Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

三氧化二砷抗癌模式的新颖机理研究

卷 20, 期 2, 2020

页: [115 - 129] 页: 15

弟呕挨: 10.2174/1568009619666191021122006

价格: $65

摘要

砷是一种天然存在的有毒元素,也是一种传统使用的药物,由于其在急性早幼粒细胞白血病患者中具有治愈性的抗癌特性,因此受到了全世界的广泛关注。在砷剂中,三氧化二砷已被最广泛地用作抗癌药。癌症治疗学的最新进展已导致范式从传统的细胞毒性药物转向靶向与驱动癌症表型密切相关的蛋白质。由于ATO对不同类型的恶性肿瘤具有不同的抗癌作用,因此许多研究努力揭示了ATO诱导的肿瘤抑制机制。从体外细胞模型到临床研究,ATO已得到广泛研究。这些研究的结果为建立用于癌症治疗的分子靶向疗法提供了方便。通过与其他药物联合使用,ATO的功效得以增强。在这篇综述中,我们讨论了最近基于砷的癌症疗法,并总结了ATO抗癌作用的新型潜在分子机制。

关键词: 砷,抗癌药,化学疗法,细胞凋亡,活性氧,急性早幼粒细胞白血病。

图形摘要

[1]
Waxman, S.; Anderson, K.C. History of the development of arsenic derivatives in cancer therapy. Oncologist, 2001, 6(Suppl. 2), 3-10.
[http://dx.doi.org/10.1634/theoncologist.6-suppl_2-3] [PMID: 11331434]
[2]
Haller, J.S. Therapeutic mule: the use of arsenic in the nineteenth century materia medica. Pharm. Hist., 1975, 17(3), 87-100.
[PMID: 11610136]
[3]
Apperley, J.F. Chronic myeloid leukaemia. Lancet, 2015, 385(9976), 1447-1459.
[http://dx.doi.org/10.1016/S0140-6736(13)62120-0] [PMID: 25484026]
[4]
Zhu, J.; Chen, Z.; Lallemand-Breitenbach, V.; de Thé, H. How acute promyelocytic leukaemia revived arsenic. Nat. Rev. Cancer, 2002, 2(9), 705-713.
[http://dx.doi.org/10.1038/nrc887] [PMID: 12209159]
[5]
Munshi, N.C.; Tricot, G.; Desikan, R.; Badros, A.; Zangari, M.; Toor, A.; Morris, C.; Anaissie, E.; Barlogie, B. Clinical activity of arsenic trioxide for the treatment of multiple myeloma. Leukemia, 2002, 16(9), 1835-1837.
[http://dx.doi.org/10.1038/sj.leu.2402599] [PMID: 12200700]
[6]
Hoonjan, M.; Jadhav, V.; Bhatt, P. Arsenic trioxide: insights into its evolution to an anticancer agent. J. Biol. Inorg. Chem., 2018, 23(3), 313-329.
[http://dx.doi.org/10.1007/s00775-018-1537-9] [PMID: 29396610]
[7]
Stevens, J.J.; Graham, B.; Dugo, E.; Berhaneselassie-Sumner, B.; Ndebele, K.; Tchounwou, P.B. Arsenic trioxide induces apoptosis via specific signaling pathways in HT-29 colon cancer cells. J. Cancer Sci. Ther., 2017, 9(1), 298-306.
[http://dx.doi.org/10.4172/1948-5956.1000432] [PMID: 28966729]
[8]
Nagappan, A.; Lee, W.S.; Yun, J.W.; Lu, J.N.; Chang, S.H.; Jeong, J.H.; Kim, G.S.; Jung, J.M.; Hong, S.C. Tetraarsenic hexoxide induces G2/M arrest, apoptosis, and autophagy via PI3K/Akt suppression and p38 MAPK activation in SW620 human colon cancer cells. PLoS One, 2017, 12(3)e0174591
[http://dx.doi.org/10.1371/journal.pone.0174591] [PMID: 28355296]
[9]
Lee, W.S.; Yun, J.W.; Nagappan, A.; Park, H.S.; Lu, J.N.; Kim, H.J.; Chang, S.H.; Kim, D.C.; Lee, J.H.; Jung, J.M.; Hong, S.C.; Ha, W.S.; Kim, G. Tetraarsenic hexoxide demonstrates anticancer activity at least in part through suppression of NF-κB activity in SW620 human colon cancer cells. Oncol. Rep., 2015, 33(6), 2940-2946.
[http://dx.doi.org/10.3892/or.2015.3890] [PMID: 25845556]
[10]
Wang, L.; Hu, X.; Xu, Y.; Liu, Z. Arsenic trioxide inhibits lung metastasis of mouse colon cancer via reducing the infiltration of regulatory T cells. Tumour Biol., 2016, 37(11), 15165-15173.
[http://dx.doi.org/10.1007/s13277-016-5377-3] [PMID: 27677289]
[11]
Cao, Y.; Yu, S.L.; Wang, Y.; Guo, G.Y.; Ding, Q.; An, R.H. MicroRNA-dependent regulation of PTEN after arsenic trioxide treatment in bladder cancer cell line T24. Tumour Biol., 2011, 32(1), 179-188.
[http://dx.doi.org/10.1007/s13277-010-0111-z] [PMID: 20857258]
[12]
Jutooru, I.; Chadalapaka, G.; Sreevalsan, S.; Lei, P.; Barhoumi, R.; Burghardt, R.; Safe, S. Arsenic trioxide downregulates specificity protein (Sp) transcription factors and inhibits bladder cancer cell and tumor growth. Exp. Cell Res., 2010, 316(13), 2174-2188.
[http://dx.doi.org/10.1016/j.yexcr.2010.04.027] [PMID: 20435036]
[13]
Li, X.; Ding, X.; Adrian, T.E. Arsenic trioxide induces apoptosis in pancreatic cancer cells via changes in cell cycle, caspase activation, and GADD expression. Pancreas, 2003, 27(2), 174-179.
[http://dx.doi.org/10.1097/00006676-200308000-00011] [PMID: 12883267]
[14]
Han, J.B.; Sang, F.; Chang, J.J.; Hua, Y.Q.; Shi, W.D.; Tang, L.H.; Liu, L.M. Arsenic trioxide inhibits viability of pancreatic cancer stem cells in culture and in a xenograft model via binding to SHH-Gli. OncoTargets Ther., 2013, 6, 1129-1138.
[http://dx.doi.org/10.2147/OTT.S49148] [PMID: 23990729]
[15]
Lam, S.K.; Li, Y.Y.; Zheng, C.Y.; Leung, L.L.; Ho, J.C. E2F1 downregulation by arsenic trioxide in lung adenocarcinoma. Int. J. Oncol., 2014, 45(5), 2033-2043.
[http://dx.doi.org/10.3892/ijo.2014.2609] [PMID: 25174355]
[16]
Yang, M.H.; Zang, Y.S.; Huang, H.; Chen, K.; Li, B.; Sun, G.Y.; Zhao, X.W. Arsenic trioxide exerts anti-lung cancer activity by inhibiting angiogenesis. Curr. Cancer Drug Targets, 2014, 14(6), 557-566.
[http://dx.doi.org/10.2174/1568009614666140725090000] [PMID: 25088040]
[17]
Jing, Y.; Dai, J.; Chalmers-Redman, R.M.; Tatton, W.G.; Waxman, S. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood, 1999, 94(6), 2102-2111.
[PMID: 10477740]
[18]
Zheng, C.Y.; Lam, S.K.; Li, Y.Y.; Ho, J.C. Arsenic trioxide-induced cytotoxicity in small cell lung cancer via altered redox homeostasis and mitochondrial integrity. Int. J. Oncol., 2015, 46(3), 1067-1078.
[http://dx.doi.org/10.3892/ijo.2015.2826] [PMID: 25572414]
[19]
Chang, K.J.; Yang, M.H.; Zheng, J.C.; Li, B.; Nie, W. Arsenic trioxide inhibits cancer stem-like cells via down-regulation of Gli1 in lung cancer. Am. J. Transl. Res., 2016, 8(2), 1133-1143.
[PMID: 27158399]
[20]
Wu, D.D.; Lau, A.T.Y.; Yu, F.Y.; Cai, N.L.; Dai, L.J.; Ok Kim, M.; Jin, D.Y.; Xu, Y.M. Extracellular signal-regulated kinase 8-mediated NF-κB activation increases sensitivity of human lung cancer cells to arsenic trioxide. Oncotarget, 2017, 8(30), 49144-49155.
[http://dx.doi.org/10.18632/oncotarget.17100] [PMID: 28467781]
[21]
Xiao, Y.F.; Liu, S.X.; Wu, D.D.; Chen, X.; Ren, L.F. Inhibitory effect of arsenic trioxide on angiogenesis and expression of vascular endothelial growth factor in gastric cancer. World J. Gastroenterol., 2006, 12(36), 5780-5786.
[http://dx.doi.org/10.3748/wjg.v12.i36.5780] [PMID: 17007042]
[22]
Zheng, Y.; Zhou, M.; Ye, A.; Li, Q.; Bai, Y.; Zhang, Q. The conformation change of Bcl-2 is involved in arsenic trioxide-induced apoptosis and inhibition of proliferation in SGC7901 human gastric cancer cells. World J. Surg. Oncol., 2010, 8, 31.
[http://dx.doi.org/10.1186/1477-7819-8-31] [PMID: 20403207]
[23]
Jia, Y.; Liu, D.; Xiao, D.; Ma, X.; Han, S.; Zheng, Y.; Sun, S.; Zhang, M.; Gao, H.; Cui, X.; Wang, Y. Expression of AFP and STAT3 is involved in arsenic trioxide-induced apoptosis and inhibition of proliferation in AFP-producing gastric cancer cells. PLoS One, 2013, 8(1)e54774
[http://dx.doi.org/10.1371/journal.pone.0054774] [PMID: 23382965]
[24]
Zhang, J.; Wang, B. Arsenic trioxide (As(2)O(3)) inhibits peritoneal invasion of ovarian carcinoma cells in vitro and in vivo. Gynecol. Oncol., 2006, 103(1), 199-206.
[http://dx.doi.org/10.1016/j.ygyno.2006.02.037] [PMID: 16624393]
[25]
Yuan, Z.; Wang, F.; Zhao, Z.; Zhao, X.; Qiu, J.; Nie, C.; Wei, Y. BIM-mediated AKT phosphorylation is a key modulator of arsenic trioxide-induced apoptosis in cisplatin-sensitive and -resistant ovarian cancer cells. PLoS One, 2011, 6(5)e20586
[http://dx.doi.org/10.1371/journal.pone.0020586] [PMID: 21655183]
[26]
Smith, D.M.; Patel, S.; Raffoul, F.; Haller, E.; Mills, G.B.; Nanjundan, M. Arsenic trioxide induces a beclin-1-independent autophagic pathway via modulation of SnoN/SkiL expression in ovarian carcinoma cells. Cell Death Differ., 2010, 17(12), 1867-1881.
[http://dx.doi.org/10.1038/cdd.2010.53] [PMID: 20508647]
[27]
Kodigepalli, K.M.; Dutta, P.S.; Bauckman, K.A.; Nanjundan, M. SnoN/SkiL expression is modulated via arsenic trioxide-induced activation of the PI3K/AKT pathway in ovarian cancer cells. FEBS Lett., 2013, 587(1), 5-16.
[http://dx.doi.org/10.1016/j.febslet.2012.11.003] [PMID: 23178716]
[28]
Lu, J.; Chew, E.H.; Holmgren, A. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc. Natl. Acad. Sci. USA, 2007, 104(30), 12288-12293.
[http://dx.doi.org/10.1073/pnas.0701549104] [PMID: 17640917]
[29]
Ahn, R.W.; Chen, F.; Chen, H.; Stern, S.T.; Clogston, J.D.; Patri, A.K.; Raja, M.R.; Swindell, E.P.; Parimi, V.; Cryns, V.L.; O’Halloran, T.V. A novel nanoparticulate formulation of arsenic trioxide with enhanced therapeutic efficacy in a murine model of breast cancer. Clin. Cancer Res., 2010, 16(14), 3607-3617.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0068] [PMID: 20519360]
[30]
Xia, J.; Li, Y.; Yang, Q.; Mei, C.; Chen, Z.; Bao, B.; Ahmad, A.; Miele, L.; Sarkar, F.H.; Wang, Z. Arsenic trioxide inhibits cell growth and induces apoptosis through inactivation of notch signaling pathway in breast cancer. Int. J. Mol. Sci., 2012, 13(8), 9627-9641.
[http://dx.doi.org/10.3390/ijms13089627] [PMID: 22949821]
[31]
Du, J.; Zhou, N.; Liu, H.; Jiang, F.; Wang, Y.; Hu, C.; Qi, H.; Zhong, C.; Wang, X.; Li, Z. Arsenic induces functional re-expression of estrogen receptor α by demethylation of DNA in estrogen receptor-negative human breast cancer. PLoS One, 2012, 7(4)e35957
[http://dx.doi.org/10.1371/journal.pone.0035957] [PMID: 22558281]
[32]
He, L.; Thomson, J.M.; Hemann, M.T.; Hernando-Monge, E.; Mu, D.; Goodson, S.; Powers, S.; Cordon-Cardo, C.; Lowe, S.W.; Hannon, G.J.; Hammond, S.M. A microRNA polycistron as a potential human oncogene. Nature, 2005, 435(7043), 828-833.
[http://dx.doi.org/10.1038/nature03552] [PMID: 15944707]
[33]
Esquela-Kerscher, A.; Slack, F.J. Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer, 2006, 6(4), 259-269.
[http://dx.doi.org/10.1038/nrc1840] [PMID: 16557279]
[34]
Jansson, M.D.; Lund, A.H. MicroRNA and cancer. Mol. Oncol., 2012, 6(6), 590-610.
[http://dx.doi.org/10.1016/j.molonc.2012.09.006] [PMID: 23102669]
[35]
Si, L.; Jiang, F.; Li, Y.; Ye, X.; Mu, J.; Wang, X.; Ning, S.; Hu, C.; Li, Z. Induction of the mesenchymal to epithelial transition by demethylation- activated microRNA-200c is involved in the anti-migration/invasion effects of arsenic trioxide on human breast cancer cells. Mol. Carcinog., 2015, 54(9), 859-869.
[http://dx.doi.org/10.1002/mc.22157] [PMID: 24729530]
[36]
Shi, Y.; Cao, T.; Huang, H.; Lian, C.; Yang, Y.; Wang, Z.; Ma, J.; Xia, J. Arsenic trioxide inhibits cell growth and motility via up-regulation of let-7a in breast cancer cells. Cell Cycle, 2017, 16(24), 2396-2403.
[http://dx.doi.org/10.1080/15384101.2017.1387699] [PMID: 28980872]
[37]
Moghaddaskho, F.; Eyvani, H.; Ghadami, M.; Tavakkoly-Bazzaz, J.; Alimoghaddam, K.; Ghavamzadeh, A.; Ghaffari, S.H. Demethylation and alterations in the expression level of the cell cycle-related genes as possible mechanisms in arsenic trioxide-induced cell cycle arrest in human breast cancer cells. Tumour Biol., 2017, 39(2)1010428317692255
[http://dx.doi.org/10.1177/1010428317692255] [PMID: 28218039]
[38]
Fei, M.; Lu, M.; Wang, Y.; Zhao, Y.; He, S.; Gao, S.; Ke, Q.; Liu, Y.; Li, P.; Cui, X.; Shen, A.; Cheng, C. Arsenic trioxide-induced growth arrest of human hepatocellular carcinoma cells involving FOXO3a expression and localization. Med. Oncol., 2009, 26(2), 178-185.
[http://dx.doi.org/10.1007/s12032-008-9105-8] [PMID: 18937079]
[39]
Zhang, X.; Jia, S.; Yang, S.; Yang, Y.; Yang, T.; Yang, Y. Arsenic trioxide induces G2/M arrest in hepatocellular carcinoma cells by increasing the tumor suppressor PTEN expression. J. Cell. Biochem., 2012, 113(11), 3528-3535.
[http://dx.doi.org/10.1002/jcb.24230] [PMID: 22730174]
[40]
Jiang, F.; Wang, X.; Liu, Q.; Shen, J.; Li, Z.; Li, Y.; Zhang, J. Inhibition of TGF-β/SMAD3/NF-κB signaling by microRNA-491 is involved in arsenic trioxide-induced anti-angiogenesis in hepatocellular carcinoma cells. Toxicol. Lett., 2014, 231(1), 55-61.
[http://dx.doi.org/10.1016/j.toxlet.2014.08.024] [PMID: 25196641]
[41]
Wang, X.; Jiang, F.; Mu, J.; Ye, X.; Si, L.; Ning, S.; Li, Z.; Li, Y. Arsenic trioxide attenuates the invasion potential of human liver cancer cells through the demethylation-activated microRNA-491. Toxicol. Lett., 2014, 227(2), 75-83.
[http://dx.doi.org/10.1016/j.toxlet.2014.03.016] [PMID: 24680928]
[42]
Li, Y.; Jiang, F.; Liu, Q.; Shen, J.; Wang, X.; Li, Z.; Zhang, J.; Lu, X. Inhibition of the cancer stem cells-like properties by arsenic trioxide, involved in the attenuation of endogenous transforming growth factor beta signal. Toxicol. Sci., 2015, 143(1), 156-164.
[http://dx.doi.org/10.1093/toxsci/kfu218] [PMID: 25304214]
[43]
Cui, L.; Gao, B.; Cao, Z.; Chen, X.; Zhang, S.; Zhang, W. Downregulation of B7-H4 in the MHCC97-H hepatocellular carcinoma cell line by arsenic trioxide. Mol. Med. Rep., 2016, 13(3), 2032-2038.
[http://dx.doi.org/10.3892/mmr.2016.4757] [PMID: 26781180]
[44]
Maeda, H.; Hori, S.; Nishitoh, H.; Ichijo, H.; Ogawa, O.; Kakehi, Y.; Kakizuka, A. Tumor growth inhibition by arsenic trioxide (As2O3) in the orthotopic metastasis model of androgen-independent prostate cancer. Cancer Res., 2001, 61(14), 5432-5440.
[PMID: 11454688]
[45]
Zheng, L.; Jiang, H.; Zhang, Z.W.; Wang, K.N.; Wang, Q.F.; Li, Q.L.; Jiang, T. Arsenic trioxide inhibits viability and induces apoptosis through reactivating the Wnt inhibitor secreted frizzled related protein-1 in prostate cancer cells. OncoTargets Ther., 2016, 9, 885-894.
[PMID: 26966376]
[46]
Ji, H.; Li, Y.; Jiang, F.; Wang, X.; Zhang, J.; Shen, J.; Yang, X. Inhibition of transforming growth factor beta/SMAD signal by MiR-155 is involved in arsenic trioxide-induced anti-angiogenesis in prostate cancer. Cancer Sci., 2014, 105(12), 1541-1549.
[http://dx.doi.org/10.1111/cas.12548] [PMID: 25283513]
[47]
Li, C.L.; Nie, H.; Wang, M.; Su, L.P.; Li, J.F.; Yu, Y.Y.; Yan, M.; Qu, Q.L.; Zhu, Z.G.; Liu, B.Y. microRNA-155 is downregulated in gastric cancer cells and involved in cell metastasis. Oncol. Rep., 2012, 27(6), 1960-1966.
[http://dx.doi.org/10.3892/or.2012.1719] [PMID: 22426647]
[48]
Vrba, L.; Muñoz-Rodríguez, J.L.; Stampfer, M.R.; Futscher, B.W. miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer. PLoS One, 2013, 8(1)e54398
[http://dx.doi.org/10.1371/journal.pone.0054398] [PMID: 23342147]
[49]
Um, S.J.; Lee, S.Y.; Kim, E.J.; Myoung, J.; Namkoong, S.E.; Park, J.S. Down-regulation of human papillomavirus E6/E7 oncogene by arsenic trioxide in cervical carcinoma cells. Cancer Lett., 2002, 181(1), 11-22.
[http://dx.doi.org/10.1016/S0304-3835(02)00039-3] [PMID: 12430174]
[50]
Wen, X.; Li, D.; Zhang, Y.; Liu, S.; Ghali, L.; Iles, R.K. Arsenic trioxide induces cervical cancer apoptosis, but specifically targets human papillomavirus-infected cell populations. Anticancer Drugs, 2012, 23(3), 280-287.
[http://dx.doi.org/10.1097/CAD.0b013e32834f1fd3] [PMID: 22245994]
[51]
Wang, H.; Gao, P.; Zheng, J. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells. Biochem. Biophys. Res. Commun., 2014, 451(4), 556-561.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.014] [PMID: 25117446]
[52]
Yu, J.; Qian, H.; Li, Y.; Wang, Y.; Zhang, X.; Liang, X.; Fu, M.; Lin, C. Arsenic trioxide (As2O3) reduces the invasive and metastatic properties of cervical cancer cells in vitro and in vivo. Gynecol. Oncol., 2007, 106(2), 400-406.
[http://dx.doi.org/10.1016/j.ygyno.2007.04.016] [PMID: 17512576]
[53]
Woo, S.H.; Park, I.C.; Park, M.J.; An, S.; Lee, H.C.; Jin, H.O.; Park, S.A.; Cho, H.; Lee, S.J.; Gwak, H.S.; Hong, Y.J.; Hong, S.I.; Rhee, C.H. Arsenic trioxide sensitizes CD95/Fas-induced apoptosis through ROS-mediated upregulation of CD95/Fas by NF-kappaB activation. Int. J. Cancer, 2004, 112(4), 596-606.
[http://dx.doi.org/10.1002/ijc.20433] [PMID: 15382040]
[54]
Kang, Y.H.; Lee, S.J. The role of p38 MAPK and JNK in Arsenic trioxide-induced mitochondrial cell death in human cervical cancer cells. J. Cell. Physiol., 2008, 217(1), 23-33.
[http://dx.doi.org/10.1002/jcp.21470] [PMID: 18412143]
[55]
He, G.; Wang, Q.; Zhou, Y.; Wu, X.; Wang, L.; Duru, N.; Kong, X.; Zhang, P.; Wan, B.; Sui, L.; Guo, Q.; Li, J.J.; Yu, L. YY1 is a novel potential therapeutic target for the treatment of HPV infection-induced cervical cancer by arsenic trioxide. Int. J. Gynecol. Cancer, 2011, 21(6), 1097-1104.
[http://dx.doi.org/10.1097/IGC.0b013e31821d2525] [PMID: 21792014]
[56]
Wang, X.; Ren, J.H.; Lin, F.; Wei, J.X.; Long, M.; Yan, L.; Zhang, H.Z. Stathmin is involved in arsenic trioxide-induced apoptosis in human cervical cancer cell lines via PI3K linked signal pathway. Cancer Biol. Ther., 2010, 10(6), 632-643.
[http://dx.doi.org/10.4161/cbt.10.6.12654] [PMID: 20657188]
[57]
Chang, Y.W.; Chen, M.W.; Chiu, C.F.; Hong, C.C.; Cheng, C.C.; Hsiao, M.; Chen, C.A.; Wei, L.H.; Su, J.L. Arsenic trioxide inhibits CXCR4-mediated metastasis by interfering miR-520h/PP2A/NF-κB signaling in cervical cancer. Ann. Surg. Oncol., 2014, 21(Suppl. 4), S687-S695.
[http://dx.doi.org/10.1245/s10434-014-3812-5] [PMID: 25047463]
[58]
Shen, Z.Y.; Shen, J.; Chen, M.H.; Wu, X.Y.; Wu, M.H.; Zeng, Y. The inhibition of growth and angiogenesis in heterotransplanted esophageal carcinoma via intratumoral injection of arsenic trioxide. Oncol. Rep., 2003, 10(6), 1869-1874.
[http://dx.doi.org/10.3892/or.10.6.1869] [PMID: 14534710]
[59]
Zhang, X.; Su, Y.; Zhang, M.; Sun, Z. Opposite effects of arsenic trioxide on the Nrf2 pathway in oral squamous cell carcinoma in vitro and in vivo. Cancer Lett., 2012, 318(1), 93-98.
[http://dx.doi.org/10.1016/j.canlet.2011.12.005] [PMID: 22155346]
[60]
Yeh, K.Y.; Chang, J.W.; Li, Y.Y.; Wang, C.H.; Wang, H.M. Tumor growth inhibition of metastatic nasopharyngeal carcinoma cell lines by low dose of arsenic trioxide via alteration of cell cycle progression and induction of apoptosis. Head Neck, 2011, 33(5), 734-742.
[http://dx.doi.org/10.1002/hed.21535] [PMID: 20737493]
[61]
Ai, Z.; Lu, W.; Qin, X. Arsenic trioxide induces gallbladder carcinoma cell apoptosis via downregulation of Bcl-2. Biochem. Biophys. Res. Commun., 2006, 348(3), 1075-1081.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.181] [PMID: 16904648]
[62]
Ai, Z.; Lu, W.; Ton, S.; Liu, H.; Sou, T.; Shen, Z.; Qin, X. Arsenic trioxide-mediated growth inhibition in gallbladder carcinoma cells via down-regulation of Cyclin D1 transcription mediated by Sp1 transcription factor. Biochem. Biophys. Res. Commun., 2007, 360(3), 684-689.
[http://dx.doi.org/10.1016/j.bbrc.2007.06.123] [PMID: 17617380]
[63]
Ai, Z.; Pan, H.; Suo, T.; Lv, C.; Wang, Y.; Tong, S.; Liu, H. Arsenic oxide targets stem cell marker CD133/prominin-1 in gallbladder carcinoma. Cancer Lett., 2011, 310(2), 181-187.
[http://dx.doi.org/10.1016/j.canlet.2011.06.035] [PMID: 21788103]
[64]
Robinson, B.M. Malignant pleural mesothelioma: an epidemiological perspective. Ann. Cardiothorac. Surg., 2012, 1(4), 491-496.
[PMID: 23977542]
[65]
Eguchi, R.; Fujimori, Y.; Takeda, H.; Tabata, C.; Ohta, T.; Kuribayashi, K.; Fukuoka, K.; Nakano, T. Arsenic trioxide induces apoptosis through JNK and ERK in human mesothelioma cells. J. Cell. Physiol., 2011, 226(3), 762-768.
[http://dx.doi.org/10.1002/jcp.22397] [PMID: 20799280]
[66]
Lam, S.K.; Li, Y.Y.; Zheng, C.Y.; Ho, J.C. Downregulation of thymidylate synthase and E2F1 by arsenic trioxide in mesothelioma. Int. J. Oncol., 2015, 46(1), 113-122.
[http://dx.doi.org/10.3892/ijo.2014.2716] [PMID: 25335113]
[67]
Kanzawa, T.; Zhang, L.; Xiao, L.; Germano, I.M.; Kondo, Y.; Kondo, S. Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene, 2005, 24(6), 980-991.
[http://dx.doi.org/10.1038/sj.onc.1208095] [PMID: 15592527]
[68]
Wei, Y.; Liu, D.; Ge, Y.; Zhou, F.; Xu, J.; Chen, H.; Yun, X.; Gu, J.; Jiang, J. Down-regulation of beta1,4GalT V at protein level contributes to arsenic trioxide-induced glioma cell apoptosis. Cancer Lett., 2008, 267(1), 96-105.
[http://dx.doi.org/10.1016/j.canlet.2008.03.019] [PMID: 18439752]
[69]
Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol., 2007, 114(2), 97-109.
[http://dx.doi.org/10.1007/s00401-007-0243-4] [PMID: 17618441]
[70]
Zhen, Y.; Zhao, S.; Li, Q.; Li, Y.; Kawamoto, K. Arsenic trioxide-mediated Notch pathway inhibition depletes the cancer stem-like cell population in gliomas. Cancer Lett., 2010, 292(1), 64-72.
[http://dx.doi.org/10.1016/j.canlet.2009.11.005] [PMID: 19962820]
[71]
Zhou, W.; Cheng, L.; Shi, Y.; Ke, S.Q.; Huang, Z.; Fang, X.; Chu, C.W.; Xie, Q.; Bian, X.W.; Rich, J.N.; Bao, S. Arsenic trioxide disrupts glioma stem cells via promoting PML degradation to inhibit tumor growth. Oncotarget, 2015, 6(35), 37300-37315.
[http://dx.doi.org/10.18632/oncotarget.5836] [PMID: 26510911]
[72]
Cheng, Y.; Li, Y.; Ma, C.; Song, Y.; Xu, H.; Yu, H.; Xu, S.; Mu, Q.; Li, H.; Chen, Y.; Zhao, G. Arsenic trioxide inhibits glioma cell growth through induction of telomerase displacement and telomere dysfunction. Oncotarget, 2016, 7(11), 12682-12692.
[http://dx.doi.org/10.18632/oncotarget.7259] [PMID: 26871293]
[73]
Nakamura, S.; Nagano, S.; Nagao, H.; Ishidou, Y.; Yokouchi, M.; Abematsu, M.; Yamamoto, T.; Komiya, S.; Setoguchi, T. Arsenic trioxide prevents osteosarcoma growth by inhibition of GLI transcription via DNA damage accumulation. PLoS One, 2013, 8(7)e69466
[http://dx.doi.org/10.1371/journal.pone.0069466] [PMID: 23861973]
[74]
Nagao-Kitamoto, H.; Nagata, M.; Nagano, S.; Kitamoto, S.; Ishidou, Y.; Yamamoto, T.; Nakamura, S.; Tsuru, A.; Abematsu, M.; Fujimoto, Y.; Yokouchi, M.; Kitajima, S.; Yoshioka, T.; Maeda, S.; Yonezawa, S.; Komiya, S.; Setoguchi, T. GLI2 is a novel therapeutic target for metastasis of osteosarcoma. Int. J. Cancer, 2015, 136(6), 1276-1284.
[http://dx.doi.org/10.1002/ijc.29107] [PMID: 25082385]
[75]
Feng, T.; Xu, J.; He, P.; Chen, Y.; Fang, R.; Shao, X. Decrease in stathmin expression by arsenic trioxide inhibits the proliferation and invasion of osteosarcoma cells via the MAPK signal pathway. Oncol. Lett., 2017, 14(2), 1333-1340.
[http://dx.doi.org/10.3892/ol.2017.6347] [PMID: 28789348]
[76]
Wang, Z.Y.; Chen, Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood, 2008, 111(5), 2505-2515.
[http://dx.doi.org/10.1182/blood-2007-07-102798] [PMID: 18299451]
[77]
Tatham, M.H.; Geoffroy, M.C.; Shen, L.; Plechanovova, A.; Hattersley, N. Jaffray, E.G.; Palvimo, J.J.; Hay, R.T. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat. Cell Biol., 2008, 10(5), 538-546.
[http://dx.doi.org/10.1038/ncb1716] [PMID: 18408734]
[78]
Lallemand-Breitenbach, V.; Jeanne, M.; Benhenda, S.; Nasr, R.; Lei, M.; Peres, L.; Zhou, J.; Zhu, J.; Raught, B.; de Thé, H. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat. Cell Biol., 2008, 10(5), 547-555.
[http://dx.doi.org/10.1038/ncb1717] [PMID: 18408733]
[79]
Zhang, X.W.; Yan, X.J.; Zhou, Z.R.; Yang, F.F.; Wu, Z.Y.; Sun, H.B.; Liang, W.X.; Song, A.X.; Lallemand-Breitenbach, V.; Jeanne, M.; Zhang, Q.Y.; Yang, H.Y.; Huang, Q.H.; Zhou, G.B.; Tong, J.H.; Zhang, Y.; Wu, J.H.; Hu, H.Y.; de Thé, H.; Chen, S.J.; Chen, Z. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science, 2010, 328(5975), 240-243.
[http://dx.doi.org/10.1126/science.1183424] [PMID: 20378816]
[80]
Zheng, X.; Seshire, A.; Rüster, B.; Bug, G.; Beissert, T.; Puccetti, E.; Hoelzer, D.; Henschler, R.; Ruthardt, M. Arsenic but not all-trans retinoic acid overcomes the aberrant stem cell capacity of PML/RARalpha-positive leukemic stem cells. Haematologica, 2007, 92, 332-331.
[81]
Yoda, A.; Toyoshima, K.; Watanabe, Y.; Onishi, N.; Hazaka, Y.; Tsukuda, Y.; Tsukada, J.; Kondo, T.; Tanaka, Y.; Minami, Y. Arsenic trioxide augments Chk2/p53-mediated apoptosis by inhibiting oncogenic Wip1 phosphatase. J. Biol. Chem., 2008, 283(27), 18969-18979.
[http://dx.doi.org/10.1074/jbc.M800560200] [PMID: 18482988]
[82]
Han, S.S.; Kim, K.; Hahm, E.R.; Park, C.H.; Kimler, B.F.; Lee, S.J.; Lee, S.H.; Kim, W.S.; Jung, C.W.; Park, K.; Kim, J.; Yoon, S.S.; Lee, J.H.; Park, S. Arsenic trioxide represses constitutive activation of NF-kappaB and COX-2 expression in human acute myeloid leukemia, HL-60. J. Cell. Biochem., 2005, 94(4), 695-707.
[http://dx.doi.org/10.1002/jcb.20337] [PMID: 15547942]
[83]
Park, W.H.; Seol, J.G.; Kim, E.S.; Hyun, J.M.; Jung, C.W.; Lee, C.C.; Kim, B.K.; Lee, Y.Y. Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. Cancer Res., 2000, 60(11), 3065-3071.
[PMID: 10850458]
[84]
Hayashi, T.; Hideshima, T.; Akiyama, M.; Richardson, P.; Schlossman, R.L.; Chauhan, D.; Munshi, N.C.; Waxman, S.; Anderson, K.C. Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment. Mol. Cancer Ther., 2002, 1(10), 851-860.
[PMID: 12492118]
[85]
Liu, Q.; Hilsenbeck, S.; Gazitt, Y. Arsenic trioxide-induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood, 2003, 101(10), 4078-4087.
[http://dx.doi.org/10.1182/blood-2002-10-3231] [PMID: 12531793]
[86]
Zheng, Y.; Yamaguchi, H.; Tian, C.; Lee, M.W.; Tang, H.; Wang, H.G.; Chen, Q. Arsenic trioxide (As(2)O(3)) induces apoptosis through activation of Bax in hematopoietic cells. Oncogene, 2005, 24(20), 3339-3347.
[http://dx.doi.org/10.1038/sj.onc.1208484] [PMID: 15735709]
[87]
Morales, A.A.; Gutman, D.; Lee, K.P.; Boise, L.H. BH3-only proteins Noxa, Bmf, and Bim are necessary for arsenic trioxide-induced cell death in myeloma. Blood, 2008, 111(10), 5152-5162.
[http://dx.doi.org/10.1182/blood-2007-10-116889] [PMID: 18354037]
[88]
Qu, X.; Du, J.; Zhang, C.; Fu, W.; Xi, H.; Zou, J.; Hou, J. Arsenic trioxide exerts antimyeloma effects by inhibiting activity in the cytoplasmic substrates of histone deacetylase 6. PLoS One, 2012, 7(2)e32215
[http://dx.doi.org/10.1371/journal.pone.0032215] [PMID: 22384180]
[89]
Li, Y.M.; Broome, J.D. Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells. Cancer Res., 1999, 59(4), 776-780.
[PMID: 10029061]
[90]
Izdebska, M.; Grzanka, A.; Ostrowski, M.; Zuryń, A.; Grzanka, D. Effect of arsenic trioxide (Trisenox) on actin organization in K-562 erythroleukemia cells. Folia Histochem. Cytobiol., 2009, 47(3), 453-459.
[PMID: 20164031]
[91]
Mao, J.H.; Sun, X.Y.; Liu, J.X.; Zhang, Q.Y.; Liu, P.; Huang, Q.H.; Li, K.K.; Chen, Q.; Chen, Z.; Chen, S.J. As4S4 targets RING-type E3 ligase c-CBL to induce degradation of BCR-ABL in chronic myelogenous leukemia. Proc. Natl. Acad. Sci. USA, 2010, 107(50), 21683-21688.
[http://dx.doi.org/10.1073/pnas.1016311108] [PMID: 21118980]
[92]
Li, C.L.; Wei, H.L.; Chen, J.; Wang, B.; Xie, B.; Fan, L.L.; Li, L.J. Arsenic trioxide induces autophagy and antitumor effects in Burkitt’s lymphoma Raji cells. Oncol. Rep., 2014, 32(4), 1557-1563.
[http://dx.doi.org/10.3892/or.2014.3369] [PMID: 25110043]
[93]
Ravi, D.; Bhalla, S.; Gartenhaus, R.B.; Crombie, J.; Kandela, I.; Sharma, J.; Mazar, A.; Evens, A.M. The novel organic arsenical darinaparsin induces MAPK-mediated and SHP1-dependent cell death in T-cell lymphoma and Hodgkin lymphoma cells and human xenograft models. Clin. Cancer Res., 2014, 20(23), 6023-6033.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1532] [PMID: 25316819]
[94]
Li, X.Y.; Li, Y.; Zhang, L.; Liu, X.; Feng, L.; Wang, X. The antitumor effects of arsenic trioxide in mantle cell lymphoma via targeting Wnt/β-catenin pathway and DNA methyltransferase-1. Oncol. Rep., 2017, 38(5), 3114-3120.
[http://dx.doi.org/10.3892/or.2017.5945] [PMID: 28901456]
[95]
Piao, W.; Chau, D.; Yue, L.M.; Kwong, Y.L.; Tse, E. Arsenic trioxide degrades NPM-ALK fusion protein and inhibits growth of ALK-positive anaplastic large cell lymphoma. Leukemia, 2017, 31(2), 522-526.
[http://dx.doi.org/10.1038/leu.2016.311] [PMID: 27795556]
[96]
Lee, H.R.; Cheong, H.J.; Kim, S.J.; Lee, N.S.; Park, H.S.; Won, J.H. Sulindac enhances arsenic trioxide-mediated apoptosis by inhibition of NF-kappaB in HCT116 colon cancer cells. Oncol. Rep., 2008, 20(1), 41-47.
[PMID: 18575716]
[97]
Jiang, T.T.; Brown, S.L.; Kim, J.H. Combined effect of arsenic trioxide and sulindac sulfide in A549 human lung cancer cells in vitro. J. Exp. Clin. Cancer Res., 2004, 23(2), 259-262.
[PMID: 15354410]
[98]
Jin, H.O.; Yoon, S.I.; Seo, S.K.; Lee, H.C.; Woo, S.H.; Yoo, D.H.; Lee, S.J.; Choe, T.B.; An, S.; Kwon, T.J.; Kim, J.I.; Park, M.J.; Hong, S.I.; Park, I.C.; Rhee, C.H. Synergistic induction of apoptosis by sulindac and arsenic trioxide in human lung cancer A549 cells via reactive oxygen species-dependent down-regulation of survivin. Biochem. Pharmacol., 2006, 72(10), 1228-1236.
[http://dx.doi.org/10.1016/j.bcp.2006.07.026] [PMID: 16950207]
[99]
Park, J.H.; Kim, E.J.; Jang, H.Y.; Shim, H.; Lee, K.K.; Jo, H.J.; Kim, H.J.; Yang, S.H.; Jeong, E.T.; Kim, H.R. Combination treatment with arsenic trioxide and sulindac enhances apoptotic cell death in lung cancer cells via activation of oxidative stress and mitogen-activated protein kinases. Oncol. Rep., 2008, 20(2), 379-384.
[PMID: 18636201]
[100]
Jin, H.O.; Seo, S.K.; Woo, S.H.; Lee, H.C.; Kim, E.S.; Yoo, D.H.; Lee, S.J.; An, S.; Choe, T.B.; Kim, J.I.; Hong, S.I.; Rhee, C.H.; Park, I.C. A combination of sulindac and arsenic trioxide synergistically induces apoptosis in human lung cancer H1299 cells via c-Jun NH2-terminal kinase-dependent Bcl-xL phosphorylation. Lung Cancer, 2008, 61(3), 317-327.
[http://dx.doi.org/10.1016/j.lungcan.2008.01.002] [PMID: 18281123]
[101]
Kumar, P.; Gao, Q.; Ning, Y.; Wang, Z.; Krebsbach, P.H.; Polverini, P.J. Arsenic trioxide enhances the therapeutic efficacy of radiation treatment of oral squamous carcinoma while protecting bone. Mol. Cancer Ther., 2008, 7(7), 2060-2069.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0287] [PMID: 18645016]
[102]
Wei, L.H.; Lai, K.P.; Chen, C.A.; Cheng, C.H.; Huang, Y.J.; Chou, C.H.; Kuo, M.L.; Hsieh, C.Y. Arsenic trioxide prevents radiation-enhanced tumor invasiveness and inhibits matrix metalloproteinase-9 through downregulation of nuclear factor kappaB. Oncogene, 2005, 24(3), 390-398.
[http://dx.doi.org/10.1038/sj.onc.1208192] [PMID: 15531921]
[103]
Kang, Y.H.; Lee, S.J. Role of p38 MAPK and JNK in enhanced cervical cancer cell killing by the combination of arsenic trioxide and ionizing radiation. Oncol. Rep., 2008, 20(3), 637-643.
[PMID: 18695917]
[104]
Chiu, H.W.; Chen, Y.A.; Ho, S.Y.; Wang, Y.J. Arsenic trioxide enhances the radiation sensitivity of androgen-dependent and -independent human prostate cancer cells. PLoS One, 2012, 7(2)e31579
[http://dx.doi.org/10.1371/journal.pone.0031579] [PMID: 22363680]
[105]
Chiu, H.W.; Ho, S.Y.; Guo, H.R.; Wang, Y.J. Combination treatment with arsenic trioxide and irradiation enhances autophagic effects in U118-MG cells through increased mitotic arrest and regulation of PI3K/Akt and ERK1/2 signaling pathways. Autophagy, 2009, 5(4), 472-483.
[http://dx.doi.org/10.4161/auto.5.4.7759] [PMID: 19242099]
[106]
Chiu, H.W.; Lin, J.H.; Chen, Y.A.; Ho, S.Y.; Wang, Y.J. Combination treatment with arsenic trioxide and irradiation enhances cell-killing effects in human fibrosarcoma cells in vitro and in vivo through induction of both autophagy and apoptosis. Autophagy, 2010, 6(3), 353-365.
[http://dx.doi.org/10.4161/auto.6.3.11229] [PMID: 20200477]
[107]
Chiu, H.W.; Lin, W.; Ho, S.Y.; Wang, Y.J. Synergistic effects of arsenic trioxide and radiation in osteosarcoma cells through the induction of both autophagy and apoptosis. Radiat. Res., 2011, 175(5), 547-560.
[http://dx.doi.org/10.1667/RR2380.1] [PMID: 21388295]
[108]
Ong, P.S.; Chan, S.Y.; Ho, P.C. Differential augmentative effects of buthionine sulfoximine and ascorbic acid in As2O3-induced ovarian cancer cell death: oxidative stress-independent and -dependent cytotoxic potentiation. Int. J. Oncol., 2011, 38(6), 1731-1739.
[PMID: 21455570]
[109]
Han, Y.H.; Kim, S.Z.; Kim, S.H.; Park, W.H. Induction of apoptosis in arsenic trioxide-treated lung cancer A549 cells by buthionine sulfoximine. Mol. Cells, 2008, 26(2), 158-164.
[PMID: 18596414]
[110]
Klauser, E.; Gülden, M.; Maser, E.; Seibert, S.; Seibert, H. Additivity, antagonism, and synergy in arsenic trioxide-induced growth inhibition of C6 glioma cells: effects of genistein, quercetin and buthionine-sulfoximine. Food Chem. Toxicol., 2014, 67, 212-221.
[http://dx.doi.org/10.1016/j.fct.2014.02.039] [PMID: 24632069]
[111]
Tanaka, Y.; Komatsu, T.; Shigemi, H.; Yamauchi, T.; Fujii, Y. BIMEL is a key effector molecule in oxidative stress-mediated apoptosis in acute myeloid leukemia cells when combined with arsenic trioxide and buthionine sulfoximine. BMC Cancer, 2014, 14, 27.
[http://dx.doi.org/10.1186/1471-2407-14-27] [PMID: 24428916]
[112]
Chen, D.; Chan, R.; Waxman, S.; Jing, Y. Buthionine sulfoximine enhancement of arsenic trioxide-induced apoptosis in leukemia and lymphoma cells is mediated via activation of c-Jun NH2-terminal kinase and up-regulation of death receptors. Cancer Res., 2006, 66(23), 11416-11423.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0409] [PMID: 17145888]
[113]
Nakaoka, T.; Ota, A.; Ono, T.; Karnan, S.; Konishi, H.; Furuhashi, A.; Ohmura, Y.; Yamada, Y.; Hosokawa, Y.; Kazaoka, Y. Combined arsenic trioxide-cisplatin treatment enhances apoptosis in oral squamous cell carcinoma cells. Cell Oncol. (Dordr.), 2014, 37(2), 119-129.
[http://dx.doi.org/10.1007/s13402-014-0167-7] [PMID: 24599717]
[114]
Li, H.; Zhu, X.; Zhang, Y.; Xiang, J.; Chen, H. Arsenic trioxide exerts synergistic effects with cisplatin on non-small cell lung cancer cells via apoptosis induction. J. Exp. Clin. Cancer Res., 2009, 28, 110.
[http://dx.doi.org/10.1186/1756-9966-28-110] [PMID: 19664237]
[115]
Zhang, N.; Wu, Z.M.; McGowan, E.; Shi, J.; Hong, Z.B.; Ding, C.W.; Xia, P.; Di, W. Arsenic trioxide and cisplatin synergism increase cytotoxicity in human ovarian cancer cells: therapeutic potential for ovarian cancer. Cancer Sci., 2009, 100(12), 2459-2464.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01340.x] [PMID: 19769630]
[116]
Wahiduzzaman, M.; Ota, A.; Karnan, S.; Hanamura, I.; Mizuno, S.; Kanasugi, J.; Rahman, M.L.; Hyodo, T.; Konishi, H.; Tsuzuki, S.; Takami, A.; Hosokawa, Y. Novel combined Ato-C treatment synergistically suppresses proliferation of Bcr-Abl-positive leukemic cells in vitro and in vivo. Cancer Lett., 2018, 433, 117-130.
[http://dx.doi.org/10.1016/j.canlet.2018.06.027] [PMID: 29944906]
[117]
Du, Y.; Wang, K.; Fang, H.; Li, J.; Xiao, D.; Zheng, P.; Chen, Y.; Fan, H.; Pan, X.; Zhao, C.; Zhang, Q.; Imbeaud, S.; Graudens, E.; Eveno, E.; Auffray, C.; Chen, S.; Chen, Z.; Zhang, J. Coordination of intrinsic, extrinsic, and endoplasmic reticulum-mediated apoptosis by imatinib mesylate combined with arsenic trioxide in chronic myeloid leukemia. Blood, 2006, 107(4), 1582-1590.
[http://dx.doi.org/10.1182/blood-2005-06-2318] [PMID: 16249384]
[118]
Wang, W.; Lv, F.F.; Du, Y.; Li, N.; Chen, Y.; Chen, L. The effect of nilotinib plus arsenic trioxide on the proliferation and differentiation of primary leukemic cells from patients with chronic myoloid leukemia in blast crisis. Cancer Cell Int., 2015, 15, 10.
[http://dx.doi.org/10.1186/s12935-015-0158-4] [PMID: 25698901]
[119]
Nasr, R.; Guillemin, M.C.; Ferhi, O.; Soilihi, H.; Peres, L.; Berthier, C.; Rousselot, P.; Robledo-Sarmiento, M.; Lallemand-Breitenbach, V.; Gourmel, B.; Vitoux, D.; Pandolfi, P.P.; Rochette-Egly, C.; Zhu, J.; de Thé, H. Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat. Med., 2008, 14(12), 1333-1342.
[http://dx.doi.org/10.1038/nm.1891] [PMID: 19029980]
[120]
Tarkanyi, I.; Dudognon, C.; Hillion, J.; Pendino, F.; Lanotte, M.; Aradi, J.; Ségal-Bendirdjian, E. Retinoid/arsenic combination therapy of promyelocytic leukemia: induction of telomerase-dependent cell death. Leukemia, 2005, 19(10), 1806-1811.
[http://dx.doi.org/10.1038/sj.leu.2403923] [PMID: 16107885]
[121]
Wang, L.N.; Tang, Y.L.; Zhang, Y.C.; Zhang, Z.H.; Liu, X.J.; Ke, Z.Y.; Li, Y.; Tan, H.Z.; Huang, L.B.; Luo, X.Q. Arsenic trioxide and all-trans-retinoic acid selectively exert synergistic cytotoxicity against FLT3-ITD AML cells via co-inhibition of FLT3 signaling pathways. Leuk. Lymphoma, 2017, 58(10), 2426-2438.
[http://dx.doi.org/10.1080/10428194.2017.1289522] [PMID: 28276286]
[122]
El Hajj, H.; Dassouki, Z.; Berthier, C.; Raffoux, E.; Ades, L.; Legrand, O.; Hleihel, R.; Sahin, U.; Tawil, N.; Salameh, A.; Zibara, K.; Darwiche, N.; Mohty, M.; Dombret, H.; Fenaux, P.; de Thé, H.; Bazarbachi, A. Retinoic acid and arsenic trioxide trigger degradation of mutated NPM1, resulting in apoptosis of AML cells. Blood, 2015, 125(22), 3447-3454.
[http://dx.doi.org/10.1182/blood-2014-11-612416] [PMID: 25800051]
[123]
El Eit, R.M.; Iskandarani, A.N.; Saliba, J.L.; Jabbour, M.N.; Mahfouz, R.A.; Bitar, N.M.; Ayoubi, H.R.; Zaatari, G.S.; Mahon, F.X.; De Thé, H.B.; Bazarbachi, A.A.; Nasr, R.R. Effective targeting of chronic myeloid leukemia initiating activity with the combination of arsenic trioxide and interferon alpha. Int. J. Cancer, 2014, 134(4), 988-996.
[http://dx.doi.org/10.1002/ijc.28427] [PMID: 23934954]
[124]
Bazarbachi, A.; El-Sabban, M.E.; Nasr, R.; Quignon, F.; Awaraji, C.; Kersual, J.; Dianoux, L.; Zermati, Y.; Haidar, J.H.; Hermine, O.; de Thé, H. Arsenic trioxide and interferon-alpha synergize to induce cell cycle arrest and apoptosis in human T-cell lymphotropic virus type I-transformed cells. Blood, 1999, 93(1), 278-283.
[PMID: 9864171]
[125]
Abou-Merhi, R.; Khoriaty, R.; Arnoult, D.; El Hajj, H.; Dbouk, H.; Munier, S.; El-Sabban, M.E.; Hermine, O.; Gessain, A.; de Thé, H.; Mahieux, R.; Bazarbachi, A. PS-341 or a combination of arsenic trioxide and interferon-alpha inhibit growth and induce caspase-dependent apoptosis in KSHV/HHV-8-infected primary effusion lymphoma cells. Leukemia, 2007, 21(8), 1792-1801.
[http://dx.doi.org/10.1038/sj.leu.2404797] [PMID: 17568816]
[126]
Grignani, F.; Ferrucci, P.F.; Testa, U.; Talamo, G.; Fagioli, M.; Alcalay, M.; Mencarelli, A.; Grignani, F.; Peschle, C.; Nicoletti, I. The acute promyelocytic leukemia-specific PML-RAR alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell, 1993, 74(3), 423-431.
[http://dx.doi.org/10.1016/0092-8674(93)80044-F] [PMID: 8394219]
[127]
Huang, M.E.; Ye, Y.C.; Chen, S.R.; Chai, J.R.; Lu, J.X.; Zhoa, L.; Gu, L.J.; Wang, Z.Y.; Meng-er, H.; Yu-chen, Y.; Shu-rong, C.; Jin-ren, C.; Jia-Xiang, L.; Lin, Z.; Long-jun, G.; Zhen-yi, W. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood, 1988, 72(2), 567-572.
[PMID: 3165295]
[128]
Sanz, M.A.; Grimwade, D.; Tallman, M.S.; Lowenberg, B.; Fenaux, P.; Estey, E.H.; Naoe, T.; Lengfelder, E.; Büchner, T.; Döhner, H.; Burnett, A.K.; Lo-Coco, F. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood, 2009, 113(9), 1875-1891.
[http://dx.doi.org/10.1182/blood-2008-04-150250] [PMID: 18812465]
[129]
Mathews, V.; George, B.; Lakshmi, K.M.; Viswabandya, A.; Bajel, A.; Balasubramanian, P.; Shaji, R.V.; Srivastava, V.M.; Srivastava, A.; Chandy, M. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: durable remissions with minimal toxicity. Blood, 2006, 107(7), 2627-2632.
[http://dx.doi.org/10.1182/blood-2005-08-3532] [PMID: 16352810]
[130]
Soignet, S.L.; Frankel, S.R.; Douer, D.; Tallman, M.S.; Kantarjian, H.; Calleja, E.; Stone, R.M.; Kalaycio, M.; Scheinberg, D.A.; Steinherz, P.; Sievers, E.L.; Coutré, S.; Dahlberg, S.; Ellison, R.; Warrell, R.P. Jr United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J. Clin. Oncol., 2001, 19(18), 3852-3860.
[http://dx.doi.org/10.1200/JCO.2001.19.18.3852] [PMID: 11559723]
[131]
Shao, W.; Fanelli, M.; Ferrara, F.F.; Riccioni, R.; Rosenauer, A.; Davison, K.; Lamph, W.W.; Waxman, S.; Pelicci, P.G.; Lo Coco, F.; Avvisati, G.; Testa, U.; Peschle, C.; Gambacorti-Passerini, C.; Nervi, C.; Miller, W.H. Jr Arsenic trioxide as an inducer of apoptosis and loss of PML/RAR alpha protein in acute promyelocytic leukemia cells. J. Natl. Cancer Inst., 1998, 90(2), 124-133.
[http://dx.doi.org/10.1093/jnci/90.2.124] [PMID: 9450572]
[132]
Shen, Z.X.; Shi, Z.Z.; Fang, J.; Gu, B.W.; Li, J.M.; Zhu, Y.M.; Shi, J.Y.; Zheng, P.Z.; Yan, H.; Liu, Y.F.; Chen, Y.; Shen, Y.; Wu, W.; Tang, W.; Waxman, S.; De Thé, H.; Wang, Z.Y.; Chen, S.J.; Chen, Z. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA, 2004, 101(15), 5328-5335.
[http://dx.doi.org/10.1073/pnas.0400053101] [PMID: 15044693]
[133]
Shen, Z.X.; Chen, G.Q.; Ni, J.H.; Li, X.S.; Xiong, S.M.; Qiu, Q.Y.; Zhu, J.; Tang, W.; Sun, G.L.; Yang, K.Q.; Chen, Y.; Zhou, L.; Fang, Z.W.; Wang, Y.T.; Ma, J.; Zhang, P.; Zhang, T.D.; Chen, S.J.; Chen, Z.; Wang, Z.Y. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood, 1997, 89(9), 3354-3360.
[PMID: 9129042]
[134]
Lo-Coco, F.; Avvisati, G.; Vignetti, M.; Thiede, C.; Orlando, S.M.; Iacobelli, S.; Ferrara, F.; Fazi, P.; Cicconi, L.; Di Bona, E.; Specchia, G.; Sica, S.; Divona, M.; Levis, A.; Fiedler, W.; Cerqui, E.; Breccia, M.; Fioritoni, G.; Salih, H.R.; Cazzola, M.; Melillo, L.; Carella, A.M.; Brandts, C.H.; Morra, E.; von Lilienfeld-Toal, M.; Hertenstein, B.; Wattad, M.; Lübbert, M.; Hänel, M.; Schmitz, N.; Link, H.; Kropp, M.G.; Rambaldi, A.; La Nasa, G.; Luppi, M.; Ciceri, F.; Finizio, O.; Venditti, A.; Fabbiano, F.; Döhner, K.; Sauer, M.; Ganser, A.; Amadori, S.; Mandelli, F.; Döhner, H.; Ehninger, G.; Schlenk, R.F.; Platzbecker, U. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N. Engl. J. Med., 2013, 369(2), 111-121.
[http://dx.doi.org/10.1056/NEJMoa1300874] [PMID: 23841729]
[135]
Sasaki, M.; Sugimoto, K.; Isobe, Y.; Oshimi, K. Combination brings long-term remission in acute promyelocytic leukemia refractory for both all-trans retinoic acid and arsenic trioxide. Eur. J. Haematol., 2008, 81(2), 160.
[http://dx.doi.org/10.1111/j.1600-0609.2008.01079.x] [PMID: 18363868]
[136]
Kchour, G.; Tarhini, M.; Kooshyar, M.M.; El Hajj, H.; Wattel, E.; Mahmoudi, M.; Hatoum, H.; Rahimi, H.; Maleki, M.; Rafatpanah, H.; Rezaee, S.A.; Yazdi, M.T.; Shirdel, A.; de Thé, H.; Hermine, O.; Farid, R.; Bazarbachi, A. Phase 2 study of the efficacy and safety of the combination of arsenic trioxide, interferon alpha, and zidovudine in newly diagnosed chronic adult T-cell leukemia/lymphoma (ATL). Blood, 2009, 113(26), 6528-6532.
[http://dx.doi.org/10.1182/blood-2009-03-211821] [PMID: 19411628]
[137]
Ishitsuka, K.; Suzumiya, J.; Aoki, M.; Ogata, K.; Hara, S.; Tamura, K. Therapeutic potential of arsenic trioxide with or without interferon-alpha for relapsed/refractory adult T-cell leukemia/lymphoma. Haematologica, 2007, 92(5), 719-720.
[http://dx.doi.org/10.3324/haematol.10703] [PMID: 17488707]
[138]
Subbarayan, P.R.; Lima, M.; Ardalan, B. Arsenic trioxide/ascorbic acid therapy in patients with refractory metastatic colorectal carcinoma: a clinical experience. Acta Oncol., 2007, 46(4), 557-561.
[http://dx.doi.org/10.1080/02841860601042456] [PMID: 17497326]
[139]
Ardalan, B.; Subbarayan, P.R.; Ramos, Y.; Gonzalez, M.; Fernandez, A.; Mezentsev, D.; Reis, I.; Duncan, R.; Podolsky, L.; Lee, K.; Lima, M.; Ganjei-Azar, P. A phase I study of 5-fluorouracil/leucovorin and arsenic trioxide for patients with refractory/relapsed colorectal carcinoma. Clin. Cancer Res., 2010, 16(11), 3019-3027.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2590] [PMID: 20501625]
[140]
Bahlis, N.J.; McCafferty-Grad, J.; Jordan-McMurry, I.; Neil, J.; Reis, I.; Kharfan-Dabaja, M.; Eckman, J.; Goodman, M.; Fernandez, H.F.; Boise, L.H.; Lee, K.P. Feasibility and correlates of arsenic trioxide combined with ascorbic acid-mediated depletion of intracellular glutathione for the treatment of relapsed/refractory multiple myeloma. Clin. Cancer Res., 2002, 8(12), 3658-3668.
[PMID: 12473574]
[141]
Khairul, I.; Wang, Q.Q.; Jiang, Y.H.; Wang, C.; Naranmandura, H. Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget, 2017, 8(14), 23905-23926.
[http://dx.doi.org/10.18632/oncotarget.14733] [PMID: 28108741]
[142]
Swindell, E.P.; Hankins, P.L.; Chen, H.; Miodragović, D.U.; O’Halloran, T.V. Anticancer activity of small-molecule and nanoparticulate arsenic(III) complexes. Inorg. Chem., 2013, 52(21), 12292-12304.
[http://dx.doi.org/10.1021/ic401211u] [PMID: 24147771]
[143]
Douer, D.; Tallman, M.S. Arsenic trioxide: new clinical experience with an old medication in hematologic malignancies. J. Clin. Oncol., 2005, 23(10), 2396-2410.
[http://dx.doi.org/10.1200/JCO.2005.10.217] [PMID: 15800332]
[144]
Chen, H.; Ahn, R.; Van den Bossche, J.; Thompson, D.H.; O’Halloran, T.V. Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide. Mol. Cancer Ther., 2009, 8(7), 1955-1963.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0045] [PMID: 19567824]
[145]
Miodragović, Đ.U.; Quentzel, J.A.; Kurutz, J.W.; Stern, C.L.; Ahn, R.W.; Kandela, I.; Mazar, A.; O’Halloran, T.V. Robust structure and reactivity of aqueous arsenous acid-platinum(II) anticancer complexes. Angew. Chem. Int. Ed. Engl., 2013, 52(41), 10749-10752.
[http://dx.doi.org/10.1002/anie.201303251] [PMID: 24038962]
[146]
Miodragović, Đ.; Merlino, A.; Swindell, E.P.; Bogachkov, A.; Ahn, R.W.; Abuhadba, S.; Ferraro, G.; Marzo, T.; Mazar, A.P.; Messori, L.; O’Halloran, T.V. Arsenoplatin-1 Is a Dual Pharmacophore Anticancer Agent. J. Am. Chem. Soc., 2019, 141(16), 6453-6457.
[http://dx.doi.org/10.1021/jacs.8b13681] [PMID: 30943017]
[147]
Fei, W.; Zhang, Y.; Han, S.; Tao, J.; Zheng, H.; Wei, Y.; Zhu, J.; Li, F.; Wang, X. RGD conjugated liposome-hollow silica hybrid nanovehicles for targeted and controlled delivery of arsenic trioxide against hepatic carcinoma. Int. J. Pharm., 2017, 519(1-2), 250-262.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.031] [PMID: 28109899]
[148]
Hassani, S.; Khaleghian, A.; Ahmadian, S.; Alizadeh, S.; Alimoghaddam, K.; Ghavamzadeh, A.; Ghaffari, S.H. Redistribution of cell cycle by arsenic trioxide is associated with demethylation and expression changes of cell cycle related genes in acute promyelocytic leukemia cell line (NB4). Ann. Hematol., 2018, 97(1), 83-93.
[http://dx.doi.org/10.1007/s00277-017-3163-y] [PMID: 29159499]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy