Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

红细胞淀粉样蛋白β肽同工型分布在阿尔茨海默氏症和轻度认知障碍中。

卷 16, 期 11, 2019

页: [1050 - 1054] 页: 5

弟呕挨: 10.2174/1567205016666191010104355

价格: $65

摘要

简介:我们最近发现淀粉样β(Aβ)40积聚在红细胞中,并可能导致细胞损伤,这是由假定的受损低密度(kg / L)红细胞数量增加所证明的。此外,我们提出了一种分离技术来分离和浓缩这种受损的红细胞,以进行后续分析。 目的:我们分离了高密度和低密度红细胞,并研究了阿尔茨海默病(AD),轻度认知障碍(MCI)和主观认知障碍(SCI)中Aβ肽(Aβ40,Aβ42和Aβ43)的积累模式。 方法:通过密度梯度对全血进行分级,得到两个浓缩的高浓度和假定的低密度受损红细胞分数。细胞裂解后,通过ELISA对细胞内Aβ40,Aβ42和Aβ43进行定量。 结果:在高密度和低密度红细胞中,Aβ40在MCI中的浓度最低,而在AD和SCI中则相等且较高。检测到的Aβ40含量是Aβ42的10倍,在受损的低密度红细胞中,AD和MCI中的Aβ42含量最低。 Aβ40的表达量是Aβ43的100倍,MCI受试者较轻的红细胞显示的细胞内Aβ43较SCI少。 结论:AD,MCI和SCI之间Aβ40,Aβ42和Aβ43的红细胞积累模式存在显着差异。数据必须通过更大的临床试验进行验证。然而,在红血球亚群中Aβ肽的分布具有用于诊断目的的潜力是可以成立的。

关键词: 阿尔茨海默氏症,淀粉样β40,淀粉样β42,淀粉样β43,红细胞,MCI,SCI。

[1]
Järemo P, Milovanovic M, Nilsson S, Buller C, Post C, Winblad B. Alzheimer’s disease is characterized by more low-density erythrocytes with increased volume and enhanced β-amyloid x-40 content. J Intern Med 270(5): 489-92.2011;
[http://dx.doi.org/10.1111/j.1365-2796.2011.02388.x] [PMID: 21486370]
[2]
Chang CY, Liang HJ, Chow SY, Chen SM, Liu DZ. Hemorheological mechanisms in Alzheimer’s disease. Microcirculation 14(6): 627-34.2007;
[http://dx.doi.org/10.1080/10739680701411056] [PMID: 17710633]
[3]
Mohanty JG, Eckley DM, Williamson JD, Launer LJ, Rifkind JM. Do red blood cell-beta-amyloid interactions alter oxygen delivery in Alzheimer’s disease? Adv Exp Med Biol 614: 29-35.2008;
[http://dx.doi.org/10.1007/978-0-387-74911-2_4] [PMID: 18290311]
[4]
Carelli-Alinovi C, Dinarelli S, Sampaolese B, Misiti F, Girasole M. Morphological changes induced in erythrocyte by amyloid beta peptide and glucose depletion: a combined atomic force microscopy and biochemical study. Biochim Biophys Acta Biomembr 1861(1): 236-44.2019;
[http://dx.doi.org/10.1016/j.bbamem.2018.07.009] [PMID: 30040926]
[5]
Kosenko EA, Tikhonova LA, Montoliu C, Barreto GE, Aliev G, Kaminsky YG. Metabolic abnormalities of erythrocytes as a risk factor for Alzheimer’s disease. Front Neurosci 11: 728.2018;
[http://dx.doi.org/10.3389/fnins.2017.00728] [PMID: 29354027]
[6]
Engström I, Ronquist G, Pettersson L, Waldenström A. Alzheimer amyloid beta-peptides exhibit ionophore-like properties in human erythrocytes. Eur J Clin Invest 25(7): 471-6.1995;
[http://dx.doi.org/10.1111/j.1365-2362.1995.tb01732.x] [PMID: 7556364]
[7]
Sciacca MF, Kotler SA, Brender JR, Chen J, Lee DK, Ramamoorthy A. Two-step mechanism of membrane disruption by Aβ through membrane fragmentation and pore formation. Biophys J 103(4): 702-10.2012;
[http://dx.doi.org/10.1016/j.bpj.2012.06.045] [PMID: 22947931]
[8]
Mehta PD, Pirttilä T, Mehta SP, Sersen EA, Aisen PS, Wisniewski HM. Plasma and cerebrospinal fluid levels of amyloid beta proteins 1-40 and 1-42 in Alzheimer disease. Arch Neurol 57(1): 100-5.2000;
[http://dx.doi.org/10.1001/archneur.57.1.100] [PMID: 10634455]
[9]
Motter R, Vigo-Pelfrey C, Kholodenko D, Barbour R, Johnson-Wood K, Galasko D, et al. Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 38(4): 643-8.1995;
[http://dx.doi.org/10.1002/ana.410380413] [PMID: 7574461]
[10]
Lauridsen C, Sando SB, Møller I, Berge G, Pomary PK1, Grøntvedt GR, et al. Cerebrospinal fluid Aβ43 is reduced in early-onset compared to late-onset Alzheimer’s disease, but has similar diag-nostic accuracy to Aβ42. Front Aging Neurosci 9(9): 210.2017;
[http://dx.doi.org/10.3389/fnagi.2017.00210] [PMID: 28701950]
[11]
Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J6, Doré V, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554(7691): 249-54.2018;
[http://dx.doi.org/10.1038/nature25456] [PMID: 29420472]
[12]
Tiiman A, Jelić V, Jarvet J, Järemo P, Bogdanović N, Rigler R, et al. Amyloidogenic nanoplaques in blood serum of patients with Alzheimer’s disease revealed by time-resolved Thioflavin T fluorescence intensity fluctuation analysis. J Alzheimers Dis 68(2): 571-82.2019;
[http://dx.doi.org/10.3233/JAD-181144] [PMID: 30814355]
[13]
Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256(3): 240-6.2004;
[http://dx.doi.org/10.1111/j.1365-2796.2004.01380.x] [PMID: 15324367]
[14]
Blennow K, Wallin A, Agren H, Spenger C, Siegfried J, Vanmechelen E. Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol Chem Neuropathol 26(3): 231-45.1995;
[http://dx.doi.org/10.1007/BF02815140] [PMID: 8748926]
[15]
Järemo P. Computerised method for recording platelet density distribution. Eur J Haematol 54(5): 304-9.1995;
[http://dx.doi.org/10.1111/j.1600-0609.1995.tb00690.x] [PMID: 7781754]
[16]
Sandebring A, Welander H, Winblad B, Graff C, Tjernberg LO. The pathogenic aβ43 is enriched in familial and sporadic Alzheimer disease. PLoS One 8(2) e558472013;
[http://dx.doi.org/10.1371/journal.pone.0055847] [PMID: 23409063]
[17]
Kiko T, Nakagawa K, Satoh A, Tsuduki T, Furukawa K, Arai H, et al. Amyloid β levels in human red blood cells. PLoS One 7(11) e496202012;
[http://dx.doi.org/10.1371/journal.pone.0049620] [PMID: 23166730]
[18]
Lauriola M, Paroni G, Ciccone FD, Onofrio G, Cascavilla L, Paris F, et al. Erythrocyte associated amyloid-β as potential biomarker to diagnose dementia. Curr Alzheimer Res 15(4): 381-5.2018;
[http://dx.doi.org/10.2174/1567205014666171110160556] [PMID: 29125073]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy