Review Article

天然水凝胶在光力学治疗中的应用

卷 27, 期 16, 2020

页: [2681 - 2703] 页: 23

弟呕挨: 10.2174/0929867326666191016112828

价格: $65

摘要

天然水凝胶是一种三维(3D)的保水材料,其骨架由天然聚合物、其衍生物或混合物组成。天然水凝胶可以提供持续或可控的药物释放,并具有天然聚合物的一些独特特性,如生物降解性、生物相容性和一些额外的功能,如CD44靶向透明质酸。天然水凝胶可与光敏剂(PSs)一起用于光动力治疗(PDT),以增加应用范围。在目前的综述中,相关的设计变量被讨论,同时描述了可用于PDT的天然水凝胶的类别。

关键词: 光动力疗法,天然聚合物,水凝胶,PDT

[1]
Nosaka, Y.; Nosaka, A.Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev., 2017, 117(17), 11302-11336.
[http://dx.doi.org/10.1021/acs.chemrev.7b00161] [PMID: 28777548]
[2]
Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 2012, 24(5), 981-990.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.008] [PMID: 22286106]
[3]
Prażmo, E.J.; Kwaśny, M.; Łapiński, M.; Mielczarek, A. Photodynamic therapy as a promising method used in the treatment of oral diseases. Adv. Clin. Exp. Med., 2016, 25(4), 799-807.
[http://dx.doi.org/10.17219/acem/32488] [PMID: 27629857]
[4]
Qiu, H.; Tan, M.; Ohulchanskyy, T.Y.; Lovell, J.F.; Chen, G. Recent progress in upconversion photodynamic therapy. Nanomaterials (Basel), 2018, 8(5), 344.
[http://dx.doi.org/10.3390/nano8050344] [PMID: 29783654]
[5]
Lim, C.K.; Heo, J.; Shin, S.; Jeong, K.; Seo, Y.H.; Jang, W.D.; Park, C.R.; Park, S.Y.; Kim, S.; Kwon, I.C. Nanophotosensitizers toward advanced photodynamic therapy of Cancer. Cancer Lett., 2013, 334(2), 176-187.
[http://dx.doi.org/10.1016/j.canlet.2012.09.012] [PMID: 23017942]
[6]
Jia, Q.; Zheng, X.; Ge, J.; Liu, W.; Ren, H.; Chen, S.; Wen, Y.; Zhang, H.; Wu, J.; Wang, P. Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer. J. Colloid Interface Sci., 2018, 526, 302-311.
[http://dx.doi.org/10.1016/j.jcis.2018.05.005] [PMID: 29747042]
[7]
Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: progress and challenges. Polymer (Guildf.), 2008, 49(8), 1993-2007.
[http://dx.doi.org/10.1016/j.polymer.2008.01.027]
[8]
Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003, 24(24), 4337-4351.
[http://dx.doi.org/10.1016/S0142-9612(03)00340-5] [PMID: 12922147]
[9]
Li, W.; Zhang, H.; Guo, X.; Wang, Z.; Kong, F.; Luo, L.; Li, Q.; Zhu, C.; Yang, J.; Lou, Y.; Du, Y.; You, J. Gold nanospheres-stabilized indocyanine green as a synchronous photodynamic-photothermal therapy platform that inhibits tumor growth and metastasis. ACS Appl. Mater. Interfaces, 2017, 9(4), 3354-3367.
[http://dx.doi.org/10.1021/acsami.6b13351] [PMID: 28068066]
[10]
Ogawa, K.; Nakayama, A.; Kokufuta, E. Preparation and characterization of thermosensitive polyampholyte nanogels. Langmuir, 2003, 19(8), 3178-3184.
[http://dx.doi.org/10.1021/la0267185]
[11]
Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[12]
Yu, M.; Zheng, J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano, 2015, 9(7), 6655-6674.
[http://dx.doi.org/10.1021/acsnano.5b01320] [PMID: 26149184]
[13]
Zhao, H.Y.; Liu, S.; He, J.; Pan, C.C.; Li, H.; Zhou, Z.Y.; Ding, Y.; Huo, D.; Hu, Y. Synthesis and application of strawberry-like Fe3O4-Au nanoparticles as CT-MR dual-modality contrast agents in accurate detection of the progressive liver disease. Biomaterials, 2015, 51, 194-207.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.019] [PMID: 25771010]
[14]
Maeda, H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev., 2015, 91, 3-6.
[http://dx.doi.org/10.1016/j.addr.2015.01.002] [PMID: 25579058]
[15]
Merkel, T.J.; Jones, S.W.; Herlihy, K.P.; Kersey, F.R.; Shields, A.R.; Napier, M.; Luft, J.C.; Wu, H.; Zamboni, W.C.; Wang, A.Z.; Bear, J.E.; DeSimone, J.M. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl. Acad. Sci. USA, 2011, 108(2), 586-591.
[http://dx.doi.org/10.1073/pnas.1010013108] [PMID: 21220299]
[16]
Anselmo, A.C.; Mitragotri, S. Impact of particle elasticity on particle-based drug delivery systems. Adv. Drug Deliv. Rev., 2017, 108, 51-67.
[http://dx.doi.org/10.1016/j.addr.2016.01.007] [PMID: 26806856]
[17]
Yamada, Y.; Tabata, M.; Abe, J.; Nomura, M.; Harashima, H. In vivo transgene expression in the pancreas by the intraductal injection of naked plasmid DNA. J. Pharm. Sci., 2018, 107(2), 647-653.
[http://dx.doi.org/10.1016/j.xphs.2017.09.021] [PMID: 28989012]
[18]
Hobbs, S.K.; Monsky, W.L.; Yuan, F.; Roberts, W.G.; Griffith, L.; Torchilin, V.P.; Jain, R.K. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA, 1998, 95(8), 4607-4612.
[http://dx.doi.org/10.1073/pnas.95.8.4607] [PMID: 9539785]
[19]
Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.), 2008, 3(5), 703-717.
[http://dx.doi.org/10.2217/17435889.3.5.703] [PMID: 18817471]
[20]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev., 2001, 53(2), 283-318.
[PMID: 11356986]
[21]
Zhang, X.D.; Xia, L.Y.; Chen, X.K.; Chen, Z.; Wu, F.G. Hydrogel-based phototherapy for fighting cancer and bacterial infection. Sci. China Mater., 2017, 60(6), 487-503.
[http://dx.doi.org/10.1007/s40843-017-9025-3]
[22]
Nichols, J.W.; Bae, Y.H. EPR: Evidence and fallacy. J. Control. Release, 2014, 190, 451-464.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.057] [PMID: 24794900]
[23]
Chauhan, V.P.; Stylianopoulos, T.; Martin, J.D.; Popović, Z.; Chen, O.; Kamoun, W.S.; Bawendi, M.G.; Fukumura, D.; Jain, R.K. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol., 2012, 7(6), 383-388.
[http://dx.doi.org/10.1038/nnano.2012.45] [PMID: 22484912]
[24]
Nam, K.C.; Choi, K.H.; Lee, K.D.; Kim, J.H.; Jung, J.S.; Park, B.J. Particle size dependent photodynamic anticancer activity of hematoporphyrin-conjugated Fe3O4 particles. J. Nanomater., 2016, 2016, 9.
[http://dx.doi.org/10.1155/2016/1278393]
[25]
Stylianopoulos, T. EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Ther. Deliv., 2013, 4(4), 421-423.
[http://dx.doi.org/10.4155/tde.13.8] [PMID: 23557281]
[26]
Gong, H.; Chao, Y.; Xiang, J.; Han, X.; Song, G.; Feng, L.; Liu, J.; Yang, G.; Chen, Q.; Liu, Z. Hyaluronidase to enhance nanoparticle-based photodynamic tumor therapy. Nano Lett., 2016, 16(4), 2512-2521.
[http://dx.doi.org/10.1021/acs.nanolett.6b00068] [PMID: 27022664]
[27]
You, C.; Wu, H.; Wang, M.; Gao, Z.; Sun, B.; Zhang, X. Synthesis and biological evaluation of redox/NIR dual stimulus-responsive polymeric nanoparticles for targeted delivery of cisplatin. Mater. Sci. Eng. C, 2018, 92, 453-462.
[http://dx.doi.org/10.1016/j.msec.2018.06.044] [PMID: 30184771]
[28]
Tong, R.; Chiang, H.H.; Kohane, D.S. Photoswitchable nanoparticles for in vivo cancer chemotherapy. Proc. Natl. Acad. Sci. USA, 2013, 110(47), 19048-19053.
[http://dx.doi.org/10.1073/pnas.1315336110] [PMID: 24191048]
[29]
Ji, C.; Gao, Q.; Dong, X.; Yin, W.; Gu, Z.; Gan, Z.; Zhao, Y.; Yin, M. A size-reducible nanodrug with an aggregation-enhanced photodynamic effect for deep chemo-photodynamic therapy. Angew. Chem. Int. Ed. Engl., 2018, 57(35), 11384-11388.
[http://dx.doi.org/10.1002/anie.201807602] [PMID: 30003656]
[30]
Kong, G.; Braun, R.D.; Dewhirst, M.W. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res., 2000, 60(16), 4440-4445.
[PMID: 10969790]
[31]
Bhuvaneswari, R.; Thong, P.S.P.; Gan, Y.Y.; Soo, K.C.; Olivo, M. Evaluation of hypericin-mediated photodynamic therapy in combination with angiogenesis inhibitor bevacizumab using in vivo fluorescence confocal endomicroscopy. J. Biomed. Opt., 2010, 15(1), 011114
[http://dx.doi.org/10.1117/1.3281671] [PMID: 20210440]
[32]
Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14, 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[33]
Gratton, S.E.A.; Ropp, P.A.; Pohlhaus, P.D.J.; Luft, J.C.; Madden, V.J.; Napier, M.E.; DeSimone, J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11613-11618.
[http://dx.doi.org/10.1073/pnas.0801763105] [PMID: 18697944]
[34]
Wong, C.; Stylianopoulos, T.; Cui, J.; Martin, J.; Chauhan, V.P.; Jiang, W.; Popovic, Z.; Jain, R.K.; Bawendi, M.G.; Fukumura, D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA, 2011, 108(6), 2426-2431.
[http://dx.doi.org/10.1073/pnas.1018382108] [PMID: 21245339]
[35]
Chen, Q.; Chen, J.; Liang, C.; Feng, L.; Dong, Z.; Song, X.; Song, G.; Liu, Z. Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy. J. Control. Release, 2017, 263(10), 79-89.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.006] [PMID: 27840167]
[36]
Oberleithner, H. Vascular endothelium leaves fingerprints on the surface of erythrocytes. Pflugers Arch., 2013, 465(10), 1451-1458.
[http://dx.doi.org/10.1007/s00424-013-1288-y] [PMID: 23665954]
[37]
Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems - a review (Part 1). Trop. J. Pharm. Res., 2013, 12(2), 255-264.
[38]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
[39]
Lee, J.S.; Ankone, M.; Pieters, E.; Schiffelers, R.M.; Hennink, W.E.; Feijen, J. Circulation kinetics and biodistribution of dual-labeled polymersomes with modulated surface charge in tumor-bearing mice: comparison with stealth liposomes. J. Control. Release, 2011, 155(2), 282-288.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.028] [PMID: 21820023]
[40]
Zeng, Y.; Yang, Z.; Luo, S.; Li, H.; Liu, C.; Hao, Y.; Liu, J.; Wang, W.; Li, R. Fast and facile preparation of PEGylated graphene from graphene oxide by lysosome targeting delivery of photosensitizer to efficiently enhance photodynamic therapy. Rsc. Adv., 2015, 5(71), 57725-57734.
[http://dx.doi.org/10.1039/C5RA07535A]
[41]
Wang, Y.; Yang, M.; Qian, J.; Xu, W.; Wang, J.; Hou, G.; Ji, L.; Suo, A. Sequentially self-assembled polysaccharide-based nanocomplexes for combined chemotherapy and photodynamic therapy of breast cancer. Carbohydr. Polym., 2019, 203, 203-213.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.035] [PMID: 30318205]
[42]
Zhang, Y.P.; Li, Y.Y.; Ma, J.L.; Wang, X.Y.; Yuan, Z.; Wang, W. Convenient preparation of charge-adaptive chitosan nanomedicines for extended blood circulation and accelerated endosomal escape. Nano Res., 2018, 11(8), 4278-4292.
[http://dx.doi.org/10.1007/s12274-018-2014-z]
[43]
Hu, D.D.; Xu, Z.P.; Hu, Z.Y.; Hu, B.H.; Yang, M.Y.; Zhu, L.J. pH-triggered charge-reversal silk sericin-based nanoparticles for enhanced cellular uptake and doxorubicin delivery. ACS Sustain. Chem.& Eng., 2017, 5(2), 1638-1647.
[http://dx.doi.org/10.1021/acssuschemeng.6b02392]
[44]
Cui, S.; Yin, D.; Chen, Y.; Di, Y.; Chen, H.; Ma, Y.; Achilefu, S.; Gu, Y. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano, 2013, 7(1), 676-688.
[http://dx.doi.org/10.1021/nn304872n] [PMID: 23252747]
[45]
Zhang, W.; Tung, C.H. Real-time visualization of lysosome destruction using a photosensitive toluidine blue nanogel. Chemistry, 2018, 24(9), 2089-2093.
[http://dx.doi.org/10.1002/chem.201705697] [PMID: 29314346]
[46]
Kirpotin, D.B.; Drummond, D.C.; Shao, Y.; Shalaby, M.R.; Hong, K.; Nielsen, U.B.; Marks, J.D.; Benz, C.C.; Park, J.W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res., 2006, 66(13), 6732-6740.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4199] [PMID: 16818648]
[47]
Mamot, C.; Drummond, D.C.; Noble, C.O.; Kallab, V.; Guo, Z.; Hong, K.; Kirpotin, D.B.; Park, J.W. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res., 2005, 65(24), 11631-11638.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1093] [PMID: 16357174]
[48]
Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Targeting of drugs and nanoparticles to tumors. J. Cell Biol., 2010, 188(6), 759-768.
[http://dx.doi.org/10.1083/jcb.200910104] [PMID: 20231381]
[49]
Sun, Y.; Chen, Z.L.; Yang, X.X.; Huang, P.; Zhou, X.P.; Du, X.X. Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy. Nanotechnology, 2009, 20(13), 135102
[http://dx.doi.org/10.1088/0957-4484/20/13/135102] [PMID: 19420486]
[50]
Kim, S.; Lee, D.J.; Kwag, D.S.; Lee, U.Y.; Youn, Y.S.; Lee, E.S. Acid pH-activated glycol chitosan/fullerene nanogels for efficient tumor therapy. Carbohydr. Polym., 2014, 101(1), 692-698.
[http://dx.doi.org/10.1016/j.carbpol.2013.09.108] [PMID: 24299827]
[51]
Zhai, Y.; Ran, W.; Su, J.; Lang, T.; Meng, J.; Wang, G.; Zhang, P.; Li, Y. Traceable bioinspired nanoparticle for the treatment of metastatic breast cancer via nir-trigged intracellular delivery of methylene blue and cisplatin. Adv. Mater., 2018, 30(34), e1802378
[http://dx.doi.org/10.1002/adma.201802378] [PMID: 29989211]
[52]
Kim, J.Y.; Choi, W.I.; Kim, M.; Tae, G. Tumor-targeting nanogel that can function independently for both photodynamic and photothermal therapy and its synergy from the procedure of PDT followed by PTT. J. Control. Release, 2013, 171(2), 113-121.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.006] [PMID: 23860187]
[53]
Liao, Z.X.; Peng, S.F.; Ho, Y.C.; Mi, F.L.; Maiti, B.; Sung, H.W. Mechanistic study of transfection of chitosan/DNA complexes coated by anionic poly(γ-glutamic acid). Biomaterials, 2012, 33(11), 3306-3315.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.013] [PMID: 22281422]
[54]
Liao, Z.X.; Li, Y.C.; Lu, H.M.; Sung, H.W. A genetically-encoded KillerRed protein as an intrinsically generated photosensitizer for photodynamic therapy. Biomaterials, 2014, 35(1), 500-508.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.075] [PMID: 24112805]
[55]
Oh, I.H.; Min, H.S.; Li, L.; Tran, T.H.; Lee, Y.K.; Kwon, I.C.; Choi, K.; Kim, K.; Huh, K.M. Cancer cell-specific photoactivity of pheophorbide a-glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice. Biomaterials, 2013, 34(27), 6454-6463.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.017] [PMID: 23755832]
[56]
Wu, S.Y.; Debele, T.A.; Kao, Y.C.; Tsai, H.C. Synthesis and characterization of dual-sensitive fluorescent nanogels for enhancing drug delivery and tracking intracellular drug delivery. Int. J. Mol. Sci., 2017, 18(5), 1090.
[http://dx.doi.org/10.3390/ijms18051090] [PMID: 28534813]
[57]
Huynh, N.T.; Roger, E.; Lautram, N.; Benoît, J.P.; Passirani, C. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine (Lond.), 2010, 5(9), 1415-1433.
[http://dx.doi.org/10.2217/nnm.10.113] [PMID: 21128723]
[58]
Krug, H.F. Nanomedicine: Need for a new (nano)pharmacology and (nano)toxicology. Nanomedicine (Lond.), 2016, 12(2), 450-451.
[http://dx.doi.org/10.1016/j.nano.2015.12.007]
[59]
Mathew, A.P.; Uthaman, S.; Cho, K.H.; Cho, C.S.; Park, I.K. Injectable hydrogels for delivering biotherapeutic molecules. Int. J. Biol. Macromol., 2018, 110, 17-29.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.113] [PMID: 29169942]
[60]
Mao, C.; Xiang, Y.; Liu, X.; Cui, Z.; Yang, X.; Yeung, K.W.K.; Pan, H.; Wang, X.; Chu, P.K.; Wu, S. Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures. ACS Nano, 2017, 11(9), 9010-9021.
[http://dx.doi.org/10.1021/acsnano.7b03513] [PMID: 28825807]
[61]
Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol., 2017, 105(Pt 2), 1358-1368.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.087] [PMID: 28735006]
[62]
Yin, M.; Li, Z.; Zhou, L.; Dong, K.; Ren, J.; Qu, X. A multifunctional upconverting nanoparticle incorporated polycationic hydrogel for near-infrared triggered and synergistic treatment of drug-resistant bacteria. Nanotechnology, 2016, 27(12), 125601
[http://dx.doi.org/10.1088/0957-4484/27/12/125601] [PMID: 26883410]
[63]
Chen, C.P.; Hsieh, C.M.; Tsai, T.; Yang, J.C.; Chen, C.T. Optimization and evaluation of a chitosan/hydroxypropyl methylcellulose hydrogel containing toluidine blue o for antimicrobial photodynamic inactivation. Int. J. Mol. Sci., 2015, 16(9), 20859-20872.
[http://dx.doi.org/10.3390/ijms160920859] [PMID: 26340623]
[64]
Larrañeta, E.; Henry, M.; Irwin, N.J.; Trotter, J.; Perminova, A.A.; Donnelly, R.F. Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process for potential biomedical applications. Carbohydr. Polym., 2018, 181, 1194-1205.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.015] [PMID: 29253949]
[65]
Beack, S.; Kong, W.H.; Jung, H.S.; Do, I.H.; Han, S.; Kim, H.; Kim, K.S.; Yun, S.H.; Hahn, S.K. Photodynamic therapy of melanoma skin cancer using carbon dot - chlorin e6 - hyaluronate conjugate. Acta Biomater., 2015, 26, 295-305.
[http://dx.doi.org/10.1016/j.actbio.2015.08.027] [PMID: 26297888]
[66]
Li, M.; He, P.; Li, S.L.; Wang, X.Y.; Liu, L.B.; Lv, F.T.; Wang, S. Oligo(p-phenylenevinylene) derivative-incorporated and enzyme-responsive hybrid hydrogel for tumor cell-specific imaging and activatable photodynamic therapy. ACS Biomater. Sci. Eng., 2018, 4(6), 2037-2045.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00610]
[67]
Lu, H.D.; Charati, M.B.; Kim, I.L.; Burdick, J.A. Injectable shear-thinning hydrogels engineered with a self-assembling Dock-and-Lock mechanism. Biomaterials, 2012, 33(7), 2145-2153.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.076] [PMID: 22177842]
[68]
Singh, N.K.; Lee, D.S. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J. Control. Release, 2014, 193, 214-227.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.056] [PMID: 24815421]
[69]
Lee, J.H. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater. Res., 2018, 22(1), 27.
[http://dx.doi.org/10.1186/s40824-018-0138-6] [PMID: 30275970]
[70]
Chou, A.I.; Akintoye, S.O.; Nicoll, S.B. Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo. Osteoarthritis Cartilage, 2009, 17(10), 1377-1384.
[http://dx.doi.org/10.1016/j.joca.2009.04.012] [PMID: 19427928]
[71]
Obara, K.; Ishihara, M.; Ozeki, Y.; Ishizuka, T.; Hayashi, T.; Nakamura, S.; Saito, Y.; Yura, H.; Matsui, T.; Hattori, H.; Takase, B.; Ishihara, M.; Kikuchi, M.; Maehara, T. Controlled release of paclitaxel from photocrosslinked chitosan hydrogels and its subsequent effect on subcutaneous tumor growth in mice. J. Control. Release, 2005, 110(1), 79-89.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.026] [PMID: 16289419]
[72]
Ono, K.; Saito, Y.; Yura, H.; Ishikawa, K.; Kurita, A.; Akaike, T.; Ishihara, M. Photocrosslinkable chitosan as a biological adhesive. J. Biomed. Mater. Res., 2000, 49(2), 289-295.
[http://dx.doi.org/10.1002/(SICI)1097-4636(200002)49:2<289:AID-JBM18>3.0.CO;2-M] [PMID: 10571917]
[73]
Chiu, Y.L.; Chen, S.C.; Su, C.J.; Hsiao, C.W.; Chen, Y.M.; Chen, H.L.; Sung, H.W. pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials, 2009, 30(28), 4877-4888.
[http://dx.doi.org/10.1016/j.biomaterials.2009.05.052] [PMID: 19527916]
[74]
Gupta, D.; Tator, C.H.; Shoichet, M.S. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials, 2006, 27(11), 2370-2379.
[http://dx.doi.org/10.1016/j.biomaterials.2005.11.015] [PMID: 16325904]
[75]
Roy, A.; Comesse, S.; Grisel, M.; Hucher, N.; Souguir, Z.; Renou, F. Hydrophobically modified xanthan: an amphiphilic but not associative polymer. Biomacromolecules, 2014, 15(4), 1160-1170.
[http://dx.doi.org/10.1021/bm4017034] [PMID: 24547905]
[76]
Liu, Z.; Yao, P. Injectable thermo-responsive hydrogel composed of xanthan gum and methylcellulose double networks with shear-thinning property. Carbohydr. Polym., 2015, 132, 490-498.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.013] [PMID: 26256374]
[77]
Chen, J.P.; Cheng, T.H. Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol. Biosci., 2006, 6(12), 1026-1039.
[http://dx.doi.org/10.1002/mabi.200600142] [PMID: 17128421]
[78]
Weng, G.; Thanneeru, S.; He, J. Dynamic coordination of Eu-Iminodiacetate to control fluorochromic response of polymer hydrogels to multistimuli. Adv. Mater., 2018, 30(11), 1706526
[http://dx.doi.org/10.1002/adma.201706526] [PMID: 29334152]
[79]
de Jong, S.J.; De Smedt, S.C.; Demeester, J.; van Nostrum, C.F.; Kettenes-van den Bosch, J.J.; Hennink, W.E. Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. J. Control. Release, 2001, 72(1-3), 47-56.
[http://dx.doi.org/10.1016/S0168-3659(01)00261-9] [PMID: 11389984]
[80]
Ding, X.; Wang, Y. Weak bond-based injectable and stimuli responsive hydrogels for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(5), 887-906.
[http://dx.doi.org/10.1039/C6TB03052A] [PMID: 29062484]
[81]
Rodell, C.B.; MacArthur, J.W.; Dorsey, S.M.; Wade, R.J.; Wang, L.L.; Woo, Y.J.; Burdick, J.A. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv. Funct. Mater., 2015, 25(4), 636-644.
[http://dx.doi.org/10.1002/adfm.201403550] [PMID: 26526097]
[82]
Zhang, G.Z.; Wang, C.Y.; Ngai, T. Injectable hydrogel cross-linked by quadruple hydrogen bonding for drug encapsulation and delivery. J. Control. Release, 2017, 259, E36-E37.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.099]
[83]
Wang, C.; Wang, X.; Dong, K.; Luo, J.; Zhang, Q.; Cheng, Y. Injectable and responsively degradable hydrogel for personalized photothermal therapy. Biomaterials, 2016, 104, 129-137.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.013] [PMID: 27449949]
[84]
Jin, Y.; Yu, C.; Denman, R.J.; Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev., 2013, 42(16), 6634-6654.
[http://dx.doi.org/10.1039/c3cs60044k] [PMID: 23749182]
[85]
Zhang, J.Y.; Zeng, L.H.; Feng, J. Dynamic covalent gels assembled from small molecules: from discrete gelators to dynamic covalent polymers. Chin. Chem. Lett., 2017, 28(2), 168-183.
[http://dx.doi.org/10.1016/j.cclet.2016.07.015]
[86]
Ciaccia, M.; Di Stefano, S. Mechanisms of imine exchange reactions in organic solvents. Org. Biomol. Chem., 2015, 13(3), 646-654.
[http://dx.doi.org/10.1039/C4OB02110J] [PMID: 25415257]
[87]
Xu, Y.; Li, Y.; Chen, Q.; Fu, L.; Tao, L.; Wei, Y. Injectable and self-healing chitosan hydrogel based on imine bonds: design and therapeutic applications. Int. J. Mol. Sci., 2018, 19(8), E2198
[http://dx.doi.org/10.3390/ijms19082198] [PMID: 30060504]
[88]
Zhang, X.D.; Xia, L.Y.; Wu, F.G. Rose bengal-loaded injectable hydrogel with enhanced anticancer and antibacterial efficacy. J. Control. Release, 2017, 259(10), E147-E147.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.296]
[89]
Yan, S.; Wang, T.; Feng, L.; Zhu, J.; Zhang, K.; Chen, X.; Cui, L.; Yin, J. Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering. Biomacromolecules, 2014, 15(12), 4495-4508.
[http://dx.doi.org/10.1021/bm501313t] [PMID: 25279766]
[90]
Liu, Z.; Xu, G.; Wang, C.; Li, C.; Yao, P. Shear-responsive injectable supramolecular hydrogel releasing doxorubicin loaded micelles with pH-sensitivity for local tumor chemotherapy. Int. J. Pharm., 2017, 530(1-2), 53-62.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.063] [PMID: 28739501]
[91]
Wang, L.L.; Highley, C.B.; Yeh, Y.C.; Galarraga, J.H.; Uman, S.; Burdick, J.A. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks. J. Biomed. Mater. Res. A, 2018, 106(4), 865-875.
[http://dx.doi.org/10.1002/jbm.a.36323] [PMID: 29314616]
[92]
Zong, A.; Cao, H.; Wang, F. Anticancer polysaccharides from natural resources: a review of recent research. Carbohydr. Polym., 2012, 90(4), 1395-1410.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.026] [PMID: 22944395]
[93]
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[94]
Gierszewska, M.; Ostrowska-Czubenko, J. Chitosan-based membranes with different ionic crosslinking density for pharmaceutical and industrial applications. Carbohydr. Polym., 2016, 153, 501-511.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.126] [PMID: 27561522]
[95]
Boonthum, C.; Namdee, K.; Boonrungsiman, S.; Chatdarong, K.; Saengkrit, N.; Sajomsang, W.; Ponglowhapan, S.; Yata, T. Chitosan-based DNA delivery vector targeted to gonadotropin-releasing hormone (GnRH) receptor. Carbohydr. Polym., 2017, 157, 311-320.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.015] [PMID: 27987933]
[96]
Camacho-Alonso, F.; Julián-Belmonte, E.; Chiva-García, F.; Martínez-Beneyto, Y. Bactericidal efficacy of photodynamic therapy and chitosan in root canals experimentally infected with Enterococcus faecalis: an in vitro study. Photomed. Laser Surg., 2017, 35(4), 184-189.
[http://dx.doi.org/10.1089/pho.2016.4148] [PMID: 28068186]
[97]
Rao, W.; Wang, H.; Han, J.; Zhao, S.; Dumbleton, J.; Agarwal, P.; Zhang, W.; Zhao, G.; Yu, J.; Zynger, D.L.; Lu, X.; He, X. Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano, 2015, 9(6), 5725-5740.
[http://dx.doi.org/10.1021/nn506928p] [PMID: 26004286]
[98]
Schuetz, Y.B.; Gurny, R.; Jordan, O. A novel thermoresponsive hydrogel based on chitosan. Eur. J. Pharm. Biopharm., 2008, 68(1), 19-25.
[http://dx.doi.org/10.1016/j.ejpb.2007.06.020] [PMID: 17884402]
[99]
Frade, M.L.; de Annunzio, S.R.; Calixto, G.M.F.; Victorelli, F.D.; Chorilli, M.; Fontana, C.R. Assessment of chitosan-based hydrogel and photodynamic inactivation against Propionibacterium acnes. Molecules, 2018, 23(2), 473.
[http://dx.doi.org/10.3390/molecules23020473] [PMID: 29470387]
[100]
Patil, P.S.; Leipzig, N.D. Fluorinated methacrylamide chitosan sequesters reactive oxygen species to relieve oxidative stress while delivering oxygen. J. Biomed. Mater. Res. A, 2017, 105(8), 2368-2374.
[http://dx.doi.org/10.1002/jbm.a.36079] [PMID: 28371332]
[101]
Quiñones, J.P.; Peniche, H.; Peniche, C. Chitosan based self-assembled nanoparticles in drug delivery. Polymers , 2018, 10(3), 235.
[http://dx.doi.org/10.3390/polym10030235] [PMID: 30966270]
[102]
Larsson, M.; Huang, W.C.; Hsiao, M.H.; Wang, Y.J.; Nyden, M.; Chiou, S.H.; Liu, D.M. Biomedical applications and colloidal properties of amphiphilically modified chitosan hybrids. Prog. Polym. Sci., 2013, 38(9), 1307-1328.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.06.009]
[103]
Belali, S.; Karimi, A.R.; Hadizadeh, M. Cell-specific and pH-sensitive nanostructure hydrogel based on chitosan as a photosensitizer carrier for selective photodynamic therapy. Int. J. Biol. Macromol., 2018, 110(15), 437-448.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.169] [PMID: 29369780]
[104]
Olaru, A.M.; Marin, L.; Morariu, S.; Pricope, G.; Pinteala, M.; Tartau-Mititelu, L. Biocompatible chitosan based hydrogels for potential application in local tumour therapy. Carbohydr. Polym., 2018, 179, 59-70.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.066] [PMID: 29111071]
[105]
Wang, K.; Zhuang, J.; Liu, Y.; Xu, M.; Zhuang, J.; Chen, Z.; Wei, Y.; Zhang, Y. PEGylated chitosan nanoparticles with embedded bismuth sulfide for dual-wavelength fluorescent imaging and photothermal therapy. Carbohydr. Polym., 2018, 184, 445-452.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.005] [PMID: 29352940]
[106]
Sachdev, A.; Matai, I.; Gopinath, P. Carbon dots incorporated polymeric hydrogels as multifunctional platform for imaging and induction of apoptosis in lung cancer cells. Colloids Surf. B Biointerfaces, 2016, 141, 242-252.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.043] [PMID: 26854583]
[107]
Vadodaria, S.S.; English, R.J. Aqueous solutions of HEC and hmHEC: effects of molecular mass versus hydrophobic associations on hydrodynamic and thermodynamic parameters. Cellulose, 2016, 23(2), 1107-1121.
[http://dx.doi.org/10.1007/s10570-016-0861-x]
[108]
Xu, Q.; Chen, C.; Rosswurm, K.; Yao, T.; Janaswamy, S. A facile route to prepare cellulose-based films. Carbohydr. Polym., 2016, 149, 274-281.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.114] [PMID: 27261751]
[109]
Sun, N.; Wang, T.; Yan, X. Self-assembled supermolecular hydrogel based on hydroxyethyl cellulose: Formation, in vitro release and bacteriostasis application. Carbohydr. Polym., 2017, 172, 49-59.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.026] [PMID: 28606547]
[110]
Wisnovsky, S.; Jean, S.R.; Kelley, S.O. Mitochondrial DNA repair and replication proteins revealed by targeted chemical probes. Nat. Chem. Biol., 2016, 12(7), 567-573.
[http://dx.doi.org/10.1038/nchembio.2102] [PMID: 27239789]
[111]
Zhang, H.; Li, Y.; Xu, Y.; Lu, Z.; Chen, L.; Huang, L.; Fan, M. Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up. Phys. Chem. Chem. Phys., 2016, 18(40), 28297-28306.
[http://dx.doi.org/10.1039/C6CP04932J] [PMID: 27711507]
[112]
Xing, C.; Chen, S.; Qiu, M.; Liang, X.; Liu, Q.; Zou, Q.; Li, Z.; Xie, Z.; Wang, D.; Dong, B.; Liu, L.; Fan, D.; Zhang, H. Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy. Adv. Healthc. Mater., 2018, 7(7), e1701510
[http://dx.doi.org/10.1002/adhm.201701510] [PMID: 29508554]
[113]
Yang, L.; Liu, A.; de Ruiter, M.V.; Hommersom, C.A.; Katsonis, N.; Jonkheijm, P.; Cornelissen, J.J.L.M. Compartmentalized supramolecular hydrogels based on viral nanocages towards sophisticated cargo administration. Nanoscale, 2018, 10(8), 4123-4129.
[http://dx.doi.org/10.1039/C7NR07718A] [PMID: 29436545]
[114]
Chang, C.Y.; Peng, J.; Zhang, L.N.; Pang, D.W. Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J. Mater. Chem., 2009, 19(41), 7771-7776.
[http://dx.doi.org/10.1039/b908835k]
[115]
Duan, X.; Sheardown, H. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Biomaterials, 2006, 27(26), 4608-4617.
[http://dx.doi.org/10.1016/j.biomaterials.2006.04.022] [PMID: 16713624]
[116]
Wood, A.; Ogawa, M.; Portier, R.J.; Schexnayder, M.; Shirley, M.; Losso, J.N. Biochemical properties of alligator (Alligator mississippiensis) bone collagen. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2008, 151(3), 246-249.
[http://dx.doi.org/10.1016/j.cbpb.2008.05.015] [PMID: 18577462]
[117]
Johnson, K.A.; Rogers, G.J.; Roe, S.C.; Howlett, C.R.; Clayton, M.K.; Milthorpe, B.K.; Schindhelm, K. Nitrous acid pretreatment of tendon xenografts cross-linked with glutaraldehyde and sterilized with gamma irradiation. Biomaterials, 1999, 20(11), 1003-1015.
[http://dx.doi.org/10.1016/S0142-9612(98)90187-9] [PMID: 10378800]
[118]
Sugiura, H.; Yunoki, S.; Kondo, E.; Ikoma, T.; Tanaka, J.; Yasuda, K. In vivo biological responses and bioresorption of tilapia scale collagen as a potential biomaterial. J. Biomater. Sci. Polym. Ed., 2009, 20(10), 1353-1368.
[http://dx.doi.org/10.1163/092050609X12457418396658] [PMID: 19622276]
[119]
Lin, Y.K.; Deng, C.L. Comparison of physical-chemical properties of type I collagen from different species. Food Chem., 2006, 99(2), 244-251.
[http://dx.doi.org/10.1016/j.foodchem.2005.06.053]
[120]
Lee, C.H.; Singla, A.; Lee, Y. Biomedical applications of collagen. Int. J. Pharm., 2001, 221(1-2), 1-22.
[http://dx.doi.org/10.1016/S0378-5173(01)00691-3] [PMID: 11397563]
[121]
Reddi, E.; Rodgers, M.A.; Spikes, J.D.; Jori, G. The effect of medium polarity on the hematoporphyrin-sensitized photooxidation of L-tryptophan. Photochem. Photobiol., 1984, 40(4), 415-421.
[http://dx.doi.org/10.1111/j.1751-1097.1984.tb04611.x] [PMID: 6505034]
[122]
Georgiou, S.; Papazoglou, T.; Dafnomili, D.; Coutsolelos, A.G.; Kouklaki, V.; Tosca, A. Photophysical characterization of hematoporphyrin incorporated within collagen gels. J. Photochem. Photobiol. B, 1994, 22(1), 45-50.
[http://dx.doi.org/10.1016/1011-1344(93)06950-8] [PMID: 8151455]
[123]
Zhang, X.; Yang, Y.H.; Yao, J.R.; Shao, Z.Z.; Chen, X. Strong collagen hydrogels by oxidized dextran modification. ACS Sustain. Chem.& Eng., 2014, 2(5), 1318-1324.
[http://dx.doi.org/10.1021/sc500154t]
[124]
Chevallay, B.; Abdul-Malak, N.; Herbage, D. Mouse fibroblasts in long-term culture within collagen three-dimensional scaffolds: influence of crosslinking with diphenylphosphorylazide on matrix reorganization, growth, and biosynthetic and proteolytic activities. J. Biomed. Mater. Res., 2000, 49(4), 448-459.
[http://dx.doi.org/10.1002/(SICI)1097-4636(20000315)49:4<448:AID-JBM3>3.0.CO;2-L] [PMID: 10602078]
[125]
Xing, R.; Liu, K.; Jiao, T.; Zhang, N.; Ma, K.; Zhang, R.; Zou, Q.; Ma, G.; Yan, X. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv. Mater., 2016, 28(19), 3669-3676.
[http://dx.doi.org/10.1002/adma.201600284] [PMID: 26991248]
[126]
Sun, J.J.; Guo, Y.; Xing, R.R.; Jiao, T.F.; Zou, Q.L.; Yan, X.H. Synergistic in vivo photodynamic and photothermal antitumor therapy based on collagen-gold hybrid hydrogels with inclusion of photosensitive drugs. Colloid Surface A, 2017, 514, 155-160.
[http://dx.doi.org/10.1016/j.colsurfa.2016.11.062]
[127]
Gombotz, W.R.; Wee, S.F. Protein release from alginate matrices. Adv. Drug Deliv. Rev., 2012, 64(3), 194-205.
[http://dx.doi.org/10.1016/j.addr.2012.09.007]
[128]
Wei, X.; Xiong, H.; Zhou, D.; Jing, X.; Huang, Y. Ion-assisted fabrication of neutral protein crosslinked sodium alginate nanogels. Carbohydr. Polym., 2018, 186, 45-53.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.035] [PMID: 29456008]
[129]
Ion, R.M. Micro-encapsulated porphyrins and phthalocyanines-new formulations in photodynamic therapy. IOP Conf. Series Mater. Sci. Eng., 2017, 209, 012010
[http://dx.doi.org/10.1088/1757-899X/209/1/012010]
[130]
d’Ayala, G.G.; Malinconico, M.; Laurienzo, P. Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules, 2008, 13(9), 2069-2106.
[http://dx.doi.org/10.3390/molecules13092069] [PMID: 18830142]
[131]
Lee, M.; Li, W.; Siu, R.K.; Whang, J.; Zhang, X.; Soo, C.; Ting, K.; Wu, B.M. Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers. Biomaterials, 2009, 30(30), 6094-6101.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.046] [PMID: 19674782]
[132]
Abdelghany, S.M.; Schmid, D.; Deacon, J.; Jaworski, J.; Fay, F.; McLaughlin, K.M.; Gormley, J.A.; Burrows, J.F.; Longley, D.B.; Donnelly, R.F.; Scott, C.J. Enhanced antitumor activity of the photosensitizer meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles. Biomacromolecules, 2013, 14(2), 302-310.
[http://dx.doi.org/10.1021/bm301858a] [PMID: 23327610]
[133]
Zhang, L.N.; Zhou, D.C.; Wang, H.; Cheng, S.Y. Ion exchange membranes blended by cellulose cuoxam with alginate. J. Membr. Sci., 1997, 124(2), 195-201.
[http://dx.doi.org/10.1016/S0376-7388(96)00227-X]
[134]
Liang, J.; Dong, X.; Wei, C.; Kong, D.L.; Liu, T.J.; Lv, F. Phthalocyanine incorporated alginate hydrogel with near infrared fluorescence for non-invasive imaging monitoring in vivo. Rsc. Adv., 2017, 7(11), 6501-6510.
[http://dx.doi.org/10.1039/C6RA27756J]
[135]
Tingirikari, J.M.; Kothari, D.; Goyal, A. Superior prebiotic and physicochemical properties of novel dextran from Weissella cibaria JAG8 for potential food applications. Food Funct., 2014, 5(9), 2324-2330.
[http://dx.doi.org/10.1039/C4FO00319E] [PMID: 25080006]
[136]
Bisht, S.; Maitra, A. Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1(4), 415-425.
[http://dx.doi.org/10.1002/wnan.43] [PMID: 20049807]
[137]
Sun, G.; Zhang, X.; Shen, Y.I.; Sebastian, R.; Dickinson, L.E.; Fox-Talbot, K.; Reinblatt, M.; Steenbergen, C.; Harmon, J.W.; Gerecht, S. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc. Natl. Acad. Sci. USA, 2011, 108(52), 20976-20981.
[http://dx.doi.org/10.1073/pnas.1115973108] [PMID: 22171002]
[138]
Massia, S.P.; Stark, J.; Letbetter, D.S. Surface-immobilized dextran limits cell adhesion and spreading. Biomaterials, 2000, 21(22), 2253-2261.
[http://dx.doi.org/10.1016/S0142-9612(00)00151-4] [PMID: 11026631]
[139]
Yucel Falco, C.; Falkman, P.; Risbo, J.; Cárdenas, M.; Medronho, B. Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics. Carbohydr. Polym., 2017, 172, 175-183.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.047] [PMID: 28606523]
[140]
Saboktakin, M.R.; Tabatabaie, R.M.; Ostovarazar, P.; Maharramov, A.; Ramazanov, M.A. Synthesis and characterization of modified starch hydrogels for photodynamic treatment of cancer. Int. J. Biol. Macromol., 2012, 51(4), 544-549.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.06.024] [PMID: 22732133]
[141]
Liu, P.; Yue, C.; Sheng, Z.; Gao, G.; Li, M.; Yi, H.; Zheng, C.; Wang, B.; Cai, L. Photosensitizer-conjugated redoxresponsive dextran theranostic nanoparticles for nearinfrared cancer imaging and photodynamic therapy. Polym. Chem.-UK., 2013, 5(3), 874-881.
[http://dx.doi.org/10.1039/C3PY01173A]
[142]
Hao, Y.; Zheng, C.; Wang, L.; Zhang, J.; Niu, X.; Song, Q.; Feng, Q.; Zhao, H.; Li, L.; Zhang, H.; Zhang, Z.; Zhang, Y. Tumor acidity-activatable manganese phosphate nanoplatform for amplification of photodynamic cancer therapy and magnetic resonance imaging. Acta Biomater., 2017, 62, 293-305.
[http://dx.doi.org/10.1016/j.actbio.2017.08.028] [PMID: 28842332]
[143]
Wang, H.; Wang, S.; Liu, Z.; Dong, C.; Yang, J.; Gong, X.; Chang, J. Upconverting crystal/dextran-g-DOPE with high fluorescence stability for simultaneous photodynamic therapy and cell imaging. Nanotechnology, 2014, 25(15), 155103
[http://dx.doi.org/10.1088/0957-4484/25/15/155103] [PMID: 24651122]
[144]
Ding, Z.; Liu, P.; Hu, D.; Sheng, Z.; Yi, H.; Gao, G.; Wu, Y.; Zhang, P.; Ling, S.; Cai, L. Redox-responsive dextran based theranostic nanoparticles for near-infrared/magnetic resonance imaging and magnetically targeted photodynamic therapy. Biomater. Sci., 2017, 5(4), 762-771.
[http://dx.doi.org/10.1039/C6BM00846A] [PMID: 28256661]
[145]
Elzoghby, A.O. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J. Control. Release, 2013, 172(3), 1075-1091.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.019] [PMID: 24096021]
[146]
Patel, Z.S.; Yamamoto, M.; Ueda, H.; Tabata, Y.; Mikos, A.G. Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2. Acta Biomater., 2008, 4(5), 1126-1138.
[http://dx.doi.org/10.1016/j.actbio.2008.04.002] [PMID: 18474452]
[147]
Ninan, G.; Jose, J.; Abubacker, Z. Preparation and characterization of gelatin extracted from the skins of rohu (labeo rohita) and common carp (cyprinus carpio). J. Food Process. Preserv., 2011, 35(2), 143-162.
[http://dx.doi.org/10.1111/j.1745-4549.2009.00467.x]
[148]
Nezhadi, S.H.; Choong, P.F.M.; Lotfipour, F.; Dass, C.R. Gelatin-based delivery systems for cancer gene therapy. J. Drug Target., 2009, 17(10), 731-738.
[http://dx.doi.org/10.3109/10611860903096540] [PMID: 19863194]
[149]
Carvalho, J.A.; Abreu, A.S.; Ferreira, V.T.P.; Gonçalves, E.P.; Tedesco, A.C.; Pinto, J.G.; Ferreira-Strixino, J.; Beltrame Junior, M.; Simioni, A.R. Preparation of gelatin nanoparticles by two step desolvation method for application in photodynamic therapy. J. Biomater. Sci. Polym. Ed., 2018, 29(11), 1287-1301.
[http://dx.doi.org/10.1080/09205063.2018.1456027] [PMID: 29561222]
[150]
Tosati, J.V.; Oliveira, E.F.D.; Oliveira, J.V.; Nitin, N.; Monteiro, A.R. Light-activated antimicrobial activity of turmeric residue edible coatings against cross-contamination of Listeria innocua on Sausages. Food Control, 2017, 84, 177-185.
[http://dx.doi.org/10.1016/j.foodcont.2017.07.026]
[151]
Foox, M.; Zilberman, M. Drug delivery from gelatin-based systems. Expert Opin. Drug Deliv., 2015, 12(9), 1547-1563.
[http://dx.doi.org/10.1517/17425247.2015.1037272] [PMID: 25943722]
[152]
Suarasan, S.; Focsan, M.; Potara, M.; Soritau, O.; Florea, A.; Maniu, D.; Astilean, S. Doxorubicin-incorporated nanotherapeutic delivery system based on gelatin-coated gold nanoparticles: formulation, drug release, and multimodal imaging of cellular internalization. ACS Appl. Mater. Interfaces, 2016, 8(35), 22900-22913.
[http://dx.doi.org/10.1021/acsami.6b07583] [PMID: 27537061]
[153]
Tsai, L.C.; Hsieh, H.Y.; Lu, K.Y.; Wang, S.Y.; Mi, F.L. EGCG/gelatin-doxorubicin gold nanoparticles enhance therapeutic efficacy of doxorubicin for prostate cancer treatment. Nanomedicine (Lond.), 2016, 11(1), 9-30.
[http://dx.doi.org/10.2217/nnm.15.183] [PMID: 26654241]
[154]
Babu, A.; Periasamy, J.; Gunasekaran, A.; Kumaresan, G.; Naicker, S.; Gunasekaran, P.; Murugesan, R. Polyethylene glycol-modified gelatin/polylactic acid nanoparticles for enhanced photodynamic efficacy of a hypocrellin derivative in vitro. J. Biomed. Nanotechnol., 2013, 9(2), 177-192.
[http://dx.doi.org/10.1166/jbn.2013.1480] [PMID: 23627044]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy