Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

A Possible Modulation Mechanism of Intramolecular and Intermolecular Interactions for NCAM Polysialylation and Cell Migration

Author(s): Bo Lu, Xue-Hui Liu, Si-Ming Liao, Zhi-Long Lu, Dong Chen, Frederic A. Troy II, Ri-Bo Huang* and Guo-Ping Zhou*

Volume 19, Issue 25, 2019

Page: [2271 - 2282] Pages: 12

DOI: 10.2174/1568026619666191018094805

Price: $65

Abstract

Polysialic acid (polySia) is a novel glycan that posttranslationally modifies neural cell adhesion molecules (NCAMs) in mammalian cells. Up-regulation of polySia-NCAM expression or NCAM polysialylation is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. It has been known that two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST), can catalyze polysialylation of NCAM, and two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs play key roles in affecting polyST activity or NCAM polysialylation. However, the molecular mechanisms of NCAM polysialylation and cell migration are still not entirely clear. In this minireview, the recent research results about the intermolecular interactions between the PBR and NCAM, the PSTD and cytidine monophosphate-sialic acid (CMP-Sia), the PSTD and polySia, and as well as the intramolecular interaction between the PBR and the PSTD within the polyST, are summarized. Based on these cooperative interactions, we have built a novel model of NCAM polysialylation and cell migration mechanisms, which may be helpful to design and develop new polysialyltransferase inhibitors.

Keywords: NMR, Sialic acid (Sia), Polysialic acid (polySia), Polysialyltransferases, ST8Sia II (STX), ST8Sia IV (PST), Neural cell adhesion molecules (NCAMs), PSTD, PBR, Cancer metastasis, Phyre2 server.

Graphical Abstract

Animated Abstract
[1]
Lepers, A.H.; Petit, D.; Mollicone, R.; Delannoy, P.; Petit, J.M.; Oriol, R. Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: Tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes. Evol. Biol., 2008, 8, 258.
[http://dx.doi.org/10.1186/1471-2148-8-258]
[2]
Jeanneau, C.; Chazalet, V.; Augé, C.; Soumpasis, D.M.; Harduin-Lepers, A.; Delannoy, P.; Imberty, A.; Breton, C. Structure-function analysis of the human sialyltransferase ST3Gal I: Role of n-glycosylation and a novel conserved sialylmotif. J. Biol. Chem., 2004, 279(14), 13461-13468.
[http://dx.doi.org/10.1074/jbc.M311764200] [PMID: 14722111]
[3]
Sasaki, K.; Kurata, K.; Kojima, N.; Kurosawa, N.; Ohta, S.; Hanai, N.; Tsuji, S.; Nishi, T. Expression cloning of a GM3-specific alpha-2,8-sialyltransferase (GD3 synthase). J. Biol. Chem., 1994, 269(22), 15950-15956.
[PMID: 8195250]
[4]
Nakayama, J.; Fukuda, M.N.; Hirabayashi, Y.; Kanamori, A.; Sasaki, K.; Nishi, T.; Fukuda, M. Expression cloning of a human GT3 synthase. GD3 AND GT3 are synthesized by a single enzyme. J. Biol. Chem., 1996, 271(7), 3684-3691.
[http://dx.doi.org/10.1074/jbc.271.7.3684] [PMID: 8631981]
[5]
Johnson, C.P.; Fujimoto, I.; Rutishauser, U.; Leckband, D.E. Direct evidence that neural cell adhesion molecule (NCAM) polysialylation increases intermembrane repulsion and abrogates adhesion. J. Biol. Chem., 2005, 280(1), 137-145.
[http://dx.doi.org/10.1074/jbc.M410216200] [PMID: 15504723]
[6]
Seidenfaden, R.; Krauter, A.; Schertzinger, F.; Gerardy-Schahn, R.; Hildebrandt, H. Polysialic acid directs tumor cell growth by controlling heterophilic neural cell adhesion molecule interactions. Mol. Cell. Biol., 2003, 23(16), 5908-5918.
[http://dx.doi.org/10.1128/MCB.23.16.5908-5918.2003] [PMID: 12897159]
[7]
Eggers, K.; Werneburg, S.; Schertzinger, A.; Abeln, M.; Schiff, M.; Scharenberg, M.A.; Burkhardt, H.; Mühlenhoff, M.; Hildebrandt, H. Polysialic acid controls NCAM signals at cell-cell contacts to regulate focal adhesion independent from FGF receptor activity. J. Cell Sci., 2011, 124(Pt 19), 3279-3291.
[http://dx.doi.org/10.1242/jcs.084863] [PMID: 21940794]
[8]
Abraham Rosenberg; The beginnings of sialic acid. In: Biology of the sialic acids; Rosenberg, A., Ed.; . Springer-Verlag: Boston, 1995, pp. 1-5.
[http://dx.doi.org/10.1007/978-1-4757-9504-2]
[9]
Glüer, S.; Schelp, C.; Gerardy-Schahn, R.; von Schweinitz, D. Polysialylated neural cell adhesion molecule as a marker for differential diagnosis in pediatric tumors. J. Pediatr. Surg., 1998, 33(10), 1516-1520.
[http://dx.doi.org/10.1016/S0022-3468(98)90488-2] [PMID: 9802804]
[10]
Angata, K.; Suzuki, M.; McAuliffe, J.; Ding, Y.; Hindsgaul, O.; Fukuda, M. Differential biosynthesis of polysialic acid on neural cell adhesion molecule (NCAM) and oligosaccharide acceptors by three distinct alpha 2,8-sialyltransferases, ST8Sia IV (PST), ST8Sia II (STX) and ST8Sia III. J. Biol. Chem., 2000, 275(24), 18594-18601.
[http://dx.doi.org/10.1074/jbc.M910204199] [PMID: 10766765]
[11]
Takashima, S.; Matsumoto, T.; Tsujimoto, M.; Tsuji, S. Effects of amino acid substitutions in the sialylmotifs on molecular expression and enzymatic activities of α2,8-sialyltransferases ST8Sia-I and ST8Sia-VI. Glycobiology, 2013, 23(5), 603-612.
[http://dx.doi.org/10.1093/glycob/cwt002] [PMID: 23315426]
[12]
Harduin-Lepers, A. Comprehensive analysis of sialyltransferases in vertebrate genomes. Glycobiol. Insights, 2010, 2, 29-61.
[http://dx.doi.org/10.4137/GBI.S3123]
[13]
Troy, F.A. II Polysialylation: from bacteria to brains. Glycobiology, 1992, 2(1), 5-23.
[http://dx.doi.org/10.1093/glycob/2.1.5] [PMID: 1550990]
[14]
Petit, D.; Teppa, E.; Mir, A.M.; Vicogne, D.; Thisse, C.; Thisse, B.; Filloux, C.; Harduin-Lepers, A. Integrative view of α2,3-sialyltransferases (ST3Gal) molecular and functional evolution in deuterostomes: significance of lineage-specific losses. Mol. Biol. Evol., 2015, 32(4), 906-927.
[http://dx.doi.org/10.1093/molbev/msu395] [PMID: 25534026]
[15]
Nakata, D.; Zhang, L.; Troy, F.A., II Molecular basis for polysialylation: a novel polybasic polysialyltransferase domain (PSTD) of 32 amino acids unique to the α 2,8-polysialyltransferases is essential for polysialylation. Glycoconj. J., 2006, 23(5-6), 423-436.
[http://dx.doi.org/10.1007/s10719-006-6356-5] [PMID: 16897183]
[16]
Close, B.E.; Tao, K.; Colley, K.J. Polysialyltransferase-1 autopolysialylation is not requisite for polysialylation of neural cell adhesion molecule. J. Biol. Chem., 2000, 275(6), 4484-4491.
[http://dx.doi.org/10.1074/jbc.275.6.4484] [PMID: 10660622]
[17]
Zhou, G.P.; Huang, R.B.; Troy, F.A. II 3D structural conformation and functional domains of polysialyltransferase ST8Sia IV required for polysialylation of neural cell adhesion molecules. Protein Pept. Lett., 2015, 22(2), 137-148.
[http://dx.doi.org/10.2174/0929866521666141019192221] [PMID: 25329332]
[18]
Foley, D.A.; Swartzentruber, K.G.; Colley, K.J. Identification of sequences in the polysialyltransferases ST8Sia II and ST8Sia IV that are required for the protein-specific polysialylation of the neural cell adhesion molecule, NCAM. J. Biol. Chem., 2009, 284(23), 15505-15516.
[http://dx.doi.org/10.1074/jbc.M809696200] [PMID: 19336400]
[19]
Bhide, G.P.; Prehna, G.; Ramirez, B.E.; Colley, K.J. The polybasic region of the polysialyltransferase ST8Sia-iv binds directly to the neural cell adhesion molecule, NCAM. Biochemistry, 2017, 56(10), 1504-1517.
[http://dx.doi.org/10.1021/acs.biochem.6b01221] [PMID: 28233978]
[20]
Zhou, G.P.; Troy, F.A. Characterization by NMR and molecular modeling of the binding of polyisoprenols (PI) and polyisoprenyl recognition sequence (PIRS) peptides: three-dimensional structure of the complexes reveals sites of specific interactions. Glycobiology, 2003, 13, 51-71.
[http://dx.doi.org/10.1093/glycob/cwg008] [PMID: 12626407]
[21]
Kang, J.; Low, W.; Norberg, T.; Meisenhelder, J.; Hansson, K.; Stenflo, J.; Zhou, G.P.; Imperial, J.; Olivera, B.M.; Rigby, A.C.; Craig, A.G. Total chemical synthesis and NMR characterization of the glycopeptide tx5a, a heavily post-translationally modified conotoxin, reveals that the glycan structure is α-D-Gal-(1-->3)-α-D-GalNAc. Eur. J. Biochem., 2004, 271(23-24), 4939-4949.
[http://dx.doi.org/10.1111/j.1432-1033.2004.04464.x] [PMID: 15606782]
[22]
Zhou, G.P.; Troy, F.A. II NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure. Glycobiology, 2005, 15(4), 347-359.
[http://dx.doi.org/10.1093/glycob/cwi016] [PMID: 15563715]
[23]
Schnell, J.R.; Zhou, G.P.; Zweckstetter, M.; Rigby, A.C.; Chou, J.J. Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha. Protein Sci., 2005, 14(9), 2421-2428.
[http://dx.doi.org/10.1110/ps.051528905] [PMID: 16131665]
[24]
Zhou, G.P.; Surks, H.K.; Schnell, J.R.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C. The three-dimensional structure of the cGMP-dependent protein kinase I - α leucine zipper domain and its interaction with the myosin binding subunit. Blood, 2004, 104, 3539-3539.
[http://dx.doi.org/10.2174/0929866511107010966]
[25]
Zhou, G.P.; Huang, R.B. The pH-triggered conversion of the PrP(c) to PrP(sc.). Curr. Top. Med. Chem., 2013, 13(10), 1152-1163.
[http://dx.doi.org/10.2174/15680266113139990003] [PMID: 23647538]
[26]
Zhou, G.P.; Chen, D.; Liao, S.; Huang, R.B. Recent progresses in studying Helix-Helix interactions in proteins by incorporating the wenxiang diagram into the NMR spectroscopy. Curr. Top. Med. Chem., 2016, 16(6), 581-590.
[http://dx.doi.org/10.2174/1568026615666150819104617] [PMID: 26286215]
[27]
Zhou, G.P. The structural determinations of the leucine zipper coiled-coil domains of the cGMP-dependent protein kinase Iα and its interaction with the myosin binding subunit of the myosin light chains phosphase. Protein Pept. Lett., 2011, 18(10), 966-978.
[http://dx.doi.org/10.2174/0929866511107010966] [PMID: 21592084]
[28]
Zhou, G.P. The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism. J. Theor. Biol., 2011, 284(1), 142-148.
[http://dx.doi.org/10.1016/j.jtbi.2011.06.006] [PMID: 21718705]
[29]
Brunger, A.T. Version 1.2 of the crystallography and NMR system. Nat. Protoc., 2007, 2(11), 2728-2733.
[http://dx.doi.org/10.1038/nprot.2007.406] [PMID: 18007608]
[30]
Rieping, W.; Habeck, M.; Bardiaux, B.; Bernard, A.; Malliavin, T.E.; Nilges, M. ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics, 2007, 23(3), 381-382.
[http://dx.doi.org/10.1093/bioinformatics/btl589] [PMID: 17121777]
[31]
Cheung, M.S.; Maguire, M.L.; Stevens, T.J.; Broadhurst, R.W. DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. J. Magn. Reson., 2010, 202(2), 223-233.
[http://dx.doi.org/10.1016/j.jmr.2009.11.008] [PMID: 20015671]
[32]
Kajimura, N.; Yamazaki, M.; Morikawa, K.; Yamazaki, A.; Mayanagi, K. Three-dimensional structure of non-activated cGMP phosphodiesterase 6 and comparison of its image with those of activated forms. J. Struct. Biol., 2002, 139(1), 27-38.
[http://dx.doi.org/10.1016/S1047-8477(02)00502-6] [PMID: 12372317]
[33]
Zhou, G.P. Editorial: current progress in structural bioinformatics of protein-biomolecule interactions. Med. Chem., 2015, 11(3), 216-217.
[http://dx.doi.org/10.2174/1573406411666141229162618] [PMID: 25548926]
[34]
Bjorndahl, T.C.; Zhou, G.P.; Liu, X.; Perez-Pineiro, R.; Semenchenko, V.; Saleem, F.; Acharya, S.; Bujold, A.; Sobsey, C.A.; Wishart, D.S. Detailed biophysical characterization of the acid-induced PrP(c) to PrP(β) conversion process. Biochemistry, 2011, 50(7), 1162-1173.
[http://dx.doi.org/10.1021/bi101435c] [PMID: 21189021]
[35]
Volkers, G.; Worrall, L.J.; Kwan, D.H.; Yu, C.C.; Baumann, L.; Lameignere, E.; Wasney, G.A.; Scott, N.E.; Wakarchuk, W.; Foster, L.J.; Withers, S.G.; Strynadka, N.C. Structure of human ST8SiaIII sialyltransferase provides insight into cell-surface polysialylation. Nat. Struct. Mol. Biol., 2015, 22(8), 627-635.
[http://dx.doi.org/10.1038/nsmb.3060] [PMID: 26192331]
[36]
Huang, R.B.; Cheng, D.; Liao, S.M.; Lu, B.; Wang, Q.Y.; Xie, N.Z.; Troy Ii, F.A.; Zhou, G.P. The intrinsic relationship between structure and function of the sialyltransferase ST8Sia family members. Curr. Top. Med. Chem., 2017, 17(21), 2359-2369.
[http://dx.doi.org/10.2174/1568026617666170414150730] [PMID: 28413949]
[37]
Clore, G.M.; Gronenborn, A.M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol., 1994, 239, 349-363.
[http://dx.doi.org/10.1016/S0076-6879(94)39013-4] [PMID: 7830590]
[38]
Delaglio, F.; Grzesiek, S.; Vuister, G.W.; Zhu, G.; Pfeifer, J.; Bax, A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR, 1995, 6(3), 277-293.
[http://dx.doi.org/10.1007/BF00197809] [PMID: 8520220]
[39]
Sharma, A.K.; Zhou, G.P.; Kupferman, J.; Surks, H.K.; Christensen, E.N.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C. Probing the interaction between the coiled coil leucine zipper of cGMP-dependent protein kinase Ialpha and the C terminus of the myosin binding subunit of the myosin light chain phosphatase. J. Biol. Chem., 2008, 283(47), 32860-32869.
[http://dx.doi.org/10.1074/jbc.M804916200] [PMID: 18782776]
[40]
Wüthrich, K. NMR of Proteins and Nucleic Acids, 1st Ed.,; Wiley-Interscience: New Jersey, 1996.
[41]
Zhou, G.P.; Troy, F.A. II NMR studies on how the binding complex of polyisoprenol recognition sequence peptides and polyisoprenols can modulate membrane structure. Curr. Protein Pept. Sci., 2005, 6(5), 399-411.
[http://dx.doi.org/10.2174/138920305774329377] [PMID: 16248792]
[42]
Oxenoid, K.; Dong, Y.; Cao, C.; Cui, T.; Sancak, Y.; Markhard, A.L.; Grabarek, Z.; Kong, L.; Liu, Z.; Ouyang, B.; Cong, Y.; Mootha, V.K.; Chou, J.J. Architecture of the mitochondrial calcium uniporter. Nature, 2016, 533(7602), 269-273.
[http://dx.doi.org/10.1038/nature17656] [PMID: 27135929]
[43]
Van Horn, W.D.; Kim, H.J.; Ellis, C.D.; Hadziselimovic, A.; Sulistijo, E.S.; Karra, M.D.; Tian, C.; Sönnichsen, F.D.; Sanders, C.R. Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science, 2009, 324(5935), 1726-1729.
[http://dx.doi.org/10.1126/science.1171716] [PMID: 19556511]
[44]
Kang, C.; Tian, C.; Sönnichsen, F.D.; Smith, J.A.; Meiler, J.; George, A.L., Jr; Vanoye, C.G.; Kim, H.J.; Sanders, C.R. Structure of KCNE1 and implications for how it modulates the KCNQ1 potassium channel. Biochemistry, 2008, 47(31), 7999-8006.
[http://dx.doi.org/10.1021/bi800875q] [PMID: 18611041]
[45]
Zhou, G-P.; Surks, H.K.; Schnell, J.R.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C. The Three-Dimensional Structure of the cGMP-Dependent Protein Kinase I - α Leucine Zipper Domain and Its Interaction with the Myosin Binding Subunit. Blood, 2004, 104(11), 3539-3539.
[46]
Chou, J.J.; Li, S.; Klee, C.B.; Bax, A. Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains. Nat. Struct. Biol., 2001, 8(11), 990-997.
[http://dx.doi.org/10.1038/nsb1101-990] [PMID: 11685248]
[47]
Chou, J.J.; Li, H.; Salvesen, G.S.; Yuan, J.; Wagner, G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell, 1999, 96(5), 615-624.
[http://dx.doi.org/10.1016/S0092-8674(00)80572-3] [PMID: 10089877]
[48]
Fu, Q.; Fu, T.M.; Cruz, A.C.; Sengupta, P.; Thomas, S.K.; Wang, S.; Siegel, R.M.; Wu, H.; Chou, J.J. Structural basis and functional role of intramembrane trimerization of the FAS/CD95 death receptor. Mol. Cell, 2016, 61(4), 602-613.
[http://dx.doi.org/10.1016/j.molcel.2016.01.009] [PMID: 26853147]
[49]
Pielak, R.M.; Schnell, J.R.; Chou, J.J. Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proc. Natl. Acad. Sci. USA, 2009, 106(18), 7379-7384.
[http://dx.doi.org/10.1073/pnas.0902548106] [PMID: 19383794]
[50]
Dev, J.; Park, D.; Fu, Q.; Chen, J.; Ha, H.J.; Ghantous, F.; Herrmann, T.; Chang, W.; Liu, Z.; Frey, G.; Seaman, M.S.; Chen, B.; Chou, J.J. Structural basis for membrane anchoring of HIV-1 envelope spike. Science, 2016, 353(6295), 172-175.
[http://dx.doi.org/10.1126/science.aaf7066] [PMID: 27338706]
[51]
Chou, J.J.; Matsuo, H.; Duan, H.; Wagner, G. Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell, 1998, 94(2), 171-180.
[http://dx.doi.org/10.1016/S0092-8674(00)81417-8] [PMID: 9695946]
[52]
Xu, C.; Gagnon, E.; Call, M.E.; Schnell, J.R.; Schwieters, C.D.; Carman, C.V.; Chou, J.J.; Wucherpfennig, K.W. Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell, 2008, 135(4), 702-713.
[http://dx.doi.org/10.1016/j.cell.2008.09.044] [PMID: 19013279]
[53]
Gagnon, E.; Xu, C.; Yang, W.; Chu, H.H.; Call, M.E.; Chou, J.J.; Wucherpfennig, K.W. Response multilayered control of T cell receptor phosphorylation. Cell, 2010, 142(5), 669-671.
[http://dx.doi.org/10.1016/j.cell.2010.08.019] [PMID: 20813252]
[54]
Pielak, R.M.; Chou, J.J. Flu channel drug resistance: a tale of two sites. Protein Cell, 2010, 1(3), 246-258.
[http://dx.doi.org/10.1007/s13238-010-0025-y] [PMID: 21203971]
[55]
Berardi, M.J.; Chou, J.J. Fatty acid flippase activity of UCP2 is essential for its proton transport in mitochondria. Cell Metab., 2014, 20(3), 541-552.
[http://dx.doi.org/10.1016/j.cmet.2014.07.004] [PMID: 25127353]
[56]
Mantsyzov, A.B.; Shen, Y.; Lee, J.H.; Hummer, G.; Bax, A. MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data. J. Biomol. NMR, 2015, 63(1), 85-95.
[http://dx.doi.org/10.1007/s10858-015-9971-2] [PMID: 26219516]
[57]
Shen, Y.; Bax, A. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N. Methods Mol. Biol., 2015, 1260, 17-32.
[http://dx.doi.org/10.1007/978-1-4939-2239-0_2] [PMID: 25502373]
[58]
Kelley, L.A.; Sternberg, M.J.E. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc., 2009, 4(3), 363-371.
[http://dx.doi.org/10.1038/nprot.2009.2] [PMID: 19247286]
[59]
Krajewski, M.; Ozdowy, P.; D’Silva, L.; Rothweiler, U.; Holak, T.A. NMR indicates that the small molecule RITA does not block p53-MDM2 binding in vitro. Nat. Med., 2005, 11(11), 1135-1136.
[http://dx.doi.org/10.1038/nm1105-1135] [PMID: 16270059]
[60]
Chou, K.C.; Jones, D.; Heinrikson, R.L. Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Lett., 1997, 419(1), 49-54.
[http://dx.doi.org/10.1016/S0014-5793(97)01246-5] [PMID: 9426218]
[61]
Chou, K.C.; Tomasselli, A.G.; Heinrikson, R.L. Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett., 2000, 470(3), 249-256.
[http://dx.doi.org/10.1016/S0014-5793(00)01333-8] [PMID: 10745077]
[62]
Chou, K.C.; Howe, W.J. Prediction of the tertiary structure of the beta-secretase zymogen. Biochem. Biophys. Res. Commun., 2002, 292(3), 702-708.
[http://dx.doi.org/10.1006/bbrc.2002.6686] [PMID: 11922623]
[63]
Chou, K.C. Insights from modeling three-dimensional structures of the human potassium and sodium channels. J. Proteome Res., 2004, 3(4), 856-861.
[http://dx.doi.org/10.1021/pr049931q] [PMID: 15359741]
[64]
Chou, K.C. Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem. Biophys. Res. Commun. (BBRC) , 2004, 319, 433-438.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.016]
[65]
Chou, K.C. Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J. Proteome Res., 2005, 4(5), 1681-1686.
[http://dx.doi.org/10.1021/pr050145a] [PMID: 16212421]
[66]
Chou, K.C. Insights from modeling the tertiary structure of human BACE2. J. Proteome Res., 2004, 3(5), 1069-1072.
[http://dx.doi.org/10.1021/pr049905s] [PMID: 15473697]
[67]
Chou, K.C. Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5. Biochem. Biophys. Res. Commun., 2004, 316, 636-642.
[http://dx.doi.org/10.1016/j.bbrc.2004.02.098]
[68]
Chou, K.C. Molecular therapeutic target for type-2 diabetes. J. Proteome Res., 2004, 3(6), 1284-1288.
[http://dx.doi.org/10.1021/pr049849v] [PMID: 15595739]
[69]
Chou, K.C. Modeling the tertiary structure of human cathepsin-E. Biochem. Biophys. Res. Commun., 2005, 331(1), 56-60.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.123] [PMID: 15845357]
[70]
Chou, K.C. Insights from modeling the 3D structure of DNA-CBF3b complex. J. Proteome Res., 2005, 4(5), 1657-1660.
[http://dx.doi.org/10.1021/pr050135+] [PMID: 16212418]
[71]
Wang, S.Q.; Du, Q.S.; Huang, R.B.; Zhang, D.W.; Chou, K.C. Insights from investigating the interaction of oseltamivir (Tamiflu) with neuraminidase of the 2009 H1N1 swine flu virus. Biochem. Biophys. Res. Commun. (BBRC) , 2009, 386, 432-436.
[http://dx.doi.org/10.1016/j.bbrc.2009.06.016]
[72]
Wang, J.F.; Chou, K.C. Insights from studying the mutation-induced allostery in the M2 proton channel by molecular dynamics. Protein Eng. Des. Sel. (PEDS), 2010, 23, 663-666.
[http://dx.doi.org/10.1093/protein/gzq040]
[73]
Wang, J.F.; Chou, K.C. Insights from modeling the 3D structure of New Delhi metallo-β-lactamse and its binding interactions with antibiotic drugs. PLoS One, 2011, 6(4)e18414
[http://dx.doi.org/10.1371/journal.pone.0018414] [PMID: 21494599]
[74]
Wang, J.F.; Chou, K.C. Insights into the mutation-induced HHH syndrome from modeling human mitochondrial ornithine transporter-1. PLoS One, 2012, 7(1)e31048
[http://dx.doi.org/10.1371/journal.pone.0031048] [PMID: 22292090]
[75]
Chou, K.C. Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem., 2004, 11(16), 2105-2134.
[http://dx.doi.org/10.2174/0929867043364667] [PMID: 15279552]
[76]
Zhou, G.P. The structural determinations of the leucine zipper coiled-coil domains of the cGMP-dependent protein kinase Iα and its interaction with the myosin binding subunit of the myosin light chains phosphase. Protein Pept. Lett., 2011, 18(10), 966-978.
[http://dx.doi.org/10.2174/0929866511107010966] [PMID: 21592084]
[77]
Zhou, G.P. Predictions and determinations of protein and peptide structures. Protein Pept. Lett., 2011, 18(10), 964-965.
[http://dx.doi.org/10.2174/092986611796378738]
[78]
Chou, K.C.; Wei, D.Q.; Zhong, W.Z. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem. Biophys. Res. Commun., 2003, 308(1), 148-151.
[http://dx.doi.org/10.1016/S0006-291X(03)01342-1] [PMID: 12890493]
[79]
Liao, Q.H.; Gao, Q.Z.; Wei, J.; Chou, K.C. Docking and molecular dynamics study on the inhibitory activity of novel inhibitors on epidermal growth factor receptor (EGFR). Med. Chem., 2011, 7(1), 24-31.
[http://dx.doi.org/10.2174/157340611794072698] [PMID: 21235516]
[80]
Li, X.B.; Wang, S.Q.; Xu, W.R.; Wang, R.L.; Chou, K.C. Novel inhibitor design for hemagglutinin against H1N1 influenza virus by core hopping method. PLoS One, 2011, 6e28111
[81]
Ma, Y.; Wang, S.Q.; Xu, W.R.; Wang, R.L.; Chou, K.C. Design novel dual agonists for treating type-2 diabetes by targeting peroxisome proliferator-activated receptors with core hopping approach. PLoS One, 2012, 7(6)e38546
[http://dx.doi.org/10.1371/journal.pone.0038546] [PMID: 22685582]
[82]
Fan, Y.N.; Xiao, X.; Min, J.L.; Chou, K.C. iNR-Drug: Predicting the interaction of drugs with nuclear receptors in cellular networking. Int. J. Mol. Sci. (IJMS), 2014, 15, 4915-4937.
[83]
Min, J.L.; Xiao, X.; Chou, K.C. iEzy-Drug: A web server for identifying the interaction between enzymes and drugs in cellular networking. BioMed Res. Int. (BMRI) , 2013, 2013701317
[84]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. iGPCR-drug: a web server for predicting interaction between GPCRs and drugs in cellular networking. PLoS One, 2013, 8(8)e72234
[http://dx.doi.org/10.1371/journal.pone.0072234] [PMID: 24015221]
[85]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. iCDI-PseFpt: identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints. J. Theor. Biol., 2013, 337, 71-79.
[http://dx.doi.org/10.1016/j.jtbi.2013.08.013] [PMID: 23988798]
[86]
Xiao, X.; Min, J.L.; Lin, W.Z.; Liu, Z.; Cheng, X.; Chou, K.C. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach. J. Biomol. Struct. Dyn. (JBSD) , 2015, 33, 2221-2233.
[87]
Chou, K.C.; Elrod, D.W. Bioinformatical analysis of G-protein-coupled receptors. J. Proteome Res., 2002, 1(5), 429-433.
[http://dx.doi.org/10.1021/pr025527k] [PMID: 12645914]
[88]
Chou, K.C. Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Curr. Proteomics, 2009, 6, 262-274.
[http://dx.doi.org/10.2174/157016409789973707]
[89]
Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K.C. iRNA-PseU: Identifying RNA pseudouridine sites. Mol. Ther. Nucleic Acids, 2016.5e332
[PMID: 28427142]
[90]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal. Biochem., 2016, 497, 48-56.
[http://dx.doi.org/10.1016/j.ab.2015.12.009] [PMID: 26723495]
[91]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J. Theor. Biol., 2016, 394, 223-230.
[http://dx.doi.org/10.1016/j.jtbi.2016.01.020] [PMID: 26807806]
[92]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget, 2016, 7, 34558-34570.
[http://dx.doi.org/10.18632/oncotarget.9148]
[93]
Chou, K.C. Impacts of bioinformatics to medicinal chemistry. Med. Chem., 2015, 11(3), 218-234.
[http://dx.doi.org/10.2174/1573406411666141229162834] [PMID: 25548930]
[94]
Liu, Z.; Xiao, X.; Yu, D.J.; Jia, J.; Qiu, W.R.; Chou, K.C. pRNAm-PC: Predicting N(6)-methyladenosine sites in RNA sequences via physical-chemical properties. Anal. Biochem., 2016, 497, 60-67.
[http://dx.doi.org/10.1016/j.ab.2015.12.017] [PMID: 26748145]
[95]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Chou, K.C. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget, 2016, 7, 44310-44321.
[96]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Chou, K.C. iPTM-mLys: identifying multiple lysine PTM sites and their different types. Bioinformatics, 2016, 32(20), 3116-3123.
[http://dx.doi.org/10.1093/bioinformatics/btw380] [PMID: 27334473]
[97]
Qiu, W.R.; Xiao, X.; Xu, Z.C.; Chou, K.C. iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Oncotarget, 2016, 7(32), 51270-51283.
[http://dx.doi.org/10.18632/oncotarget.9987] [PMID: 27323404]
[98]
Xu, Y.; Chou, K.C. Recent progress in predicting posttranslational modification sites in proteins. Curr. Top. Med. Chem., 2016, 16(6), 591-603.
[http://dx.doi.org/10.2174/1568026615666150819110421] [PMID: 26286211]
[99]
Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H.; Chou, K.C. iRNA-PseColl: Identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. Mol. Ther. Nucleic Acids, 2017, 7, 155-163.
[http://dx.doi.org/10.1016/j.omtn.2017.03.006] [PMID: 28624191]
[100]
Xu, Y.; Wang, Z.; Li, C.; Chou, K.C. iPreny-PseAAC: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC. Med. Chem., 2017, 13(6), 544-551.
[http://dx.doi.org/10.2174/1573406413666170419150052] [PMID: 28425870]
[101]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.C. iRNA-3typeA: Identifying 3-types of modification at RNA’s adenosine sites Molecular Therapy. Nucleic Acid, 2018, 11, 468-474.
[PMID: 29858081]
[102]
Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W.; Chou, K.C. iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics, 2019, 111(1), 96-102.
[http://dx.doi.org/10.1016/j.ygeno.2018.01.005]
[103]
Ju, Z.; Wang, S.Y. Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou’s general pseudo amino acid composition. Gene, 2018, 664, 78-83.
[http://dx.doi.org/10.1016/j.gene.2018.04.055] [PMID: 29694908]
[104]
Khan, Y.D.; Rasool, N.; Hussain, W.; Khan, S.A.; Chou, K.C. iPhosT-PseAAC: Identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC. Anal. Biochem., 2018, 550, 109-116.
[http://dx.doi.org/10.1016/j.ab.2018.04.021] [PMID: 29704476]
[105]
Sabooh, M.F.; Iqbal, N.; Khan, M.; Khan, M.; Maqbool, H.F. Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC. J. Theor. Biol., 2018, 452, 1-9.
[http://dx.doi.org/10.1016/j.jtbi.2018.04.037] [PMID: 29727634]
[106]
Chou, K.C. An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr. Top. Med. Chem., 2017, 17(21), 2337-2358.
[http://dx.doi.org/10.2174/1568026617666170414145508] [PMID: 28413951]
[107]
Chou, K.C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol., 2011, 273(1), 236-247.
[http://dx.doi.org/10.1016/j.jtbi.2010.12.024] [PMID: 21168420]
[108]
Chen, W.; Lin, H.; Chou, K.C. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol. Biosyst., 2015, 11(10), 2620-2634.
[http://dx.doi.org/10.1039/C5MB00155B] [PMID: 26099739]
[109]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC. Mol. Biosyst., 2017, 13(9), 1722-1727.
[http://dx.doi.org/10.1039/C7MB00267J] [PMID: 28702580]
[110]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene, 2017, 644, 315-321.
[http://dx.doi.org/10.1016/j.gene.2017.07.036]
[111]
Cheng, X.; Zhao, S.G.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics, 2017, 33(22), 3524-3531.
[http://dx.doi.org/10.1093/bioinformatics/btx476] [PMID: 29036535]
[112]
Cheng, X.; Zhao, S.G.; Xiao, X.; Chou, K.C. iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics, 2017, 33, 341-346.
[http://dx.doi.org/10.1093/bioinformatics/btw644]
[113]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics, 2018, 110, 231-239.
[http://dx.doi.org/10.1016/j.ygeno.2017.10.002]
[114]
Xiao, X.; Cheng, X.; Su, S.; Nao, Q.; Chou, K.C. pLoc-mGpos: Incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins. Nat. Sci., 2017, 9, 331-349.
[http://dx.doi.org/10.4236/ns.2017.99032]
[115]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics, 2018, 110, 50-58.
[http://dx.doi.org/10.1016/j.ygeno.2017.08.005]
[116]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics, 2018, 34(9), 1448-1456.
[http://dx.doi.org/10.1093/bioinformatics/btx711] [PMID: 29106451]
[117]
Xuao, X.; Cheng, X.; Chen, G.; Mao, Q.; Chou, K.C. pLoc_bal-mGpos: predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC. Genomics, 2019, 111(4), 886-892.
[http://dx.doi.org/10.1016/j.ygeno.2018.05.017]
[118]
Chou, K.C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst., 2013, 9(6), 1092-1100.
[http://dx.doi.org/10.1039/c3mb25555g] [PMID: 23536215]
[119]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. BiomMed Research Intl. (BMRI), 2014.623149
[http://dx.doi.org/10.1155/2014/623149]
[120]
Feng, P.M.; Chen, W.; Lin, H.; Chou, K.C. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442(1), 118-125.
[http://dx.doi.org/10.1016/j.ab.2013.05.024] [PMID: 23756733]
[121]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res., 2013, 41(6)e68
[http://dx.doi.org/10.1093/nar/gks1450] [PMID: 23303794]
[122]
Qiu, W.R.; Xiao, X.; Chou, K.C. iRSpot-TNCPseAAC: Identify recombination spots with trinucleotide composition and pseudo amino acid components. Int. J. Mol. Sci. (IJMS). , 2014, 15, 1746-1766.
[http://dx.doi.org/10.3390/ijms15021746]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy