Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Mini-Review Article

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Diagnosis and Treatment of Breast, Ovarian and Cervical Cancers

Author(s): Sekhar Talluri and Rama R. Malla*

Volume 20, Issue 12, 2019

Page: [942 - 945] Pages: 4

DOI: 10.2174/1389200220666191016124958

Price: $65

Abstract

Background: The potential of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) as theranostic agents for cancer has been investigated extensively. SPIONS can be utilized for diagnostic imaging, drug delivery as well as for therapeutic applications. SPIONS are of particular interest because of their potential for non-invasive diagnosis and non-invasive therapeutic applications. This article is a review of in vivo and clinical studies of SPIONs for diagnosis and treatment of breast, ovarian and cervical cancer. The current limitations of this technology with relation to clinical therapeutic applications and the potential to overcome these limitations are also discussed.

Methods: NCBI Pubmed was searched for relevant documents by using keyword and MESH based search. The following keyword combinations were used: ‘breast cancer’ and SPION, ‘ovarian cancer’ and SPION, and ‘cervical cancer’ and SPION. The resulting list was manually scanned for the studies involving clinical and in vivo studies.

Results: The 29 most relevant publications were identified and reviewed.

Conclusion: Although numerous in vitro and in vivo studies have demonstrated the safety and effectiveness of the use of SPIONs for both diagnostic and therapeutic applications, there is relatively little progress towards translation to clinical applications involving breast, ovarian and cervical cancer.

Keywords: SPION, theranostics, breast cancer, ovarian cancer, cervical cancer, MRI, non-invasive imaging.

Graphical Abstract

[1]
McDonald, E.S.; Clark, A.S.; Tchou, J.; Zhang, P.; Freedman, G.M. Clinical diagnosis and management of breast cancer. J. Nucl. Med., 2016, 57(Suppl. 1), 9S-16S.
[2]
Li, H.; Wu, X. Advances in diagnosis and treatment of metastatic cervical cancer. J. Gynecol. Oncol., 2016, 27(4) e43
[http://dx.doi.org/10.3802/jgo.2016.27.e43]
[3]
Cortez, A.J.; Tudrej, P.; Kujawa, K.A.; Lisowska, K.M. Advances in ovarian cancer therapy. Cancer Chemother. Pharmacol., 2018, 81(1), 17-38.
[http://dx.doi.org/10.1007/s00280-017-3501-8]
[4]
Di Lorenzo, G.; Ricci, G.; Severini, G.M.; Romano, F.; Biffi, S. Imaging and therapy of ovarian cancer: Clinical application of nanoparticles and future perspectives. Theranostics, 2018, 8(16), 4279-4294.
[http://dx.doi.org/10.7150/thno.26345] [PMID: 30214620]
[5]
Albarqi, H.A.; Wong, L.H.; Schumann, C.; Sabei, F.Y.; Korzun, T.; Li, X.; Hansen, M.N.; Dhagat, P.; Moses, A.S.; Taratula, O.; Taratula, O. Biocompatible nanoclusters with high heating efficiency for systemically delivered magnetic hyperthermia. ACS Nano, 2019, 13(6), 6383-6395.
[6]
Falagan-Lotsch, P.; Grzincic, E.M.; Murphy, C.J. New advances in nanotechnology-based diagnosis and therapeutics for breast cancer: An assessment of active-targeting inorganic nanoplatforms. Bioconjug. Chem., 2017, 28(1), 135-152.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00591] [PMID: 27973767]
[7]
Thakor, A.S.; Jokerst, J.V.; Ghanouni, P.; Campbell, J.L.; Mittra, E.; Gambhir, S.S. Clinically approved nanoparticle imaging agents. J. Nucl. Med., 2016, 57(12), 1833-1837.
[http://dx.doi.org/10.2967/jnumed.116.181362]
[8]
Dulinska-Litewka, J.; Lazarczyk, A.; Halubiec, P.; Szafranski, O.; Karnas, K.; Karewicz, A. Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials (Basel, Switzerland), 2019, 12(4), 617.
[http://dx.doi.org/10.3390/ma12040617]
[9]
Shabestari Khiabani, S.; Farshbaf, M.; Akbarzadeh, A.; Davaran, S. Magnetic nanoparticles: Preparation methods, applications in cancer diagnosis and cancer therapy. Artif. Cells Nanomed. Biotechnol., 2017, 45(1), 6-17.
[http://dx.doi.org/10.3109/21691401.2016.1167704] [PMID: 27050642]
[10]
Yin, X.; Russek, S.E.; Zabow, G.; Sun, F.; Mohapatra, J.; Keenan, K.E.; Boss, M.A.; Zeng, H.; Liu, J.P.; Viert, A.; Liou, S.H.; Moreland, J. Large T1 contrast enhancement using superparamagnetic nanoparticles in ultra-low field MRI. Sci. Rep., 2018, 8(1), 13272.
[http://dx.doi.org/10.1038/s41598-018-31702-0] [PMID: 30171193]
[11]
Song, J.; Hu, Q.; Huang, J.; Chen, T.; Ma, Z.; Shi, H. MR targeted imaging for the expression of tenascin-C in cervical cancer. Br. J. Radiol., 2018, 91(1090)20170681
[http://dx.doi.org/10.1259/bjr.20170681] [PMID: 29987979]
[12]
Zhang, H.; Li, J.; Hu, Y.; Shen, M.; Shi, X.; Zhang, G. Folic acid-targeted iron oxide nanoparticles as contrast agents for magnetic resonance imaging of human ovarian cancer. J. Ovarian Res., 2016, 9, 19.
[http://dx.doi.org/10.1186/s13048-016-0230-2] [PMID: 27025582]
[13]
Luque-Michel, E.; Imbuluzqueta, E.; Sebastián, V.; Blanco-Prieto, M.J. Clinical advances of nanocarrier-based cancer therapy and diagnostics. Expert Opin. Drug Deliv., 2017, 14(1), 75-92.
[http://dx.doi.org/10.1080/17425247.2016.1205585] [PMID: 27339650]
[14]
Pan, C.; Liu, Y.; Zhou, M.; Wang, W.; Shi, M.; Xing, M.; Liao, W. Theranostic pH-sensitive nanoparticles for highly efficient targeted delivery of doxorubicin for breast tumor treatment. Int. J. Nanomedicine, 2018, 13, 1119-1137.
[http://dx.doi.org/10.2147/IJN.S147464] [PMID: 29520140]
[15]
Boya, V.N.; Lovett, R.; Setua, S.; Gandhi, V.; Nagesh, P.K.; Khan, S.; Jaggi, M.; Yallapu, M.M.; Chauhan, S.C. Probing mucin interaction behavior of magnetic nanoparticles. J. Colloid Interface Sci., 2017, 488, 258-268.
[16]
Fakhimikabir, H.; Tavakoli, M.B.; Zarrabi, A.; Amouheidari, A.; Rahgozar, S. The role of folic acid-conjugated polyglycerol coated iron oxide nanoparticles on radiosensitivity with clinical electron beam (6 MeV) on human cervical carcinoma cell line: In vitro study. J. Photochem. Photobiol. B, 2018, 182, 71-76.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.03.023] [PMID: 29626804]
[17]
Taratula, O.; Dani, R.K.; Schumann, C.; Xu, H.; Wang, A.; Song, H.; Dhagat, P.; Taratula, O. Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells. Int. J. Pharm., 2013, 458(1), 169-180.
[http://dx.doi.org/10.1016/j.ijpharm.2013.09.032] [PMID: 24091153]
[18]
Chang, D.; Lim, M.; Goos, J.A.C.M.; Qiao, R.; Ng, Y.Y.; Mansfeld, F.M.; Jackson, M.; Davis, T.P.; Kavallaris, M. Biologically targeted magnetic hyperthermia: Potential and limitations. Front. Pharmacol., 2018, 9, 831.
[http://dx.doi.org/10.3389/fphar.2018.00831] [PMID: 30116191]
[19]
Chu, M.; Shao, Y.; Peng, J.; Dai, X.; Li, H.; Wu, Q.; Shi, D. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials, 2013, 34(16), 4078-4088.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.086] [PMID: 23465836]
[20]
Gobbo, O.L.; Sjaastad, K.; Radomski, M.W.; Volkov, Y.; Prina-Mello, A. Magnetic nanoparticles in cancer theranostics. Theranostics, 2015, 5(11), 1249-1263.
[http://dx.doi.org/10.7150/thno.11544] [PMID: 26379790]
[21]
Zheng, S.; Han, J.; Jin, Z.; Kim, C.S.; Park, S.; Kim, K.P.; Park, J.O.; Choi, E. Dual tumor-targeted multifunctional magnetic hyaluronic acid micelles for enhanced MR imaging and combined photothermal-chemotherapy. Colloids Surf. B Biointerfaces, 2018, 164, 424-435.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.005] [PMID: 29433060]
[22]
Xie, J.; Yan, C.; Yan, Y.; Chen, L.; Song, L.; Zang, F.; An, Y.; Teng, G.; Gu, N.; Zhang, Y. Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: A comparison of passive and active targeting effects. Nanoscale, 2016, 8(38), 16902-16915.
[http://dx.doi.org/10.1039/C6NR03916B] [PMID: 27427416]
[23]
Yang, R.M.; Fu, C.P.; Fang, J.Z.; Xu, X.D.; Wei, X.H.; Tang, W.J.; Jiang, X.Q.; Zhang, L.M. Hyaluronan-modified superparamagnetic iron oxide nanoparticles for bimodal breast cancer imaging and photothermal therapy. Int. J. Nanomedicine, 2016, 12, 197-206.
[http://dx.doi.org/10.2147/IJN.S121249] [PMID: 28096667]
[24]
Alvarado, M.D.; Mittendorf, E.A.; Teshome, M.; Thompson, A.M.; Bold, R.J.; Gittleman, M.A.; Beitsch, P.D.; Blair, S.L.; Kivilaid, K.; Harmer, Q.J.; Hunt, K.K.; Sentimag, I.C. A Non-inferiority trial comparing superparamagnetic iron oxide versus technetium-99m and blue dye in the detection of axillary sentinel nodes in patients with early-stage breast cancer. Ann. Surg. Oncol., 2019, 26(11), 3510-3516.
[http://dx.doi.org/10.1245/s10434-019-07577-4]
[25]
Mok, C.W.; Tan, S.M.; Zheng, Q.; Shi, L. Network meta-analysis of novel and conventional sentinel lymph node biopsy techniques in breast cancer. BJS Open, 2019, 3(4), 445-452.
[http://dx.doi.org/10.1002/bjs5.50157]
[26]
Wärnberg, F.; Stigberg, E.; Obondo, C.; Olofsson, H.; Abdsaleh, S.; Wärnberg, M.; Karakatsanis, A. Long-term outcome after retro-areolar versus peri-tumoral injection of superparamagnetic iron oxide nanoparticles (SPION) for sentinel lymph node detection in breast cancer surgery. Ann. Surg. Oncol., 2019, 26(5), 1247-1253.
[http://dx.doi.org/10.1245/s10434-019-07239-5] [PMID: 30830536]
[27]
Bazire, L.; Alran, S.; El Bamrani, S.; Gaujal, L.; Vincent-Salomon, A.; Tardivon, A.; Kirova, Y.M. Radiation therapy after sentinel lymph node biopsy for early stage breast cancer using a magnetic tracer: Results of a single institutional prospective study of tolerance. Cancer Radiother., 2019, 23(1), 23-27.
[28]
Shen, L.F.; Chen, J.; Zeng, S.; Zhou, R.R.; Zhu, H.; Zhong, M.Z.; Yao, R.J.; Shen, H. The superparamagnetic nanoparticles carrying the E1A gene enhance the radiosensitivity of human cervical carcinoma in nude mice. Mol. Cancer Ther., 2010, 9(7), 2123-2130.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-1150] [PMID: 20587666]
[29]
Johannsen, M.; Gneveckow, U.; Taymoorian, K.; Thiesen, B.; Waldofner, N.; Scholz, R.; Jung, K.; Jordan, A.; Wust, P.; Loening, S.A. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial. Int. J. Hyperthermia, 2007, 23(3), 315-323.
[http://dx.doi.org/10.1080/02656730601175479]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy