Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Natural Hydrogels Applied in Photodynamic Therapy

Author(s): Zhipan Feng, Shiying Lin, Andrew McDonagh* and Chen Yu*

Volume 27, Issue 16, 2020

Page: [2681 - 2703] Pages: 23

DOI: 10.2174/0929867326666191016112828

Price: $65

Abstract

Natural hydrogels are three-dimensional (3D) water-retaining materials with a skeleton consisting of natural polymers, their derivatives or mixtures. Natural hydrogels can provide sustained or controlled drug release and possess some unique properties of natural polymers, such as biodegradability, biocompatibility and some additional functions, such as CD44 targeting of hyaluronic acid. Natural hydrogels can be used with photosensitizers (PSs) in photodynamic therapy (PDT) to increase the range of applications. In the current review, the pertinent design variables are discussed along with a description of the categories of natural hydrogels available for PDT.

Keywords: Photodynamic therapy, natural polymer, hydrogel, PDT, ROS, reactive oxygen species.

[1]
Nosaka, Y.; Nosaka, A.Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev., 2017, 117(17), 11302-11336.
[http://dx.doi.org/10.1021/acs.chemrev.7b00161] [PMID: 28777548]
[2]
Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 2012, 24(5), 981-990.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.008] [PMID: 22286106]
[3]
Prażmo, E.J.; Kwaśny, M.; Łapiński, M.; Mielczarek, A. Photodynamic therapy as a promising method used in the treatment of oral diseases. Adv. Clin. Exp. Med., 2016, 25(4), 799-807.
[http://dx.doi.org/10.17219/acem/32488] [PMID: 27629857]
[4]
Qiu, H.; Tan, M.; Ohulchanskyy, T.Y.; Lovell, J.F.; Chen, G. Recent progress in upconversion photodynamic therapy. Nanomaterials (Basel), 2018, 8(5), 344.
[http://dx.doi.org/10.3390/nano8050344] [PMID: 29783654]
[5]
Lim, C.K.; Heo, J.; Shin, S.; Jeong, K.; Seo, Y.H.; Jang, W.D.; Park, C.R.; Park, S.Y.; Kim, S.; Kwon, I.C. Nanophotosensitizers toward advanced photodynamic therapy of Cancer. Cancer Lett., 2013, 334(2), 176-187.
[http://dx.doi.org/10.1016/j.canlet.2012.09.012] [PMID: 23017942]
[6]
Jia, Q.; Zheng, X.; Ge, J.; Liu, W.; Ren, H.; Chen, S.; Wen, Y.; Zhang, H.; Wu, J.; Wang, P. Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer. J. Colloid Interface Sci., 2018, 526, 302-311.
[http://dx.doi.org/10.1016/j.jcis.2018.05.005] [PMID: 29747042]
[7]
Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: progress and challenges. Polymer (Guildf.), 2008, 49(8), 1993-2007.
[http://dx.doi.org/10.1016/j.polymer.2008.01.027]
[8]
Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003, 24(24), 4337-4351.
[http://dx.doi.org/10.1016/S0142-9612(03)00340-5] [PMID: 12922147]
[9]
Li, W.; Zhang, H.; Guo, X.; Wang, Z.; Kong, F.; Luo, L.; Li, Q.; Zhu, C.; Yang, J.; Lou, Y.; Du, Y.; You, J. Gold nanospheres-stabilized indocyanine green as a synchronous photodynamic-photothermal therapy platform that inhibits tumor growth and metastasis. ACS Appl. Mater. Interfaces, 2017, 9(4), 3354-3367.
[http://dx.doi.org/10.1021/acsami.6b13351] [PMID: 28068066]
[10]
Ogawa, K.; Nakayama, A.; Kokufuta, E. Preparation and characterization of thermosensitive polyampholyte nanogels. Langmuir, 2003, 19(8), 3178-3184.
[http://dx.doi.org/10.1021/la0267185]
[11]
Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[12]
Yu, M.; Zheng, J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano, 2015, 9(7), 6655-6674.
[http://dx.doi.org/10.1021/acsnano.5b01320] [PMID: 26149184]
[13]
Zhao, H.Y.; Liu, S.; He, J.; Pan, C.C.; Li, H.; Zhou, Z.Y.; Ding, Y.; Huo, D.; Hu, Y. Synthesis and application of strawberry-like Fe3O4-Au nanoparticles as CT-MR dual-modality contrast agents in accurate detection of the progressive liver disease. Biomaterials, 2015, 51, 194-207.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.019] [PMID: 25771010]
[14]
Maeda, H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev., 2015, 91, 3-6.
[http://dx.doi.org/10.1016/j.addr.2015.01.002] [PMID: 25579058]
[15]
Merkel, T.J.; Jones, S.W.; Herlihy, K.P.; Kersey, F.R.; Shields, A.R.; Napier, M.; Luft, J.C.; Wu, H.; Zamboni, W.C.; Wang, A.Z.; Bear, J.E.; DeSimone, J.M. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl. Acad. Sci. USA, 2011, 108(2), 586-591.
[http://dx.doi.org/10.1073/pnas.1010013108] [PMID: 21220299]
[16]
Anselmo, A.C.; Mitragotri, S. Impact of particle elasticity on particle-based drug delivery systems. Adv. Drug Deliv. Rev., 2017, 108, 51-67.
[http://dx.doi.org/10.1016/j.addr.2016.01.007] [PMID: 26806856]
[17]
Yamada, Y.; Tabata, M.; Abe, J.; Nomura, M.; Harashima, H. In vivo transgene expression in the pancreas by the intraductal injection of naked plasmid DNA. J. Pharm. Sci., 2018, 107(2), 647-653.
[http://dx.doi.org/10.1016/j.xphs.2017.09.021] [PMID: 28989012]
[18]
Hobbs, S.K.; Monsky, W.L.; Yuan, F.; Roberts, W.G.; Griffith, L.; Torchilin, V.P.; Jain, R.K. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA, 1998, 95(8), 4607-4612.
[http://dx.doi.org/10.1073/pnas.95.8.4607] [PMID: 9539785]
[19]
Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.), 2008, 3(5), 703-717.
[http://dx.doi.org/10.2217/17435889.3.5.703] [PMID: 18817471]
[20]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev., 2001, 53(2), 283-318.
[PMID: 11356986]
[21]
Zhang, X.D.; Xia, L.Y.; Chen, X.K.; Chen, Z.; Wu, F.G. Hydrogel-based phototherapy for fighting cancer and bacterial infection. Sci. China Mater., 2017, 60(6), 487-503.
[http://dx.doi.org/10.1007/s40843-017-9025-3]
[22]
Nichols, J.W.; Bae, Y.H. EPR: Evidence and fallacy. J. Control. Release, 2014, 190, 451-464.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.057] [PMID: 24794900]
[23]
Chauhan, V.P.; Stylianopoulos, T.; Martin, J.D.; Popović, Z.; Chen, O.; Kamoun, W.S.; Bawendi, M.G.; Fukumura, D.; Jain, R.K. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol., 2012, 7(6), 383-388.
[http://dx.doi.org/10.1038/nnano.2012.45] [PMID: 22484912]
[24]
Nam, K.C.; Choi, K.H.; Lee, K.D.; Kim, J.H.; Jung, J.S.; Park, B.J. Particle size dependent photodynamic anticancer activity of hematoporphyrin-conjugated Fe3O4 particles. J. Nanomater., 2016, 2016, 9.
[http://dx.doi.org/10.1155/2016/1278393]
[25]
Stylianopoulos, T. EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Ther. Deliv., 2013, 4(4), 421-423.
[http://dx.doi.org/10.4155/tde.13.8] [PMID: 23557281]
[26]
Gong, H.; Chao, Y.; Xiang, J.; Han, X.; Song, G.; Feng, L.; Liu, J.; Yang, G.; Chen, Q.; Liu, Z. Hyaluronidase to enhance nanoparticle-based photodynamic tumor therapy. Nano Lett., 2016, 16(4), 2512-2521.
[http://dx.doi.org/10.1021/acs.nanolett.6b00068] [PMID: 27022664]
[27]
You, C.; Wu, H.; Wang, M.; Gao, Z.; Sun, B.; Zhang, X. Synthesis and biological evaluation of redox/NIR dual stimulus-responsive polymeric nanoparticles for targeted delivery of cisplatin. Mater. Sci. Eng. C, 2018, 92, 453-462.
[http://dx.doi.org/10.1016/j.msec.2018.06.044] [PMID: 30184771]
[28]
Tong, R.; Chiang, H.H.; Kohane, D.S. Photoswitchable nanoparticles for in vivo cancer chemotherapy. Proc. Natl. Acad. Sci. USA, 2013, 110(47), 19048-19053.
[http://dx.doi.org/10.1073/pnas.1315336110] [PMID: 24191048]
[29]
Ji, C.; Gao, Q.; Dong, X.; Yin, W.; Gu, Z.; Gan, Z.; Zhao, Y.; Yin, M. A size-reducible nanodrug with an aggregation-enhanced photodynamic effect for deep chemo-photodynamic therapy. Angew. Chem. Int. Ed. Engl., 2018, 57(35), 11384-11388.
[http://dx.doi.org/10.1002/anie.201807602] [PMID: 30003656]
[30]
Kong, G.; Braun, R.D.; Dewhirst, M.W. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res., 2000, 60(16), 4440-4445.
[PMID: 10969790]
[31]
Bhuvaneswari, R.; Thong, P.S.P.; Gan, Y.Y.; Soo, K.C.; Olivo, M. Evaluation of hypericin-mediated photodynamic therapy in combination with angiogenesis inhibitor bevacizumab using in vivo fluorescence confocal endomicroscopy. J. Biomed. Opt., 2010, 15(1), 011114
[http://dx.doi.org/10.1117/1.3281671] [PMID: 20210440]
[32]
Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14, 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[33]
Gratton, S.E.A.; Ropp, P.A.; Pohlhaus, P.D.J.; Luft, J.C.; Madden, V.J.; Napier, M.E.; DeSimone, J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11613-11618.
[http://dx.doi.org/10.1073/pnas.0801763105] [PMID: 18697944]
[34]
Wong, C.; Stylianopoulos, T.; Cui, J.; Martin, J.; Chauhan, V.P.; Jiang, W.; Popovic, Z.; Jain, R.K.; Bawendi, M.G.; Fukumura, D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA, 2011, 108(6), 2426-2431.
[http://dx.doi.org/10.1073/pnas.1018382108] [PMID: 21245339]
[35]
Chen, Q.; Chen, J.; Liang, C.; Feng, L.; Dong, Z.; Song, X.; Song, G.; Liu, Z. Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy. J. Control. Release, 2017, 263(10), 79-89.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.006] [PMID: 27840167]
[36]
Oberleithner, H. Vascular endothelium leaves fingerprints on the surface of erythrocytes. Pflugers Arch., 2013, 465(10), 1451-1458.
[http://dx.doi.org/10.1007/s00424-013-1288-y] [PMID: 23665954]
[37]
Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems - a review (Part 1). Trop. J. Pharm. Res., 2013, 12(2), 255-264.
[38]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
[39]
Lee, J.S.; Ankone, M.; Pieters, E.; Schiffelers, R.M.; Hennink, W.E.; Feijen, J. Circulation kinetics and biodistribution of dual-labeled polymersomes with modulated surface charge in tumor-bearing mice: comparison with stealth liposomes. J. Control. Release, 2011, 155(2), 282-288.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.028] [PMID: 21820023]
[40]
Zeng, Y.; Yang, Z.; Luo, S.; Li, H.; Liu, C.; Hao, Y.; Liu, J.; Wang, W.; Li, R. Fast and facile preparation of PEGylated graphene from graphene oxide by lysosome targeting delivery of photosensitizer to efficiently enhance photodynamic therapy. Rsc. Adv., 2015, 5(71), 57725-57734.
[http://dx.doi.org/10.1039/C5RA07535A]
[41]
Wang, Y.; Yang, M.; Qian, J.; Xu, W.; Wang, J.; Hou, G.; Ji, L.; Suo, A. Sequentially self-assembled polysaccharide-based nanocomplexes for combined chemotherapy and photodynamic therapy of breast cancer. Carbohydr. Polym., 2019, 203, 203-213.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.035] [PMID: 30318205]
[42]
Zhang, Y.P.; Li, Y.Y.; Ma, J.L.; Wang, X.Y.; Yuan, Z.; Wang, W. Convenient preparation of charge-adaptive chitosan nanomedicines for extended blood circulation and accelerated endosomal escape. Nano Res., 2018, 11(8), 4278-4292.
[http://dx.doi.org/10.1007/s12274-018-2014-z]
[43]
Hu, D.D.; Xu, Z.P.; Hu, Z.Y.; Hu, B.H.; Yang, M.Y.; Zhu, L.J. pH-triggered charge-reversal silk sericin-based nanoparticles for enhanced cellular uptake and doxorubicin delivery. ACS Sustain. Chem.& Eng., 2017, 5(2), 1638-1647.
[http://dx.doi.org/10.1021/acssuschemeng.6b02392]
[44]
Cui, S.; Yin, D.; Chen, Y.; Di, Y.; Chen, H.; Ma, Y.; Achilefu, S.; Gu, Y. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano, 2013, 7(1), 676-688.
[http://dx.doi.org/10.1021/nn304872n] [PMID: 23252747]
[45]
Zhang, W.; Tung, C.H. Real-time visualization of lysosome destruction using a photosensitive toluidine blue nanogel. Chemistry, 2018, 24(9), 2089-2093.
[http://dx.doi.org/10.1002/chem.201705697] [PMID: 29314346]
[46]
Kirpotin, D.B.; Drummond, D.C.; Shao, Y.; Shalaby, M.R.; Hong, K.; Nielsen, U.B.; Marks, J.D.; Benz, C.C.; Park, J.W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res., 2006, 66(13), 6732-6740.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4199] [PMID: 16818648]
[47]
Mamot, C.; Drummond, D.C.; Noble, C.O.; Kallab, V.; Guo, Z.; Hong, K.; Kirpotin, D.B.; Park, J.W. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res., 2005, 65(24), 11631-11638.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1093] [PMID: 16357174]
[48]
Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Targeting of drugs and nanoparticles to tumors. J. Cell Biol., 2010, 188(6), 759-768.
[http://dx.doi.org/10.1083/jcb.200910104] [PMID: 20231381]
[49]
Sun, Y.; Chen, Z.L.; Yang, X.X.; Huang, P.; Zhou, X.P.; Du, X.X. Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy. Nanotechnology, 2009, 20(13), 135102
[http://dx.doi.org/10.1088/0957-4484/20/13/135102] [PMID: 19420486]
[50]
Kim, S.; Lee, D.J.; Kwag, D.S.; Lee, U.Y.; Youn, Y.S.; Lee, E.S. Acid pH-activated glycol chitosan/fullerene nanogels for efficient tumor therapy. Carbohydr. Polym., 2014, 101(1), 692-698.
[http://dx.doi.org/10.1016/j.carbpol.2013.09.108] [PMID: 24299827]
[51]
Zhai, Y.; Ran, W.; Su, J.; Lang, T.; Meng, J.; Wang, G.; Zhang, P.; Li, Y. Traceable bioinspired nanoparticle for the treatment of metastatic breast cancer via nir-trigged intracellular delivery of methylene blue and cisplatin. Adv. Mater., 2018, 30(34), e1802378
[http://dx.doi.org/10.1002/adma.201802378] [PMID: 29989211]
[52]
Kim, J.Y.; Choi, W.I.; Kim, M.; Tae, G. Tumor-targeting nanogel that can function independently for both photodynamic and photothermal therapy and its synergy from the procedure of PDT followed by PTT. J. Control. Release, 2013, 171(2), 113-121.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.006] [PMID: 23860187]
[53]
Liao, Z.X.; Peng, S.F.; Ho, Y.C.; Mi, F.L.; Maiti, B.; Sung, H.W. Mechanistic study of transfection of chitosan/DNA complexes coated by anionic poly(γ-glutamic acid). Biomaterials, 2012, 33(11), 3306-3315.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.013] [PMID: 22281422]
[54]
Liao, Z.X.; Li, Y.C.; Lu, H.M.; Sung, H.W. A genetically-encoded KillerRed protein as an intrinsically generated photosensitizer for photodynamic therapy. Biomaterials, 2014, 35(1), 500-508.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.075] [PMID: 24112805]
[55]
Oh, I.H.; Min, H.S.; Li, L.; Tran, T.H.; Lee, Y.K.; Kwon, I.C.; Choi, K.; Kim, K.; Huh, K.M. Cancer cell-specific photoactivity of pheophorbide a-glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice. Biomaterials, 2013, 34(27), 6454-6463.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.017] [PMID: 23755832]
[56]
Wu, S.Y.; Debele, T.A.; Kao, Y.C.; Tsai, H.C. Synthesis and characterization of dual-sensitive fluorescent nanogels for enhancing drug delivery and tracking intracellular drug delivery. Int. J. Mol. Sci., 2017, 18(5), 1090.
[http://dx.doi.org/10.3390/ijms18051090] [PMID: 28534813]
[57]
Huynh, N.T.; Roger, E.; Lautram, N.; Benoît, J.P.; Passirani, C. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine (Lond.), 2010, 5(9), 1415-1433.
[http://dx.doi.org/10.2217/nnm.10.113] [PMID: 21128723]
[58]
Krug, H.F. Nanomedicine: Need for a new (nano)pharmacology and (nano)toxicology. Nanomedicine (Lond.), 2016, 12(2), 450-451.
[http://dx.doi.org/10.1016/j.nano.2015.12.007]
[59]
Mathew, A.P.; Uthaman, S.; Cho, K.H.; Cho, C.S.; Park, I.K. Injectable hydrogels for delivering biotherapeutic molecules. Int. J. Biol. Macromol., 2018, 110, 17-29.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.113] [PMID: 29169942]
[60]
Mao, C.; Xiang, Y.; Liu, X.; Cui, Z.; Yang, X.; Yeung, K.W.K.; Pan, H.; Wang, X.; Chu, P.K.; Wu, S. Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures. ACS Nano, 2017, 11(9), 9010-9021.
[http://dx.doi.org/10.1021/acsnano.7b03513] [PMID: 28825807]
[61]
Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol., 2017, 105(Pt 2), 1358-1368.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.087] [PMID: 28735006]
[62]
Yin, M.; Li, Z.; Zhou, L.; Dong, K.; Ren, J.; Qu, X. A multifunctional upconverting nanoparticle incorporated polycationic hydrogel for near-infrared triggered and synergistic treatment of drug-resistant bacteria. Nanotechnology, 2016, 27(12), 125601
[http://dx.doi.org/10.1088/0957-4484/27/12/125601] [PMID: 26883410]
[63]
Chen, C.P.; Hsieh, C.M.; Tsai, T.; Yang, J.C.; Chen, C.T. Optimization and evaluation of a chitosan/hydroxypropyl methylcellulose hydrogel containing toluidine blue o for antimicrobial photodynamic inactivation. Int. J. Mol. Sci., 2015, 16(9), 20859-20872.
[http://dx.doi.org/10.3390/ijms160920859] [PMID: 26340623]
[64]
Larrañeta, E.; Henry, M.; Irwin, N.J.; Trotter, J.; Perminova, A.A.; Donnelly, R.F. Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process for potential biomedical applications. Carbohydr. Polym., 2018, 181, 1194-1205.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.015] [PMID: 29253949]
[65]
Beack, S.; Kong, W.H.; Jung, H.S.; Do, I.H.; Han, S.; Kim, H.; Kim, K.S.; Yun, S.H.; Hahn, S.K. Photodynamic therapy of melanoma skin cancer using carbon dot - chlorin e6 - hyaluronate conjugate. Acta Biomater., 2015, 26, 295-305.
[http://dx.doi.org/10.1016/j.actbio.2015.08.027] [PMID: 26297888]
[66]
Li, M.; He, P.; Li, S.L.; Wang, X.Y.; Liu, L.B.; Lv, F.T.; Wang, S. Oligo(p-phenylenevinylene) derivative-incorporated and enzyme-responsive hybrid hydrogel for tumor cell-specific imaging and activatable photodynamic therapy. ACS Biomater. Sci. Eng., 2018, 4(6), 2037-2045.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00610]
[67]
Lu, H.D.; Charati, M.B.; Kim, I.L.; Burdick, J.A. Injectable shear-thinning hydrogels engineered with a self-assembling Dock-and-Lock mechanism. Biomaterials, 2012, 33(7), 2145-2153.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.076] [PMID: 22177842]
[68]
Singh, N.K.; Lee, D.S. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J. Control. Release, 2014, 193, 214-227.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.056] [PMID: 24815421]
[69]
Lee, J.H. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater. Res., 2018, 22(1), 27.
[http://dx.doi.org/10.1186/s40824-018-0138-6] [PMID: 30275970]
[70]
Chou, A.I.; Akintoye, S.O.; Nicoll, S.B. Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo. Osteoarthritis Cartilage, 2009, 17(10), 1377-1384.
[http://dx.doi.org/10.1016/j.joca.2009.04.012] [PMID: 19427928]
[71]
Obara, K.; Ishihara, M.; Ozeki, Y.; Ishizuka, T.; Hayashi, T.; Nakamura, S.; Saito, Y.; Yura, H.; Matsui, T.; Hattori, H.; Takase, B.; Ishihara, M.; Kikuchi, M.; Maehara, T. Controlled release of paclitaxel from photocrosslinked chitosan hydrogels and its subsequent effect on subcutaneous tumor growth in mice. J. Control. Release, 2005, 110(1), 79-89.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.026] [PMID: 16289419]
[72]
Ono, K.; Saito, Y.; Yura, H.; Ishikawa, K.; Kurita, A.; Akaike, T.; Ishihara, M. Photocrosslinkable chitosan as a biological adhesive. J. Biomed. Mater. Res., 2000, 49(2), 289-295.
[http://dx.doi.org/10.1002/(SICI)1097-4636(200002)49:2<289:AID-JBM18>3.0.CO;2-M] [PMID: 10571917]
[73]
Chiu, Y.L.; Chen, S.C.; Su, C.J.; Hsiao, C.W.; Chen, Y.M.; Chen, H.L.; Sung, H.W. pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials, 2009, 30(28), 4877-4888.
[http://dx.doi.org/10.1016/j.biomaterials.2009.05.052] [PMID: 19527916]
[74]
Gupta, D.; Tator, C.H.; Shoichet, M.S. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials, 2006, 27(11), 2370-2379.
[http://dx.doi.org/10.1016/j.biomaterials.2005.11.015] [PMID: 16325904]
[75]
Roy, A.; Comesse, S.; Grisel, M.; Hucher, N.; Souguir, Z.; Renou, F. Hydrophobically modified xanthan: an amphiphilic but not associative polymer. Biomacromolecules, 2014, 15(4), 1160-1170.
[http://dx.doi.org/10.1021/bm4017034] [PMID: 24547905]
[76]
Liu, Z.; Yao, P. Injectable thermo-responsive hydrogel composed of xanthan gum and methylcellulose double networks with shear-thinning property. Carbohydr. Polym., 2015, 132, 490-498.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.013] [PMID: 26256374]
[77]
Chen, J.P.; Cheng, T.H. Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol. Biosci., 2006, 6(12), 1026-1039.
[http://dx.doi.org/10.1002/mabi.200600142] [PMID: 17128421]
[78]
Weng, G.; Thanneeru, S.; He, J. Dynamic coordination of Eu-Iminodiacetate to control fluorochromic response of polymer hydrogels to multistimuli. Adv. Mater., 2018, 30(11), 1706526
[http://dx.doi.org/10.1002/adma.201706526] [PMID: 29334152]
[79]
de Jong, S.J.; De Smedt, S.C.; Demeester, J.; van Nostrum, C.F.; Kettenes-van den Bosch, J.J.; Hennink, W.E. Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. J. Control. Release, 2001, 72(1-3), 47-56.
[http://dx.doi.org/10.1016/S0168-3659(01)00261-9] [PMID: 11389984]
[80]
Ding, X.; Wang, Y. Weak bond-based injectable and stimuli responsive hydrogels for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(5), 887-906.
[http://dx.doi.org/10.1039/C6TB03052A] [PMID: 29062484]
[81]
Rodell, C.B.; MacArthur, J.W.; Dorsey, S.M.; Wade, R.J.; Wang, L.L.; Woo, Y.J.; Burdick, J.A. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv. Funct. Mater., 2015, 25(4), 636-644.
[http://dx.doi.org/10.1002/adfm.201403550] [PMID: 26526097]
[82]
Zhang, G.Z.; Wang, C.Y.; Ngai, T. Injectable hydrogel cross-linked by quadruple hydrogen bonding for drug encapsulation and delivery. J. Control. Release, 2017, 259, E36-E37.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.099]
[83]
Wang, C.; Wang, X.; Dong, K.; Luo, J.; Zhang, Q.; Cheng, Y. Injectable and responsively degradable hydrogel for personalized photothermal therapy. Biomaterials, 2016, 104, 129-137.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.013] [PMID: 27449949]
[84]
Jin, Y.; Yu, C.; Denman, R.J.; Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev., 2013, 42(16), 6634-6654.
[http://dx.doi.org/10.1039/c3cs60044k] [PMID: 23749182]
[85]
Zhang, J.Y.; Zeng, L.H.; Feng, J. Dynamic covalent gels assembled from small molecules: from discrete gelators to dynamic covalent polymers. Chin. Chem. Lett., 2017, 28(2), 168-183.
[http://dx.doi.org/10.1016/j.cclet.2016.07.015]
[86]
Ciaccia, M.; Di Stefano, S. Mechanisms of imine exchange reactions in organic solvents. Org. Biomol. Chem., 2015, 13(3), 646-654.
[http://dx.doi.org/10.1039/C4OB02110J] [PMID: 25415257]
[87]
Xu, Y.; Li, Y.; Chen, Q.; Fu, L.; Tao, L.; Wei, Y. Injectable and self-healing chitosan hydrogel based on imine bonds: design and therapeutic applications. Int. J. Mol. Sci., 2018, 19(8), E2198
[http://dx.doi.org/10.3390/ijms19082198] [PMID: 30060504]
[88]
Zhang, X.D.; Xia, L.Y.; Wu, F.G. Rose bengal-loaded injectable hydrogel with enhanced anticancer and antibacterial efficacy. J. Control. Release, 2017, 259(10), E147-E147.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.296]
[89]
Yan, S.; Wang, T.; Feng, L.; Zhu, J.; Zhang, K.; Chen, X.; Cui, L.; Yin, J. Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering. Biomacromolecules, 2014, 15(12), 4495-4508.
[http://dx.doi.org/10.1021/bm501313t] [PMID: 25279766]
[90]
Liu, Z.; Xu, G.; Wang, C.; Li, C.; Yao, P. Shear-responsive injectable supramolecular hydrogel releasing doxorubicin loaded micelles with pH-sensitivity for local tumor chemotherapy. Int. J. Pharm., 2017, 530(1-2), 53-62.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.063] [PMID: 28739501]
[91]
Wang, L.L.; Highley, C.B.; Yeh, Y.C.; Galarraga, J.H.; Uman, S.; Burdick, J.A. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks. J. Biomed. Mater. Res. A, 2018, 106(4), 865-875.
[http://dx.doi.org/10.1002/jbm.a.36323] [PMID: 29314616]
[92]
Zong, A.; Cao, H.; Wang, F. Anticancer polysaccharides from natural resources: a review of recent research. Carbohydr. Polym., 2012, 90(4), 1395-1410.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.026] [PMID: 22944395]
[93]
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[94]
Gierszewska, M.; Ostrowska-Czubenko, J. Chitosan-based membranes with different ionic crosslinking density for pharmaceutical and industrial applications. Carbohydr. Polym., 2016, 153, 501-511.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.126] [PMID: 27561522]
[95]
Boonthum, C.; Namdee, K.; Boonrungsiman, S.; Chatdarong, K.; Saengkrit, N.; Sajomsang, W.; Ponglowhapan, S.; Yata, T. Chitosan-based DNA delivery vector targeted to gonadotropin-releasing hormone (GnRH) receptor. Carbohydr. Polym., 2017, 157, 311-320.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.015] [PMID: 27987933]
[96]
Camacho-Alonso, F.; Julián-Belmonte, E.; Chiva-García, F.; Martínez-Beneyto, Y. Bactericidal efficacy of photodynamic therapy and chitosan in root canals experimentally infected with Enterococcus faecalis: an in vitro study. Photomed. Laser Surg., 2017, 35(4), 184-189.
[http://dx.doi.org/10.1089/pho.2016.4148] [PMID: 28068186]
[97]
Rao, W.; Wang, H.; Han, J.; Zhao, S.; Dumbleton, J.; Agarwal, P.; Zhang, W.; Zhao, G.; Yu, J.; Zynger, D.L.; Lu, X.; He, X. Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano, 2015, 9(6), 5725-5740.
[http://dx.doi.org/10.1021/nn506928p] [PMID: 26004286]
[98]
Schuetz, Y.B.; Gurny, R.; Jordan, O. A novel thermoresponsive hydrogel based on chitosan. Eur. J. Pharm. Biopharm., 2008, 68(1), 19-25.
[http://dx.doi.org/10.1016/j.ejpb.2007.06.020] [PMID: 17884402]
[99]
Frade, M.L.; de Annunzio, S.R.; Calixto, G.M.F.; Victorelli, F.D.; Chorilli, M.; Fontana, C.R. Assessment of chitosan-based hydrogel and photodynamic inactivation against Propionibacterium acnes. Molecules, 2018, 23(2), 473.
[http://dx.doi.org/10.3390/molecules23020473] [PMID: 29470387]
[100]
Patil, P.S.; Leipzig, N.D. Fluorinated methacrylamide chitosan sequesters reactive oxygen species to relieve oxidative stress while delivering oxygen. J. Biomed. Mater. Res. A, 2017, 105(8), 2368-2374.
[http://dx.doi.org/10.1002/jbm.a.36079] [PMID: 28371332]
[101]
Quiñones, J.P.; Peniche, H.; Peniche, C. Chitosan based self-assembled nanoparticles in drug delivery. Polymers , 2018, 10(3), 235.
[http://dx.doi.org/10.3390/polym10030235] [PMID: 30966270]
[102]
Larsson, M.; Huang, W.C.; Hsiao, M.H.; Wang, Y.J.; Nyden, M.; Chiou, S.H.; Liu, D.M. Biomedical applications and colloidal properties of amphiphilically modified chitosan hybrids. Prog. Polym. Sci., 2013, 38(9), 1307-1328.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.06.009]
[103]
Belali, S.; Karimi, A.R.; Hadizadeh, M. Cell-specific and pH-sensitive nanostructure hydrogel based on chitosan as a photosensitizer carrier for selective photodynamic therapy. Int. J. Biol. Macromol., 2018, 110(15), 437-448.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.169] [PMID: 29369780]
[104]
Olaru, A.M.; Marin, L.; Morariu, S.; Pricope, G.; Pinteala, M.; Tartau-Mititelu, L. Biocompatible chitosan based hydrogels for potential application in local tumour therapy. Carbohydr. Polym., 2018, 179, 59-70.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.066] [PMID: 29111071]
[105]
Wang, K.; Zhuang, J.; Liu, Y.; Xu, M.; Zhuang, J.; Chen, Z.; Wei, Y.; Zhang, Y. PEGylated chitosan nanoparticles with embedded bismuth sulfide for dual-wavelength fluorescent imaging and photothermal therapy. Carbohydr. Polym., 2018, 184, 445-452.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.005] [PMID: 29352940]
[106]
Sachdev, A.; Matai, I.; Gopinath, P. Carbon dots incorporated polymeric hydrogels as multifunctional platform for imaging and induction of apoptosis in lung cancer cells. Colloids Surf. B Biointerfaces, 2016, 141, 242-252.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.043] [PMID: 26854583]
[107]
Vadodaria, S.S.; English, R.J. Aqueous solutions of HEC and hmHEC: effects of molecular mass versus hydrophobic associations on hydrodynamic and thermodynamic parameters. Cellulose, 2016, 23(2), 1107-1121.
[http://dx.doi.org/10.1007/s10570-016-0861-x]
[108]
Xu, Q.; Chen, C.; Rosswurm, K.; Yao, T.; Janaswamy, S. A facile route to prepare cellulose-based films. Carbohydr. Polym., 2016, 149, 274-281.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.114] [PMID: 27261751]
[109]
Sun, N.; Wang, T.; Yan, X. Self-assembled supermolecular hydrogel based on hydroxyethyl cellulose: Formation, in vitro release and bacteriostasis application. Carbohydr. Polym., 2017, 172, 49-59.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.026] [PMID: 28606547]
[110]
Wisnovsky, S.; Jean, S.R.; Kelley, S.O. Mitochondrial DNA repair and replication proteins revealed by targeted chemical probes. Nat. Chem. Biol., 2016, 12(7), 567-573.
[http://dx.doi.org/10.1038/nchembio.2102] [PMID: 27239789]
[111]
Zhang, H.; Li, Y.; Xu, Y.; Lu, Z.; Chen, L.; Huang, L.; Fan, M. Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up. Phys. Chem. Chem. Phys., 2016, 18(40), 28297-28306.
[http://dx.doi.org/10.1039/C6CP04932J] [PMID: 27711507]
[112]
Xing, C.; Chen, S.; Qiu, M.; Liang, X.; Liu, Q.; Zou, Q.; Li, Z.; Xie, Z.; Wang, D.; Dong, B.; Liu, L.; Fan, D.; Zhang, H. Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy. Adv. Healthc. Mater., 2018, 7(7), e1701510
[http://dx.doi.org/10.1002/adhm.201701510] [PMID: 29508554]
[113]
Yang, L.; Liu, A.; de Ruiter, M.V.; Hommersom, C.A.; Katsonis, N.; Jonkheijm, P.; Cornelissen, J.J.L.M. Compartmentalized supramolecular hydrogels based on viral nanocages towards sophisticated cargo administration. Nanoscale, 2018, 10(8), 4123-4129.
[http://dx.doi.org/10.1039/C7NR07718A] [PMID: 29436545]
[114]
Chang, C.Y.; Peng, J.; Zhang, L.N.; Pang, D.W. Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J. Mater. Chem., 2009, 19(41), 7771-7776.
[http://dx.doi.org/10.1039/b908835k]
[115]
Duan, X.; Sheardown, H. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Biomaterials, 2006, 27(26), 4608-4617.
[http://dx.doi.org/10.1016/j.biomaterials.2006.04.022] [PMID: 16713624]
[116]
Wood, A.; Ogawa, M.; Portier, R.J.; Schexnayder, M.; Shirley, M.; Losso, J.N. Biochemical properties of alligator (Alligator mississippiensis) bone collagen. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2008, 151(3), 246-249.
[http://dx.doi.org/10.1016/j.cbpb.2008.05.015] [PMID: 18577462]
[117]
Johnson, K.A.; Rogers, G.J.; Roe, S.C.; Howlett, C.R.; Clayton, M.K.; Milthorpe, B.K.; Schindhelm, K. Nitrous acid pretreatment of tendon xenografts cross-linked with glutaraldehyde and sterilized with gamma irradiation. Biomaterials, 1999, 20(11), 1003-1015.
[http://dx.doi.org/10.1016/S0142-9612(98)90187-9] [PMID: 10378800]
[118]
Sugiura, H.; Yunoki, S.; Kondo, E.; Ikoma, T.; Tanaka, J.; Yasuda, K. In vivo biological responses and bioresorption of tilapia scale collagen as a potential biomaterial. J. Biomater. Sci. Polym. Ed., 2009, 20(10), 1353-1368.
[http://dx.doi.org/10.1163/092050609X12457418396658] [PMID: 19622276]
[119]
Lin, Y.K.; Deng, C.L. Comparison of physical-chemical properties of type I collagen from different species. Food Chem., 2006, 99(2), 244-251.
[http://dx.doi.org/10.1016/j.foodchem.2005.06.053]
[120]
Lee, C.H.; Singla, A.; Lee, Y. Biomedical applications of collagen. Int. J. Pharm., 2001, 221(1-2), 1-22.
[http://dx.doi.org/10.1016/S0378-5173(01)00691-3] [PMID: 11397563]
[121]
Reddi, E.; Rodgers, M.A.; Spikes, J.D.; Jori, G. The effect of medium polarity on the hematoporphyrin-sensitized photooxidation of L-tryptophan. Photochem. Photobiol., 1984, 40(4), 415-421.
[http://dx.doi.org/10.1111/j.1751-1097.1984.tb04611.x] [PMID: 6505034]
[122]
Georgiou, S.; Papazoglou, T.; Dafnomili, D.; Coutsolelos, A.G.; Kouklaki, V.; Tosca, A. Photophysical characterization of hematoporphyrin incorporated within collagen gels. J. Photochem. Photobiol. B, 1994, 22(1), 45-50.
[http://dx.doi.org/10.1016/1011-1344(93)06950-8] [PMID: 8151455]
[123]
Zhang, X.; Yang, Y.H.; Yao, J.R.; Shao, Z.Z.; Chen, X. Strong collagen hydrogels by oxidized dextran modification. ACS Sustain. Chem.& Eng., 2014, 2(5), 1318-1324.
[http://dx.doi.org/10.1021/sc500154t]
[124]
Chevallay, B.; Abdul-Malak, N.; Herbage, D. Mouse fibroblasts in long-term culture within collagen three-dimensional scaffolds: influence of crosslinking with diphenylphosphorylazide on matrix reorganization, growth, and biosynthetic and proteolytic activities. J. Biomed. Mater. Res., 2000, 49(4), 448-459.
[http://dx.doi.org/10.1002/(SICI)1097-4636(20000315)49:4<448:AID-JBM3>3.0.CO;2-L] [PMID: 10602078]
[125]
Xing, R.; Liu, K.; Jiao, T.; Zhang, N.; Ma, K.; Zhang, R.; Zou, Q.; Ma, G.; Yan, X. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv. Mater., 2016, 28(19), 3669-3676.
[http://dx.doi.org/10.1002/adma.201600284] [PMID: 26991248]
[126]
Sun, J.J.; Guo, Y.; Xing, R.R.; Jiao, T.F.; Zou, Q.L.; Yan, X.H. Synergistic in vivo photodynamic and photothermal antitumor therapy based on collagen-gold hybrid hydrogels with inclusion of photosensitive drugs. Colloid Surface A, 2017, 514, 155-160.
[http://dx.doi.org/10.1016/j.colsurfa.2016.11.062]
[127]
Gombotz, W.R.; Wee, S.F. Protein release from alginate matrices. Adv. Drug Deliv. Rev., 2012, 64(3), 194-205.
[http://dx.doi.org/10.1016/j.addr.2012.09.007]
[128]
Wei, X.; Xiong, H.; Zhou, D.; Jing, X.; Huang, Y. Ion-assisted fabrication of neutral protein crosslinked sodium alginate nanogels. Carbohydr. Polym., 2018, 186, 45-53.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.035] [PMID: 29456008]
[129]
Ion, R.M. Micro-encapsulated porphyrins and phthalocyanines-new formulations in photodynamic therapy. IOP Conf. Series Mater. Sci. Eng., 2017, 209, 012010
[http://dx.doi.org/10.1088/1757-899X/209/1/012010]
[130]
d’Ayala, G.G.; Malinconico, M.; Laurienzo, P. Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules, 2008, 13(9), 2069-2106.
[http://dx.doi.org/10.3390/molecules13092069] [PMID: 18830142]
[131]
Lee, M.; Li, W.; Siu, R.K.; Whang, J.; Zhang, X.; Soo, C.; Ting, K.; Wu, B.M. Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers. Biomaterials, 2009, 30(30), 6094-6101.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.046] [PMID: 19674782]
[132]
Abdelghany, S.M.; Schmid, D.; Deacon, J.; Jaworski, J.; Fay, F.; McLaughlin, K.M.; Gormley, J.A.; Burrows, J.F.; Longley, D.B.; Donnelly, R.F.; Scott, C.J. Enhanced antitumor activity of the photosensitizer meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles. Biomacromolecules, 2013, 14(2), 302-310.
[http://dx.doi.org/10.1021/bm301858a] [PMID: 23327610]
[133]
Zhang, L.N.; Zhou, D.C.; Wang, H.; Cheng, S.Y. Ion exchange membranes blended by cellulose cuoxam with alginate. J. Membr. Sci., 1997, 124(2), 195-201.
[http://dx.doi.org/10.1016/S0376-7388(96)00227-X]
[134]
Liang, J.; Dong, X.; Wei, C.; Kong, D.L.; Liu, T.J.; Lv, F. Phthalocyanine incorporated alginate hydrogel with near infrared fluorescence for non-invasive imaging monitoring in vivo. Rsc. Adv., 2017, 7(11), 6501-6510.
[http://dx.doi.org/10.1039/C6RA27756J]
[135]
Tingirikari, J.M.; Kothari, D.; Goyal, A. Superior prebiotic and physicochemical properties of novel dextran from Weissella cibaria JAG8 for potential food applications. Food Funct., 2014, 5(9), 2324-2330.
[http://dx.doi.org/10.1039/C4FO00319E] [PMID: 25080006]
[136]
Bisht, S.; Maitra, A. Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1(4), 415-425.
[http://dx.doi.org/10.1002/wnan.43] [PMID: 20049807]
[137]
Sun, G.; Zhang, X.; Shen, Y.I.; Sebastian, R.; Dickinson, L.E.; Fox-Talbot, K.; Reinblatt, M.; Steenbergen, C.; Harmon, J.W.; Gerecht, S. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc. Natl. Acad. Sci. USA, 2011, 108(52), 20976-20981.
[http://dx.doi.org/10.1073/pnas.1115973108] [PMID: 22171002]
[138]
Massia, S.P.; Stark, J.; Letbetter, D.S. Surface-immobilized dextran limits cell adhesion and spreading. Biomaterials, 2000, 21(22), 2253-2261.
[http://dx.doi.org/10.1016/S0142-9612(00)00151-4] [PMID: 11026631]
[139]
Yucel Falco, C.; Falkman, P.; Risbo, J.; Cárdenas, M.; Medronho, B. Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics. Carbohydr. Polym., 2017, 172, 175-183.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.047] [PMID: 28606523]
[140]
Saboktakin, M.R.; Tabatabaie, R.M.; Ostovarazar, P.; Maharramov, A.; Ramazanov, M.A. Synthesis and characterization of modified starch hydrogels for photodynamic treatment of cancer. Int. J. Biol. Macromol., 2012, 51(4), 544-549.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.06.024] [PMID: 22732133]
[141]
Liu, P.; Yue, C.; Sheng, Z.; Gao, G.; Li, M.; Yi, H.; Zheng, C.; Wang, B.; Cai, L. Photosensitizer-conjugated redoxresponsive dextran theranostic nanoparticles for nearinfrared cancer imaging and photodynamic therapy. Polym. Chem.-UK., 2013, 5(3), 874-881.
[http://dx.doi.org/10.1039/C3PY01173A]
[142]
Hao, Y.; Zheng, C.; Wang, L.; Zhang, J.; Niu, X.; Song, Q.; Feng, Q.; Zhao, H.; Li, L.; Zhang, H.; Zhang, Z.; Zhang, Y. Tumor acidity-activatable manganese phosphate nanoplatform for amplification of photodynamic cancer therapy and magnetic resonance imaging. Acta Biomater., 2017, 62, 293-305.
[http://dx.doi.org/10.1016/j.actbio.2017.08.028] [PMID: 28842332]
[143]
Wang, H.; Wang, S.; Liu, Z.; Dong, C.; Yang, J.; Gong, X.; Chang, J. Upconverting crystal/dextran-g-DOPE with high fluorescence stability for simultaneous photodynamic therapy and cell imaging. Nanotechnology, 2014, 25(15), 155103
[http://dx.doi.org/10.1088/0957-4484/25/15/155103] [PMID: 24651122]
[144]
Ding, Z.; Liu, P.; Hu, D.; Sheng, Z.; Yi, H.; Gao, G.; Wu, Y.; Zhang, P.; Ling, S.; Cai, L. Redox-responsive dextran based theranostic nanoparticles for near-infrared/magnetic resonance imaging and magnetically targeted photodynamic therapy. Biomater. Sci., 2017, 5(4), 762-771.
[http://dx.doi.org/10.1039/C6BM00846A] [PMID: 28256661]
[145]
Elzoghby, A.O. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J. Control. Release, 2013, 172(3), 1075-1091.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.019] [PMID: 24096021]
[146]
Patel, Z.S.; Yamamoto, M.; Ueda, H.; Tabata, Y.; Mikos, A.G. Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2. Acta Biomater., 2008, 4(5), 1126-1138.
[http://dx.doi.org/10.1016/j.actbio.2008.04.002] [PMID: 18474452]
[147]
Ninan, G.; Jose, J.; Abubacker, Z. Preparation and characterization of gelatin extracted from the skins of rohu (labeo rohita) and common carp (cyprinus carpio). J. Food Process. Preserv., 2011, 35(2), 143-162.
[http://dx.doi.org/10.1111/j.1745-4549.2009.00467.x]
[148]
Nezhadi, S.H.; Choong, P.F.M.; Lotfipour, F.; Dass, C.R. Gelatin-based delivery systems for cancer gene therapy. J. Drug Target., 2009, 17(10), 731-738.
[http://dx.doi.org/10.3109/10611860903096540] [PMID: 19863194]
[149]
Carvalho, J.A.; Abreu, A.S.; Ferreira, V.T.P.; Gonçalves, E.P.; Tedesco, A.C.; Pinto, J.G.; Ferreira-Strixino, J.; Beltrame Junior, M.; Simioni, A.R. Preparation of gelatin nanoparticles by two step desolvation method for application in photodynamic therapy. J. Biomater. Sci. Polym. Ed., 2018, 29(11), 1287-1301.
[http://dx.doi.org/10.1080/09205063.2018.1456027] [PMID: 29561222]
[150]
Tosati, J.V.; Oliveira, E.F.D.; Oliveira, J.V.; Nitin, N.; Monteiro, A.R. Light-activated antimicrobial activity of turmeric residue edible coatings against cross-contamination of Listeria innocua on Sausages. Food Control, 2017, 84, 177-185.
[http://dx.doi.org/10.1016/j.foodcont.2017.07.026]
[151]
Foox, M.; Zilberman, M. Drug delivery from gelatin-based systems. Expert Opin. Drug Deliv., 2015, 12(9), 1547-1563.
[http://dx.doi.org/10.1517/17425247.2015.1037272] [PMID: 25943722]
[152]
Suarasan, S.; Focsan, M.; Potara, M.; Soritau, O.; Florea, A.; Maniu, D.; Astilean, S. Doxorubicin-incorporated nanotherapeutic delivery system based on gelatin-coated gold nanoparticles: formulation, drug release, and multimodal imaging of cellular internalization. ACS Appl. Mater. Interfaces, 2016, 8(35), 22900-22913.
[http://dx.doi.org/10.1021/acsami.6b07583] [PMID: 27537061]
[153]
Tsai, L.C.; Hsieh, H.Y.; Lu, K.Y.; Wang, S.Y.; Mi, F.L. EGCG/gelatin-doxorubicin gold nanoparticles enhance therapeutic efficacy of doxorubicin for prostate cancer treatment. Nanomedicine (Lond.), 2016, 11(1), 9-30.
[http://dx.doi.org/10.2217/nnm.15.183] [PMID: 26654241]
[154]
Babu, A.; Periasamy, J.; Gunasekaran, A.; Kumaresan, G.; Naicker, S.; Gunasekaran, P.; Murugesan, R. Polyethylene glycol-modified gelatin/polylactic acid nanoparticles for enhanced photodynamic efficacy of a hypocrellin derivative in vitro. J. Biomed. Nanotechnol., 2013, 9(2), 177-192.
[http://dx.doi.org/10.1166/jbn.2013.1480] [PMID: 23627044]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy