, Li M, Li Q, et al. MicroRNA-98-5p inhibits cell proliferation and induces cell apoptosis in hepatocellular carcinoma via targeting IGF2BP1. Oncol Res 2017; 25(7): 1117-27.
[http://dx.doi.org/10.3727/096504016X14821952695683] [PMID: 28244848]
[39]
Zhang NS, Dai GL, Liu SJ. MicroRNA-29 family functions as a tumor suppressor by targeting RPS15A and regulating cell cycle in hepatocellular carcinoma. Int J Clin Exp Pathol 2017; 10(7): 8031-42.
[40]
Chen KJ, Hou Y, Wang K, et al. Reexpression of Let-7g microRNA inhibits the proliferation and migration via KRas/HMGA2/snail axis in hepatocellular carcinoma. BioMed Res Int 2014; 2014: 742417
[http://dx.doi.org/10.1155/2014/742417] [PMID: 24724096]
[41]
Johnson CD, Esquela-Kerscher A, Stefani G, et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007; 67(16): 7713-22.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1083] [PMID: 17699775]
[42]
Barh D. Let-7 replacement therapy: Applicability in cancer. Cancer Ther 2008; 6(2): 969-84.
[43]
Tsang WP, Kwok TT. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis 2008; 13(10): 1215-22.
[http://dx.doi.org/10.1007/s10495-008-0256-z] [PMID: 18758960]
[44]
Wang Y, Lu Y, Toh ST, et al. Lethal-7 is down-regulated by the hepatitis B virus x protein and targets signal transducer and activator of transcription 3. J Hepatol 2010; 53(1): 57-66.
[http://dx.doi.org/10.1016/j.jhep.2009.12.043] [PMID: 20447714]
[45]
Yang J, Zhou F, Xu T, et al. Analysis of sequence variations in 59 microRNAs in hepatocellular carcinomas. Mutat Res 2008; 638(1-2): 205-9.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.08.007] [PMID: 17900631]
[46]
Li S, Fu H, Wang Y, et al. MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma. Hepatology 2009; 49(4): 1194-202.
[http://dx.doi.org/10.1002/hep.22757] [PMID: 19133651]
[47]
Tryndyak VP, Ross SA, Beland FA, Pogribny IP. Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog 2009; 48(6): 479-87.
[http://dx.doi.org/10.1002/mc.20484] [PMID: 18942116]
[48]
Budhu A, Jia H-L, Forgues M, et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 2008; 47(3): 897-907.
[http://dx.doi.org/10.1002/hep.22160] [PMID: 18176954]
[49]
Hermeking H. p53 enters the microRNA world. Cancer Cell 2007; 12(5): 414-8.
[http://dx.doi.org/10.1016/j.ccr.2007.10.028] [PMID: 17996645]
[50]
Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007; 6(13): 1586-93.
[http://dx.doi.org/10.4161/cc.6.13.4436] [PMID: 17554199]
[51]
Yang P, Li Q-J, Feng Y, et al. TGF-β-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 2012; 22(3): 291-303.
[http://dx.doi.org/10.1016/j.ccr.2012.07.023] [PMID: 22975373]
[52]
Wan Y, Cui R, Gu J, et al. Identification of four oxidative stress-responsive microRNAs, miR-34a-5p, miR-1915-3p, miR-638, and miR-150-3p, in hepatocellular carcinoma. Oxid Med Cell Longev 2017; 2017: 5189138.
[PMID: 28123637]
[53]
Sun TY, Xie HJ, Li Z, et al. miR-34a regulates HDAC1 expression to affect the proliferation and apoptosis of hepatocellular carcinoma. Am J Transl Res 2017; 9(1): 103-14.
[PMID: 28123637]
[54]
Moshiri F, Salvi A, Gramantieri L, et al. (2018). Circulating miR-106b-3p, miR-101-3p and miR-1246 as diagnostic biomarkers of hepatocellular carcinoma. Oncotarget 2018 Mar 16;; 9(20): 15350.
[http://dx.doi.org/10.1371/journal.pgen.1004873] [PMID: 25693145]
[55]
Su H, Yang J-R, Xu T, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 2009; 69(3): 1135-42.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2886] [PMID: 19155302]
[56]
Xu Y, An Y, Wang Y, et al. miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep 2013; 29(5): 2019-24.
[http://dx.doi.org/10.3892/or.2013.2338] [PMID: 23483142]
[57]
Li D, Liu X, Lin L, et al. MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. J Biol Chem 2011; 286(42): 36677-85.
[http://dx.doi.org/10.1074/jbc.M111.270561] [PMID: 21878637]
[58]
Liu AM, Poon RT, Luk JM. MicroRNA-375 targets Hippo-signaling effector YAP in liver cancer and inhibits tumor properties. Biochem Biophys Res Commun 2010; 394(3): 623-7.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.036] [PMID: 20226166]
[59]
He XX, Chang Y, Meng FY, et al. MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo. Oncogene 2012; 31(28): 3357-69.
[http://dx.doi.org/10.1038/onc.2011.500] [PMID: 22056881]
[60]
Yang XW, Zhang LJ, Huang XH, et al. miR-145 suppresses cell invasion in hepatocellular carcinoma cells: miR-145 targets ADAM17. Hepatol Res 2014; 44(5): 551-9.
[http://dx.doi.org/10.1111/hepr.12152] [PMID: 23621665]
[61]
Nakajima G, Hayashi K. Abstract 4441: MicroRNA hsa-miR-145 expression in hepatocellular carcinoma correlates with patient survival. Cancer Res 2017; 77(13): 4444-4.
[62]
Liang H, Sun H, Yang J, Yi C. miR-145-5p reduces proliferation and migration of hepatocellular carcinoma by targeting KLF5. Mol Med Rep 2018; 17(6): 8332-8.
[http://dx.doi.org/10.3892/mmr.2018.8880] [PMID: 29658584]
[63]
Wang Y, He J, Wang Y, Yu H. MicroRNA-138 suppresses cell proliferation, migration and invasion by targeting smoothened (SMO) in hepatocellular carcinoma. Int J Clin Exp Med 2017; 10(9): 13281-9.
[64]
Cheng J, Wu LM, Deng XS, et al. MicroRNA-449a suppresses hepatocellular carcinoma cell growth via G1 phase arrest and the HGF/MET c-Met pathway. Hepatobiliary Pancreat Dis Int 2018; 17(4): 336-44.
[http://dx.doi.org/10.1016/j.hbpd.2018.07.006] [PMID: 30108016]
[65]
Cui H, Song R, Wu J, Wang W, Chen X, Yin J. MicroRNA-337 regulates the PI3K/AKT and Wnt/β-catenin signaling pathways to inhibit hepatocellular carcinoma progression by targeting high-mobility group AT-hook 2. Am J Cancer Res 2018; 8(3): 405-21.
[PMID: 29636997]
[66]
Ding W, Tan H, Li X, et al. MicroRNA-493 suppresses cell proliferation and invasion by targeting ZFX in human hepatocellular carcinoma. Cancer Biomark 2018; 22(3): 427-34.
[http://dx.doi.org/10.3233/CBM-171036] [PMID: 29758928]
[67]
Quan H, Li B, Yang J. MicroRNA-504 functions as a tumor suppressor in hepatocellular carcinoma through inhibiting Frizzled-7-mediated-Wnt/β-catenin signaling. Biomed Pharmacother 2018; 107: 754-62.
[http://dx.doi.org/10.1016/j.biopha.2018.07.150] [PMID: 30142536]
[68]
Wang Z, Si M, Yang N, et al. MicroRNA-506 suppresses invasiveness and metastasis of human hepatocellular carcinoma cells by targeting IL8. Am J Cancer Res 2018; 8(8): 1586-94.
[PMID: 30210926]
[69]
Wang X-P, Yao J, Guan J, Zhou ZQ, Zhang ZY, Yang J. MicroRNA-542-3p functions as a tumor suppressor via directly targeting surviving in hepatocellular carcinoma. Biomed Pharmacother 2018; 99: 817-24.
[http://dx.doi.org/10.1016/j.biopha.2018.01.131] [PMID: 29710480]
[70]
Han Y, Liu Y, et al. miR-9 inhibits the metastatic ability of hepatocellular carcinoma via targeting beta galactoside alpha-2,6-sialyltransferase 1. J Physiol Biochem 2018; 74(3): 491-501.
[http://dx.doi.org/10.1007/s13105-018-0642-0]
[71]
Bae HJ, Noh JH, Kim JK, et al. MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene 2014; 33(20): 2557-67.
[http://dx.doi.org/10.1038/onc.2013.216] [PMID: 23728341]
[72]
Zhang Y, Yang L, Wang S, Liu Z, Xiu M. MiR-29a suppresses cell proliferation by targeting SIRT1 in hepatocellular carcinoma. Cancer Biomark 2018; 22(1): 151-9.
[http://dx.doi.org/10.3233/CBM-171120] [PMID: 29630527]
[73]
Fang J-H, Zhou H-C, Zeng C, et al. MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology 2011; 54(5): 1729-40.
[http://dx.doi.org/10.1002/hep.24577] [PMID: 21793034]
[74]
Mao J, Hu X, Pang P, Zhou B, Li D, Shan H. MiR-30e acts as a tumor suppressor in hepatocellular carcinoma partly via JAK1/STAT3 pathway. Oncol Rep 2017; 38(1): 393-401.
[75]
Sun L, Guo Z, Sun J, et al. MiR-133a acts as an anti-oncogene in Hepatocellular carcinoma by inhibiting FOSL2 through TGF-β/Smad3 signaling pathway. Biomed Pharmacother 2018; 107: 168-76.
[http://dx.doi.org/10.1016/j.biopha.2018.07.151] [PMID: 30086463]
[76]
Pang J, Li Z, Wang G, Li N, Gao Y, Wang S. miR-214-5p targets KLF5 and suppresses proliferation of human hepatocellular carcinoma cells. J Cell Biochem 2018.[Epub ahead of print].
[http://dx.doi.org/10.1002/jcb.27498] [PMID: 30206974]
[77]
Dang S, Zhou J, Wang Z, Wang K, Dai S, He S. MiR-299-3p functions as a tumor suppressor via targeting Sirtuin 5 in hepatocellular carcinoma. Biomed Pharmacother 2018; 106: 966-75.
[http://dx.doi.org/10.1016/j.biopha.2018.06.042] [PMID: 30170358]
[78]
Jiang X, Wu J, Zhang Y, et al. MiR-613 functions as tumor suppressor in hepatocellular carcinoma by targeting YWHAZ. Gene 2018; 659: 168-74.
[http://dx.doi.org/10.1016/j.gene.2018.03.036] [PMID: 29551505]
[79]
Yan TH, Qiu C, Sun J, Li WH. MiR-877-5p suppresses cell growth, migration and invasion by targeting cyclin dependent kinase 14 and predicts prognosis in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 2018; 22(10): 3038-46.
[PMID: 29863248]
[80]
Pan X-P, Wang HX, Tong DM, Li Y, Huang LH, Wang C. miRNA-370 acts as a tumor suppressor via the downregulation of PIM1 in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 2017; 21(6): 1254-63.
[PMID: 28387905]
[81]
Cai QQ, Dong YW, Wang R, et al. MiR-124 inhibits the migration and invasion of human hepatocellular carcinoma cells by suppressing integrin αV expression. Sci Rep 2017; 7: 40733.
[http://dx.doi.org/10.1038/srep40733] [PMID: 28094803]
[82]
Dietrich P, Fritz V, Hellerbrand C, et al. (2016).Tumorsuppressive MicroRNA-188-5p reveals novel oncogenes for hepatocellular carcinoma. Zeitschrift für Gastroenterologie 2016 Dec;; 54(12): A4-A47.
[http://dx.doi.org/10.1016/j.jhep.2015.05.008] [PMID: 25998163]
[83]
Barger JF, Nana-Sinkam SP. MicroRNA as tools and therapeutics in lung cancer. Respir Med 2015; 109(7): 803-12.
[http://dx.doi.org/10.1016/j.rmed.2015.02.006] [PMID: 25910758]
[84]
Olejniczak M, Galka-Marciniak P, Polak K, Fligier A, Krzyzosiak WJ. RNAimmuno: A database of the nonspecific immunological effects of RNA interference and microRNA reagents. RNA 2012; 18(5): 930-5.
[http://dx.doi.org/10.1261/rna.025627.110] [PMID: 22411954]
[85]
Spiegel JC, Lorenzen JM, Thum T. Role of microRNAs in immunity and organ transplantation. Expert Rev Mol Med 2011; 13: e37
[http://dx.doi.org/10.1017/S1462399411002080] [PMID: 22152163]
[86]
Wang H, Jiang Y, Peng H, Chen Y, Zhu P, Huang Y. Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Adv Drug Deliv Rev 2015; 81: 142-60.
[http://dx.doi.org/10.1016/j.addr.2014.10.031] [PMID: 25450259]
[87]
Tasaka S, Kamata H, Miyamoto K, et al. Intratracheal synthetic CpG oligodeoxynucleotide causes acute lung injury with systemic inflammatory response. Respir Res 2009; 10: 84.
[http://dx.doi.org/10.1186/1465-9921-10-84] [PMID: 19772669]
[88]
van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age. EMBO Mol Med 2014; 6(7): 851-64.
[http://dx.doi.org/10.15252/emmm.201100899] [PMID: 24935956]
[89]
Yu HW, Cho WC. The emerging role of miRNAs in combined cancer therapy. Expert Opin Biol Ther 2015; 15(7): 923-5.
[http://dx.doi.org/10.1517/14712598.2015.1030390] [PMID: 25813091]
[90]
Ben-Shushan D, Markovsky E, Gibori H, Tiram G, Scomparin A, Satchi-Fainaro R. Overcoming obstacles in microRNA delivery towards improved cancer therapy. Drug Deliv Transl Res 2014; 4(1): 38-49.
[http://dx.doi.org/10.1007/s13346-013-0160-0] [PMID: 25786616]
[91]
Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther 2011; 18(12): 1104-10.
[http://dx.doi.org/10.1038/gt.2011.50] [PMID: 21525952]
[92]
Bolhassani A, Saleh T. In: Wei M, Ed Challenges in advancing the field of cancer gene therapy: An overview of the multi-functional nanocarriers. Rijeka: InTech 2013; pp. 97-259.
[http://dx.doi.org/10.5772/54862]
[93]
Kota J, Chivukula RR, O’Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137(6): 1005-17.
[http://dx.doi.org/10.1016/j.cell.2009.04.021] [PMID: 19524505]
[94]
Zheng F, Liao YJ, Cai MY, et al. Systemic delivery of microRNA-101 potently inhibits hepatocellular carcinoma in vivo by repressing multiple targets. PLoS Genet 2015; 11(2)e1004873
[http://dx.doi.org/10.1371/journal.pgen.1004873] [PMID: 25693145]
[95]
Lou W, Chen Q, Ma L, et al. Oncolytic adenovirus co-expressing miRNA-34a and IL-24 induces superior antitumor activity in experimental tumor model. J Mol Med (Berl) 2013; 91(6): 715-25.
[http://dx.doi.org/10.1007/s00109-012-0985-x] [PMID: 23292172]
[96]
Ma L, Liu J, Shen J, et al. Expression of miR-122 mediated by adenoviral vector induces apoptosis and cell cycle arrest of cancer cells. Cancer Biol Ther 2010; 9(7): 554-61.
[http://dx.doi.org/10.4161/cbt.9.7.11267] [PMID: 20150764]
[97]
Della Peruta M, Badar A, Rosales C, et al. Preferential targeting of disseminated liver tumors using a recombinant adeno-associated viral vector. Hum Gene Ther 2015; 26(2): 94-103.
[http://dx.doi.org/10.1089/hum.2014.052] [PMID: 25569358]
[98]
Zhang JF, He ML, Fu WM, et al. Primate-specific microRNA-637 inhibits tumorigenesis in hepatocellular carcinoma by disrupting signal transducer and activator of transcription 3 signaling. Hepatology 2011; 54(6): 2137-48.
[http://dx.doi.org/10.1002/hep.24595] [PMID: 21809363]
[99]
Fang F, R.-m. Chang, et al. MicroRNA-188-5p suppresses tumor cell proliferation and metastasis by directly targeting FGF5 in hepatocellular carcinoma. J Hep 2015; 63(4): 874-85.
[http://dx.doi.org/10.1016/j.jhep.2015.05.008] [PMID: 25998163]
[100]
Scanlon KJ. Cancer gene therapy: Challenges and opportunities. Anticancer Res 2004; 24(2A): 501-4.
[PMID: 15152950]
[101]
Cevher E, Sezer AD, Çağlar EŞ. In: Sezer AD, Ed. Gene delivery systems: Recent progress in viral and non-viral therapy. Intech 2012. (Available from: https://www.intechopen.com/books/recent-advances-in-novel-drug-carrier-systems/gene-delivery-systems-recent-progress-in-viral-and-non-viral-therapy
[102]
Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today 2013; 18(5-6): 282-9.
[http://dx.doi.org/10.1016/j.drudis.2012.10.002] [PMID: 23064097]
[103]
Yang T, Zhao P, Rong Z, et al. Anti-tumor efficiency of lipid-coated cisplatin nanoparticles co-loaded with microRNA-375. Theranostics 2016; 6(1): 142-54.
[http://dx.doi.org/10.7150/thno.13130] [PMID: 26722380]
[104]
Xue H, Yu Z, Liu Y, et al. Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma. Int J Nanomedicine 2017; 12: 5271-87.
[http://dx.doi.org/10.2147/IJN.S135306] [PMID: 28769563]
[105]
Daige CL, Wiggins JF, Priddy L, Nelligan-Davis T, Zhao J, Brown D. Systemic delivery of a miR-34a mimic as a potential therapeutic for liver cancer. Mol Cancer Ther 2014; 13(10): 2352-60.
[106]
Liu YM, Xia Y, Dai W, et al. Cholesterol-conjugated let-7a mimics: antitumor efficacy on hepatocellular carcinoma in vitro and in a preclinical orthotopic xenograft model of systemic therapy. BMC Cancer 2014; 14: 889.
[http://dx.doi.org/10.1186/1471-2407-14-889] [PMID: 25429777]
[107]
Hsu SH, Yu B, Wang X, et al. Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor. Nanomedicine (Lond) 2013; 9(8): 1169-80.
[http://dx.doi.org/10.1016/j.nano.2013.05.007] [PMID: 23727126]
[108]
Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4(5): 346-58.
[http://dx.doi.org/10.1038/nrg1066] [PMID: 12728277]
[109]
Cai C, Xie Y, Wu L, et al. PLGA-based dual targeted nanoparticles enhance miRNA transfection efficiency in hepatic carcinoma. Sci Rep 2017; 7: 46250.
[http://dx.doi.org/10.1038/srep46250] [PMID: 28387375]
[110]
Varshney A, Panda JJ, Singh AK, et al. Targeted delivery of microRNA-199a-3p using self-assembled dipeptide nanoparticles efficiently reduces hepatocellular carcinoma in mice. Hepatology 2018; 67(4): 1392-407.
[http://dx.doi.org/10.1002/hep.29643] [PMID: 29108133]
[111]
D’Souza AA, Devarajan PV. Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications. J Control Release 2015; 203: 126-39.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.022] [PMID: 25701309]
[112]
Milosa F, Faillaci F, Critelli R, Villa E, et al. Lactosylated arginine-dehydrophenylalanine nanoparticles increase the selective delivery of miR-199a-3p to liver tumor cells enhancing antitumoral activity. Non-coding RNA Investig 2018; 2: 1-6.
[http://dx.doi.org/10.21037/ncri.2018.08.01]
[113]
Liu H, Chen Y, Li Y, et al. miR-195 suppresses metastasis and angiogenesis of squamous cell lung cancer by inhibiting the expression of VEGF. Mol Med Rep 2019; 20(3): 2625-32.
[http://dx.doi.org/10.3892/mmr.2019.10496] [PMID: 31322197]
[114]
Ge H, Luo H. Overview of advances in vasculogenic mimicry - a potential target for tumor therapy. Cancer Manag Res 2018; 10: 2429-37.
[http://dx.doi.org/10.2147/CMAR.S164675] [PMID: 30122992]
[115]
Liu Y, Wu X, Gao Y, et al. Aptamer-functionalized peptide H3CR5C as a novel nanovehicle for codelivery of fasudil and miRNA-195 targeting hepatocellular carcinoma. Int J Nanomedicine 2016; 11: 3891-905.
[http://dx.doi.org/10.2147/IJN.S108128] [PMID: 27574422]
[116]
Bai Z, Wei J, Yu C, et al. Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. J Mater Chem B Mater Biol Med 2019; 7(8): 1209-25.
[http://dx.doi.org/10.1039/C8TB02946F]
[117]
Sanjay K, Diwan A, Singh P, et al. Functionalized gold nanostructures: Promising gene delivery vehicles in cancer treatment. RSC Advances 2019; 9(41): 23894-907.
[http://dx.doi.org/10.1039/C9RA03608C]
[118]
Huang S, Liu Y, Xu X, et al. Triple therapy of hepatocellular carcinoma with microRNA-122 and doxorubicin co-loaded functionalized gold nanocages. J Mater Chem B Mater Biol Med 2018; 6(15): 2217-29.
[http://dx.doi.org/10.1039/C8TB00224J]
[119]
Liang G, Li Y, Feng W, et al. Polyethyleneimine-coated quantum dots for miRNA delivery and its enhanced suppression in HepG2 cells. Int J Nanomedicine 2016; 11: 6079-88.
[http://dx.doi.org/10.2147/IJN.S120828] [PMID: 27895481]
[120]
Sun S, Wang Y, Zhou R, et al. Targeting and regulating of an oncogene via nanovector delivery of MicroRNA using patient-derived xenografts. Theranostics 2017; 7(3): 677-93.
[http://dx.doi.org/10.7150/thno.16357] [PMID: 28255359]
[121]
Wang Z, Chang Z, Lu M, et al. Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials 2018; 154: 147-57.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.047] [PMID: 29128843]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy