Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Insights from Exercise-induced Cardioprotection-from Clinical Application to Basic Research

Author(s): Hao Jiang, Beijian Zhang, Daile Jia, Wenlong Yang, Aijun Sun* and Junbo Ge*

Volume 25, Issue 35, 2019

Page: [3751 - 3761] Pages: 11

DOI: 10.2174/1381612825666191008102047

Price: $65

Abstract

Exercise has long been recognized as a beneficial living style for cardiovascular health. It has been applied to be a central component of cardiac rehabilitation for patients with chronic heart failure (CHF), coronary heart disease (CHD), post-acute coronary syndrome (ACS) or primary percutaneous coronary intervention (PCI), post cardiac surgery or transplantation. Although the effect of exercise is multifactorial, in this review, we focus on the specific contribution of regular exercise on the heart and vascular system. We will summarize the known result of clinical findings and possible mechanisms of chronic exercise on the cardiovascular system.

Keywords: Myocardial infarction, heart failure, exercise, cardiovascular health, coronary heart disease (CHD), cardiac rehabilitation.

[1]
Lear SA, Hu W, Rangarajan S, et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet 2017; 390(10113): 2643-54.
[http://dx.doi.org/10.1016/S0140-6736(17)31634-3] [PMID: 28943267]
[2]
O’Connor CM, Whellan DJ, Lee KL, et al. HF-ACTION Investigators. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 2009; 301(14): 1439-50.
[http://dx.doi.org/10.1001/jama.2009.454] [PMID: 19351941]
[3]
Anderson L, Oldridge N, Thompson DR, et al. Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease: cochrane systematic seview and meta-analysis. J Am Coll Cardiol 2016; 67(1): 1-12.
[http://dx.doi.org/10.1016/j.jacc.2015.10.044] [PMID: 26764059]
[4]
Corrà U, Piepoli MF, Carré F, et al. Secondary prevention through cardiac rehabilitation: physical activity counselling and exercise training: key components of the position paper from the cardiac rehabilitation section of the european association of cardiovascular prevention and rehabilitation. Eur Heart J 2010; 31(16): 1967-74.
[http://dx.doi.org/10.1093/eurheartj/ehq236] [PMID: 20643803]
[5]
Hambrecht R, Gielen S, Linke A, et al. Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: a randomized trial. JAMA 2000; 283(23): 3095-101.
[http://dx.doi.org/10.1001/jama.283.23.3095] [PMID: 10865304]
[6]
Stolen KQ, Kemppainen J, Kalliokoski KK, et al. Exercise training improves insulin-stimulated myocardial glucose uptake in patients with dilated cardiomyopathy. J Nucl Cardiol 2003; 10(5): 447-55.
[http://dx.doi.org/10.1016/S1071-3581(03)00528-2] [PMID: 14569237]
[7]
Russomanno G, Corbi G, Manzo V, et al. The anti-ageing molecule sirt1 mediates beneficial effects of cardiac rehabilitation. Immun Ageing 2017; 14: 7.
[http://dx.doi.org/10.1186/s12979-017-0088-1] [PMID: 28331525]
[8]
Campos JC, Queliconi BB, Bozi LHM, et al. Exercise reestablishes autophagic flux and mitochondrial quality control in heart failure. Autophagy 2017; 13(8): 1304-17.
[http://dx.doi.org/10.1080/15548627.2017.1325062] [PMID: 28598232]
[9]
Bacurau AV, Jannig PR, de Moraes WM, et al. Akt/mTOR pathway contributes to skeletal muscle anti-atrophic effect of aerobic exercise training in heart failure mice. Int J Cardiol 2016; 214: 137-47.
[http://dx.doi.org/10.1016/j.ijcard.2016.03.071] [PMID: 27060274]
[10]
Zizola C, Kennel PJ, Akashi H, et al. Activation of PPARδ signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction. Am J Physiol Heart Circ Physiol 2015; 308(9): H1078-85.
[http://dx.doi.org/10.1152/ajpheart.00679.2014] [PMID: 25713305]
[11]
Lee IM, Sesso HD, Oguma Y, Paffenbarger RS Jr. Relative intensity of physical activity and risk of coronary heart disease. Circ 2003; 107(8): 1110-6.
[http://dx.doi.org/10.1161/01.CIR.0000052626.63602.58] [PMID: 12615787]
[12]
Ekelund LG, Haskell WL, Johnson JL, Whaley FS, Criqui MH, Sheps DS. Physical fitness as a predictor of cardiovascular mortality in asymptomatic north american men. The lipid research clinics mortality follow-up study. N Engl J Med 1988; 319(21): 1379-84.
[http://dx.doi.org/10.1056/NEJM198811243192104] [PMID: 3185648]
[13]
Tanasescu M, Leitzmann MF, Rimm EB, Willett WC, Stampfer MJ, Hu FB. Exercise type and intensity in relation to coronary heart disease in men. JAMA 2002; 288(16): 1994-2000.
[http://dx.doi.org/10.1001/jama.288.16.1994] [PMID: 12387651]
[14]
LaMonte MJ, Eisenman PA, Adams TD, Shultz BB, Ainsworth BE, Yanowitz FG. Cardiorespiratory fitness and coronary heart disease risk factors: the LDS Hospital Fitness Institute cohort. Circ 2000; 102(14): 1623-8.
[http://dx.doi.org/10.1161/01.CIR.102.14.1623] [PMID: 11015338]
[15]
Wagner A, Simon C, Evans A, et al. Physical activity and coronary event incidence in northern ireland and france: the prospective epidemiological study of myocardial infarction (PRIME). Circ 2002; 105(19): 2247-52.
[http://dx.doi.org/10.1161/01.CIR.0000016345.58696.4F] [PMID: 12010905]
[16]
Durstine JL, Grandjean PW, Davis PG, Ferguson MA, Alderson NL, DuBose KD. Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sports Med 2001; 31(15): 1033-62.
[http://dx.doi.org/10.2165/00007256-200131150-00002] [PMID: 11735685]
[17]
Leon AS, Sanchez OA. Response of blood lipids to exercise training alone or combined with dietary intervention. Med Sci Sports Exerc 2001; 33(6)(Suppl.): S502-15.
[http://dx.doi.org/10.1097/00005768-200106001-00021] [PMID: 11427777]
[18]
Kelley GA, Kelley KS, Tran ZV. Walking, lipids, and lipoproteins: a meta-analysis of randomized controlled trials. Prev Med 2004; 38(5): 651-61.
[http://dx.doi.org/10.1016/j.ypmed.2003.12.012] [PMID: 15066369]
[19]
Zilinski JL, Contursi ME, Isaacs SK, et al. Myocardial adaptations to recreational marathon training among middle-aged men. Circ Cardiovasc Imaging 2015; 8(2)e002487
[http://dx.doi.org/10.1161/CIRCIMAGING.114.002487] [PMID: 25673646]
[20]
Slentz CA, Houmard JA, Johnson JL, et al. Inactivity, exercise training and detraining, and plasma lipoproteins. STRRIDE: a randomized, controlled study of exercise intensity and amount. J of Applied Physiol 2007; 103(2): 432-42.
[21]
Kodama S, Tanaka S, Saito K, et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch Intern Med 2007; 167(10): 999-1008.
[http://dx.doi.org/10.1001/archinte.167.10.999] [PMID: 17533202]
[22]
Eckel RH, Jakicic JM, Ard JD, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the american college of cardiology/american heart association task force on practice guidelines. J Am Coll Cardiol 2014; 63(25): 2960-84.
[http://dx.doi.org/10.1016/j.jacc.2013.11.003] [PMID: 24239922]
[23]
Williams PT. Relationship of distance run per week to coronary heart disease risk factors in 8283 male runners. The national runners’ health study. Arch Intern Med 1997; 157(2): 191-8.
[http://dx.doi.org/10.1001/archinte.1997.00440230063008] [PMID: 9009976]
[24]
Koh KK, Park SM, Quon MJ. Leptin and cardiovascular disease: response to therapeutic interventions. Circ 2008; 117(25): 3238-49.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.741645] [PMID: 18574061]
[25]
Katsiki N, Mikhailidis DP, Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol Sin 2018; 39(7): 1176-88.
[http://dx.doi.org/10.1038/aps.2018.40] [PMID: 29877321]
[26]
Fedewa MV, Hathaway ED, Ward-Ritacco CL, Williams TD, Dobbs WC. The Effect of chronic exercise training on leptin: a systematic review and meta-analysis of randomized controlled trials. Sports Med 2018; 48(6): 1437-50.
[http://dx.doi.org/10.1007/s40279-018-0897-1] [PMID: 29582381]
[27]
Bouassida A, Chamari K, Zaouali M, Feki Y, Zbidi A, Tabka Z. Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. Br J Sports Med 2010; 44(9): 620-30.
[http://dx.doi.org/10.1136/bjsm.2008.046151] [PMID: 18927166]
[28]
Dieli-Conwright CM, Courneya KS, Demark-Wahnefried W, et al. Effects of aerobic and resistance exercise on metabolic syndrome, sarcopenic obesity, and circulating biomarkers in overweight or obese survivors of breast cancer: a randomized controlled trial. J Clin Oncol 2018; 36(9): 875-83.
[http://dx.doi.org/10.1200/JCO.2017.75.7526] [PMID: 29356607]
[29]
Kirdar S, Serter M, Ceylan E, Sener AG, Kavak T, Karadağ F. Adiponectin as a biomarker of systemic inflammatory response in smoker patients with stable and exacerbation phases of chronic obstructive pulmonary disease. Scand J Clin Lab Invest 2009; 69(2): 219-24.
[http://dx.doi.org/10.1080/00365510802474400] [PMID: 18946779]
[30]
Shibata R, Ouchi N, Murohara T. Adiponectin and cardiovascular disease. Circ J 2009; 73(4): 608-14.
[http://dx.doi.org/10.1253/circj.CJ-09-0057] [PMID: 19261992]
[31]
Marcelino-Rodríguez I, Almeida Gonzalez D, Alemán-Sánchez JJ, et al. Inverse association of resistin with physical activity in the general population. PLoS One 2017; 12(8)e0182493
[http://dx.doi.org/10.1371/journal.pone.0182493] [PMID: 28771611]
[32]
Haus JM, Solomon TP, Marchetti CM, et al. Decreased visfatin after exercise training correlates with improved glucose tolerance. Med Sci Sports Exerc 2009; 41(6): 1255-60.
[http://dx.doi.org/10.1249/MSS.0b013e318195bad5] [PMID: 19461540]
[33]
Pereira MA, Folsom AR, McGovern PG, et al. Physical activity and incident hypertension in black and white adults: the atherosclerosis risk in communities study. Prev Med 1999; 28(3): 304-12.
[http://dx.doi.org/10.1006/pmed.1998.0431] [PMID: 10072750]
[34]
Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension 2005; 46(4): 667-75.
[http://dx.doi.org/10.1161/01.HYP.0000184225.05629.51]
[35]
Lamina S, Okoye CG. Effect of low intensity continuous training programme on serum uric acid in the non pharmacological management of hypertension: a randomized controlled trial. Niger J Med 2010; 19(1): 77-86.
[http://dx.doi.org/10.4314/njm.v19i1.52485]
[36]
Parker ED, Schmitz KH, Jacobs DR Jr, Dengel DR, Schreiner PJ. Physical activity in young adults and incident hypertension over 15 years of follow-up: the CARDIA study. Am J Public Health 2007; 97(4): 703-9.
[http://dx.doi.org/10.2105/AJPH.2004.055889] [PMID: 17329668]
[37]
Li Y, Hanssen H, Cordes M, Rossmeissl A, Endes S, Schmidt-Trucksäss A. Aerobic, resistance and combined exercise training on arterial stiffness in normotensive and hypertensive adults: a review. Eur J Sport Sci 2015; 15(5): 443-57.
[http://dx.doi.org/10.1080/17461391.2014.955129] [PMID: 25251989]
[38]
Tuomilehto J, Lindström J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344(18): 1343-50.
[http://dx.doi.org/10.1056/NEJM200105033441801] [PMID: 11333990]
[39]
Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346(6): 393-403.
[http://dx.doi.org/10.1056/NEJMoa012512] [PMID: 11832527]
[40]
Kokkinos P, Myers J, Faselis C, et al. Exercise capacity and mortality in older men: a 20-year follow-up study. Circ 2010; 122(8): 790-7.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.938852] [PMID: 20697029]
[41]
Mann S, Beedie C, Balducci S, et al. Changes in insulin sensitivity in response to different modalities of exercise: a review of the evidence. Diabetes Metab Res Rev 2014; 30(4): 257-68.
[http://dx.doi.org/10.1002/dmrr.2488] [PMID: 24130081]
[42]
Bharath LP, Choi WW, Cho JM, et al. Combined resistance and aerobic exercise training reduces insulin resistance and central adiposity in adolescent girls who are obese: randomized clinical trial. Eur J Appl Physiol 2018; 118(8): 1653-60.
[http://dx.doi.org/10.1007/s00421-018-3898-8] [PMID: 29846794]
[43]
Hwang CL, Yoo JK, Kim HK, et al. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults. Exp Gerontol 2016; 82: 112-9.
[http://dx.doi.org/10.1016/j.exger.2016.06.009] [PMID: 27346646]
[44]
Little JP, Jung ME, Wright AE, Wright W, Manders RJ. Effects of high-intensity interval exercise versus continuous moderate-intensity exercise on postprandial glycemic control assessed by continuous glucose monitoring in obese adults. Appl Physiol Nutr Metab 2014; 39(7): 835-41.
[http://dx.doi.org/10.1139/apnm-2013-0512]
[45]
Houmard JA, Tanner CJ, Slentz CA, Duscha BD, McCartney JS, Kraus WE. Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol 2004; 96(1): 101-6.
[http://dx.doi.org/10.1152/japplphysiol.00707.2003]
[46]
Piercy KL, Troiano RP, Ballard RM, et al. The Physical Activity Guidelines for Americans. JAMA 2018; 320(19): 2020-8.
[http://dx.doi.org/10.1001/jama.2018.14854] [PMID: 30418471]
[47]
Blüher S, Kromeyer-Hauschild K, Graf C, et al. Current Guidelines to Prevent Obesity in Childhood and Adolescence Klin Padiatr 2016; 228(1): 1-10.
[PMID: 26302179]
[48]
Yumuk V, Tsigos C, Fried M, et al. European guidelines for obesity management in adults. Obes Facts 2015; 8(6): 402-24.
[http://dx.doi.org/10.1159/000442721] [PMID: 26641646]
[49]
Artal R. Exercise in pregnancy: guidelines. Clin Obstet Gynecol 2016; 59(3): 639-44.
[http://dx.doi.org/10.1097/GRF.0000000000000223] [PMID: 27398880]
[50]
Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 2009; 41(2): 459-71.
[http://dx.doi.org/10.1249/MSS.0b013e3181949333] [PMID: 19127177]
[51]
Seagle HM, Strain GW, Makris A, Reeves RS. Position of the American Dietetic Association: weight management. J Am Diet Assoc 2009; 109(2): 330-46.
[http://dx.doi.org/10.1016/j.jada.2008.11.041] [PMID: 19244669]
[52]
Swift DL, Johannsen NM, Lavie CJ, Earnest CP, Church TS. The role of exercise and physical activity in weight loss and maintenance. Prog Cardiovasc Dis 2014; 56(4): 441-7.
[http://dx.doi.org/10.1016/j.pcad.2013.09.012] [PMID: 24438736]
[53]
Morris JN, Heady JA, Raffle PA, Roberts CG, Parks JW. Coronary heart-disease and physical activity of work. Lancet 1953; 262(6795): 1053-7.
[http://dx.doi.org/10.1016/S0140-6736(53)90665-5] [PMID: 13110049]
[54]
Epstein L, Miller GJ, Stitt FW, Morris JN. Vigorous exercise in leisure time, coronary risk-factors, and resting electrocardiogram in middle-aged male civil servants. Br Heart J 1976; 38(4): 403-9.
[http://dx.doi.org/10.1136/hrt.38.4.403] [PMID: 1267984]
[55]
Blair SN, Kohl HW III, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 1989; 262(17): 2395-401.
[http://dx.doi.org/10.1001/jama.1989.03430170057028] [PMID: 2795824]
[56]
Sesso HD, Paffenbarger RS Jr, Lee IM. Physical activity and coronary heart disease in men: The harvard alumni health study. Circ 2000; 102(9): 975-80.
[http://dx.doi.org/10.1161/01.CIR.102.9.975] [PMID: 10961960]
[57]
The Women’s Health Initiative Study Group. Design of the Women’s Health Initiative clinical trial and observational study. Control Clin Trials 1998; 19(1): 61-109.
[http://dx.doi.org/10.1016/S0197-2456(97)00078-0] [PMID: 9492970]
[58]
Bild DE, Bluemke DA, Burke GL, et al. Multi-Ethnic Study of Atherosclerosis: objectives and design. Am J Epidemiol 2002; 156(9): 871-81.
[http://dx.doi.org/10.1093/aje/kwf113] [PMID: 12397006]
[59]
Pandey A, LaMonte M, Klein L, et al. Relationship between physical activity, body mass index, and risk of heart failure. J Am Coll Cardiol 2017; 69(9): 1129-42.
[http://dx.doi.org/10.1016/j.jacc.2016.11.081] [PMID: 28254175]
[60]
Jones LW, Douglas PS, Khouri MG, et al. Safety and efficacy of aerobic training in patients with cancer who have heart failure: an analysis of the HF-ACTION randomized trial. J Clin Oncol 2014; 32(23): 2496-502.
[http://dx.doi.org/10.1200/JCO.2013.53.5724] [PMID: 25002717]
[61]
Blumenthal JA, Babyak MA, O’Connor C, et al. Effects of exercise training on depressive symptoms in patients with chronic heart failure: the HF-ACTION randomized trial. JAMA 2012; 308(5): 465-74.
[http://dx.doi.org/10.1001/jama.2012.8720] [PMID: 22851113]
[62]
Schnohr P, O’Keefe JH, Marott JL, Lange P, Jensen GB. Dose of jogging and long-term mortality: the copenhagen city heart study. J Am Coll Cardiol 2015; 65(5): 411-9.
[http://dx.doi.org/10.1016/j.jacc.2014.11.023] [PMID: 25660917]
[63]
Flynn KE, Piña IL, Whellan DJ, et al. HF-ACTION Investigators. Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 2009; 301(14): 1451-9.
[http://dx.doi.org/10.1001/jama.2009.457] [PMID: 19351942]
[64]
Belardinelli R, Georgiou D, Cianci G, Purcaro A. 10-year exercise training in chronic heart failure: a randomized controlled trial. J Am Coll Cardiol 2012; 60(16): 1521-8.
[http://dx.doi.org/10.1016/j.jacc.2012.06.036] [PMID: 22999730]
[65]
Fernhall B. Long-term aerobic exercise maintains peak VO(2), improves quality of life, and reduces hospitalisations and mortality in patients with heart failure. J Physiother 2013; 59(1): 56.
[http://dx.doi.org/10.1016/S1836-9553(13)70149-8] [PMID: 23419918]
[66]
Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE. The athlete’s heart. A meta-analysis of cardiac structure and function. Circ 2000; 101(3): 336-44.
[http://dx.doi.org/10.1161/01.CIR.101.3.336] [PMID: 10645932]
[67]
Carré F. Athlete’s heart or hypertrophic cardiomyopathy? Presse Med 2012; 41(6): 608-12.
[PMID: 22498101]
[68]
Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metab 2017; 25(5): 1012-26.
[http://dx.doi.org/10.1016/j.cmet.2017.04.025] [PMID: 28467921]
[69]
Saberi S, Wheeler M, Bragg-Gresham J, et al. Effect of moderate-Intensity exercise training on peak oxygen consumption in patients with hypertrophic cardiomyopathy: a randomized clinical trial. JAMA 2017; 317(13): 1349-57.
[http://dx.doi.org/10.1001/jama.2017.2503] [PMID: 28306757]
[70]
Neri Serneri GG, Boddi M, Modesti PA, et al. Increased cardiac sympathetic activity and insulin-like growth factor-I formation are associated with physiological hypertrophy in athletes. Circ Res 2001; 89(11): 977-82.
[http://dx.doi.org/10.1161/hh2301.100982] [PMID: 11717153]
[71]
Efstratiadis A. Genetics of mouse growth. Int J Dev Biol 1998; 42(7): 955-76.
[PMID: 9853827]
[72]
Delaughter MC, Taffet GE, Fiorotto ML, Entman ML, Schwartz RJ. Local insulin-like growth factor I expression induces physiologic, then pathologic, cardiac hypertrophy in transgenic mice. FASEB J 1999; 13(14): 1923-9.
[http://dx.doi.org/10.1096/fasebj.13.14.1923] [PMID: 10544175]
[73]
Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 2006; 20(24): 3347-65.
[http://dx.doi.org/10.1101/gad.1492806] [PMID: 17182864]
[74]
Haq S, Choukroun G, Kang ZB, et al. Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol 2000; 151(1): 117-30.
[http://dx.doi.org/10.1083/jcb.151.1.117] [PMID: 11018058]
[75]
Shiojima I, Sato K, Izumiya Y, et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 2005; 115(8): 2108-18.
[http://dx.doi.org/10.1172/JCI24682] [PMID: 16075055]
[76]
Malhowski AJ, Hira H, Bashiruddin S, et al. Smooth muscle protein-22-mediated deletion of Tsc1 results in cardiac hypertrophy that is mTORC1-mediated and reversed by rapamycin. Hum Mol Genet 2011; 20(7): 1290-305.
[http://dx.doi.org/10.1093/hmg/ddq570] [PMID: 21212099]
[77]
Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 2014; 13(2): 140-56.
[http://dx.doi.org/10.1038/nrd4204] [PMID: 24481312]
[78]
Boström P, Mann N, Wu J, et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 2010; 143(7): 1072-83.
[http://dx.doi.org/10.1016/j.cell.2010.11.036] [PMID: 21183071]
[79]
Purcell NH, Wilkins BJ, York A, et al. Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc Natl Acad Sci USA 2007; 104(35): 14074-9.
[http://dx.doi.org/10.1073/pnas.0610906104] [PMID: 17709754]
[80]
Sebastiani M, Giordano C, Nediani C, et al. Induction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies. J Am Coll Cardiol 2007; 50(14): 1362-9.
[http://dx.doi.org/10.1016/j.jacc.2007.06.035] [PMID: 17903636]
[81]
Bedi KC Jr, Snyder NW, Brandimarto J, et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circ 2016; 133(8): 706-16.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.017545] [PMID: 26819374]
[82]
Francis GS, Cohn JN, Johnson G, Rector TS, Goldman S, Simon A. Plasma norepinephrine, plasma renin activity, and congestive heart failure. Relations to survival and the effects of therapy in V-HeFT II. The V-HeFT VA Cooperative Studies Group. Circ 1993; 87(6)(Suppl.): VI40-8.
[PMID: 8500238]
[83]
Ide T, Tsutsui H, Kinugawa S, et al. Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res 2000; 86(2): 152-7.
[http://dx.doi.org/10.1161/01.RES.86.2.152] [PMID: 10666410]
[84]
Song M, Chen Y, Gong G, Murphy E, Rabinovitch PS, Dorn GW II. Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy. Circ Res 2014; 115(3): 348-53.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.304384] [PMID: 24874428]
[85]
Starling RC, Hammer DF, Altschuld RA. Human myocardial ATP content and in vivo contractile function. Mol Cell Biochem 1998; 180(1-2): 171-7.
[http://dx.doi.org/10.1023/A:1006876031121] [PMID: 9546644]
[86]
Beer M, Seyfarth T, Sandstede J, et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol 2002; 40(7): 1267-74.
[http://dx.doi.org/10.1016/S0735-1097(02)02160-5] [PMID: 12383574]
[87]
Esposito A, De Cobelli F, Perseghin G, et al. Impaired left ventricular energy metabolism in patients with hypertrophic cardiomyopathy is related to the extension of fibrosis at delayed gadolinium-enhanced magnetic resonance imaging. Heart 2009; 95(3): 228-33.
[http://dx.doi.org/10.1136/hrt.2008.142562] [PMID: 18708417]
[88]
Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85(3): 1093-129.
[http://dx.doi.org/10.1152/physrev.00006.2004] [PMID: 15987803]
[89]
Okonko DO, Shah AM. Heart failure: mitochondrial dysfunction and oxidative stress in CHF. Nat Rev Cardiol 2015; 12(1): 6-8.
[http://dx.doi.org/10.1038/nrcardio.2014.189] [PMID: 25421167]
[90]
Bing RJ. Myocardial metabolism. Circ 1955; 12(4): 635-47.
[http://dx.doi.org/10.1161/01.CIR.12.4.635] [PMID: 13261317]
[91]
Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation-a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta 2011; 1813(7): 1333-50.
[http://dx.doi.org/10.1016/j.bbamcr.2011.01.015] [PMID: 21256164]
[92]
Goikoetxea MJ, Beaumont J, González A, et al. Altered cardiac expression of peroxisome proliferator-activated receptor-isoforms in patients with hypertensive heart disease. Cardiovasc Res 2006; 69(4): 899-907.
[http://dx.doi.org/10.1016/j.cardiores.2005.11.016] [PMID: 16371224]
[93]
de las Fuentes L, Herrero P, Peterson LR, Kelly DP, Gropler RJ, Dávila-Román VG. Myocardial fatty acid metabolism: independent predictor of left ventricular mass in hypertensive heart disease. Hypertension 2003; 41(1): 83-7.
[http://dx.doi.org/10.1161/01.HYP.0000047668.48494.39] [PMID: 12511534]
[94]
Brown DA, Perry JB, Allen ME, et al. Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 2017; 14(4): 238-50.
[http://dx.doi.org/10.1038/nrcardio.2016.203] [PMID: 28004807]
[95]
Finegan BA, Lopaschuk GD, Coulson CS, Clanachan AS. Adenosine alters glucose use during ischemia and reperfusion in isolated rat hearts. Circ 1993; 87(3): 900-8.
[http://dx.doi.org/10.1161/01.CIR.87.3.900] [PMID: 8443910]
[96]
Liu Q, Docherty JC, Rendell JC, Clanachan AS, Lopaschuk GD. High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J Am Coll Cardiol 2002; 39(4): 718-25.
[http://dx.doi.org/10.1016/S0735-1097(01)01803-4] [PMID: 11849874]
[97]
Horman S, Beauloye C, Vanoverschelde JL, Bertrand L. AMP-activated protein kinase in the control of cardiac metabolism and remodeling. Curr Heart Fail Rep 2012; 9(3): 164-73.
[http://dx.doi.org/10.1007/s11897-012-0102-z] [PMID: 22767403]
[98]
Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 2013; 93(3): 993-1017.
[http://dx.doi.org/10.1152/physrev.00038.2012] [PMID: 23899560]
[99]
Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control. Nat Rev Endocrinol 2017; 13(3): 133-48.
[http://dx.doi.org/10.1038/nrendo.2016.162] [PMID: 27739515]
[100]
Abel ED, Doenst T. Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy. Cardiovasc Res 2011; 90(2): 234-42.
[http://dx.doi.org/10.1093/cvr/cvr015] [PMID: 21257612]
[101]
Shibata R, Ouchi N, Ito M, et al. Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat Med 2004; 10(12): 1384-9.
[http://dx.doi.org/10.1038/nm1137] [PMID: 15558058]
[102]
Zarrinpashneh E, Beauloye C, Ginion A, et al. AMPKalpha2 counteracts the development of cardiac hypertrophy induced by isoproterenol. Biochem Biophys Res Commun 2008; 376(4): 677-81.
[http://dx.doi.org/10.1016/j.bbrc.2008.09.057] [PMID: 18812163]
[103]
Narkar VA, Downes M, Yu RT, et al. AMPK and PPARdelta agonists are exercise mimetics. Cell 2008; 134(3): 405-15.
[http://dx.doi.org/10.1016/j.cell.2008.06.051] [PMID: 18674809]
[104]
Sasaki H, Asanuma H, Fujita M, et al. Metformin prevents progression of heart failure in dogs: role of AMP-activated protein kinase. Circ 2009; 119(19): 2568-77.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.798561] [PMID: 19414638]
[105]
Oliveira SM, Zhang YH, Solis RS, et al. AMP-activated protein kinase phosphorylates cardiac troponin I and alters contractility of murine ventricular myocytes. Circ Res 2012; 110(9): 1192-201.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.259952] [PMID: 22456184]
[106]
Ascensão A, Lumini-Oliveira J, Oliveira PJ, Magalhães J. Mitochondria as a target for exercise-induced cardioprotection. Curr Drug Targets 2011; 12(6): 860-71.
[http://dx.doi.org/10.2174/138945011795529001] [PMID: 21269265]
[107]
Burelle Y, Wambolt RB, Grist M, et al. Regular exercise is associated with a protective metabolic phenotype in the rat heart. Am J Physiol Heart Circ Physiol 2004; 287(3): 1055-63.
[http://dx.doi.org/10.1152/ajpheart.00925.2003] [PMID: 15105170]
[108]
Ventura-Clapier R, Mettauer B, Bigard X. Beneficial effects of endurance training on cardiac and skeletal muscle energy metabolism in heart failure. Cardiovasc Res 2007; 73(1): 10-8.
[http://dx.doi.org/10.1016/j.cardiores.2006.09.003] [PMID: 17045979]
[109]
Terblanche SE, Gohil K, Packer L, Henderson S, Brooks GA. The effects of endurance training and exhaustive exercise on mitochondrial enzymes in tissues of the rat (Rattus norvegicus). Comp Biochem Physiol A Mol Integr Physiol 2001; 128(4): 889-96.
[http://dx.doi.org/10.1016/S1095-6433(00)00344-5] [PMID: 11282330]
[110]
Iemitsu M, Miyauchi T, Maeda S, et al. Cardiac hypertrophy by hypertension and exercise training exhibits different gene expression of enzymes in energy metabolism. Hypertens Res 2003; 26(10): 829-37.
[http://dx.doi.org/10.1291/hypres.26.829] [PMID: 14621187]
[111]
Gibb AA, Epstein PN, Uchida S, et al. Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth. Circ 2017; 136(22): 2144-57.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.028274] [PMID: 28860122]
[112]
Beer M, Wagner D, Myers J, et al. Effects of exercise training on myocardial energy metabolism and ventricular function assessed by quantitative phosphorus-31 magnetic resonance spectroscopy and magnetic resonance imaging in dilated cardiomyopathy. J Am Coll Cardiol 2008; 51(19): 1883-91.
[http://dx.doi.org/10.1016/j.jacc.2007.09.075] [PMID: 18466804]
[113]
Masoud WG, Ussher JR, Wang W, et al. Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovasc Res 2014; 101(1): 30-8.
[http://dx.doi.org/10.1093/cvr/cvt216] [PMID: 24048945]
[114]
Aubert G, Martin OJ, Horton JL, et al. The Failing heart relies on ketone bodies as a fuel. Circ 2016; 133(8): 698-705.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.017355] [PMID: 26819376]
[115]
Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Brain Res Rev 2009; 59(2): 293-315.
[http://dx.doi.org/10.1016/j.brainresrev.2008.09.002] [PMID: 18845187]
[116]
Reger MA, Henderson ST, Hale C, et al. Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol Aging 2004; 25(3): 311-4.
[http://dx.doi.org/10.1016/S0197-4580(03)00087-3] [PMID: 15123336]
[117]
Gormsen LC, Svart M, Thomsen HH, et al. Ketone body infusion with 3-Hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study. J Am Heart Assoc 2017; 6(3)e005066
[http://dx.doi.org/10.1161/JAHA.116.005066] [PMID: 28242634]
[118]
Evans M, Cogan KE, Egan B. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation. J Physiol 2017; 595(9): 2857-71.
[http://dx.doi.org/10.1113/JP273185] [PMID: 27861911]
[119]
Kolwicz SC Jr, Airhart S, Tian R. Ketones step to the plate: a game changer for metabolic remodeling in heart failure? Circ 2016; 133(8): 689-91.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.021230] [PMID: 26819375]
[120]
von Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD. Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol 2017; 14(6): 323-41.
[http://dx.doi.org/10.1038/nrcardio.2017.51] [PMID: 28436486]
[121]
Sun H, Olson KC, Gao C, et al. Catabolic Defect of branched-chain amino acids promotes heart failure. Circ 2016; 133(21): 2038-49.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.020226] [PMID: 27059949]
[122]
Lemieux H, Semsroth S, Antretter H, Höfer D, Gnaiger E. Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 2011; 43(12): 1729-38.
[http://dx.doi.org/10.1016/j.biocel.2011.08.008] [PMID: 21871578]
[123]
Rosca M, Minkler P, Hoppel CL. Cardiac mitochondria in heart failure: normal cardiolipin profile and increased threonine phosphorylation of complex IV. Biochim Biophys Acta 2011; 1807(11): 1373-82.
[http://dx.doi.org/10.1016/j.bbabio.2011.02.003] [PMID: 21320465]
[124]
Zechner C, Lai L, Zechner JF, et al. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab 2010; 12(6): 633-42.
[http://dx.doi.org/10.1016/j.cmet.2010.11.008] [PMID: 21109195]
[125]
Laker RC, Drake JC, Wilson RJ, et al. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun 2017; 8(1): 548.
[http://dx.doi.org/10.1038/s41467-017-00520-9] [PMID: 28916822]
[126]
Bozi LH, Jannig PR, Rolim N, et al. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats. J Cell Mol Med 2016; 20(11): 2208-12.
[http://dx.doi.org/10.1111/jcmm.12894] [PMID: 27305869]
[127]
Fiuza-Luces C, Santos-Lozano A, Joyner M, et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol 2018; 15(12): 731-43.
[http://dx.doi.org/10.1038/s41569-018-0065-1] [PMID: 30115967]
[128]
Pedersen BK, Fischer CP. Beneficial health effects of exercise-the role of IL-6 as a myokine. Trends Pharmacol Sci 2007; 28(4): 152-6.
[http://dx.doi.org/10.1016/j.tips.2007.02.002] [PMID: 17331593]
[129]
Steensberg A, Fischer CP, Keller C, Møller K, Pedersen BK. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 2003; 285(2): 433-7.
[http://dx.doi.org/10.1152/ajpendo.00074.2003] [PMID: 12857678]
[130]
Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J 2003; 17(8): 884-6.
[http://dx.doi.org/10.1096/fj.02-0670fje] [PMID: 12626436]
[131]
Lambernd S, Taube A, Schober A, et al. Contractile activity of human skeletal muscle cells prevents insulin resistance by inhibiting pro-inflammatory signalling pathways. Diabetologia 2012; 55(4): 1128-39.
[http://dx.doi.org/10.1007/s00125-012-2454-z] [PMID: 22282161]
[132]
Kim HJ, Park JY, Oh SL, et al. Effect of treadmill exercise on interleukin-15 expression and glucose tolerance in zucker diabetic Fatty rats. Diabetes Metab J 2013; 37(5): 358-64.
[http://dx.doi.org/10.4093/dmj.2013.37.5.358] [PMID: 24199165]
[133]
Rao RR, Long JZ, White JP, et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 2014; 157(6): 1279-91.
[http://dx.doi.org/10.1016/j.cell.2014.03.065] [PMID: 24906147]
[134]
Izumiya Y, Bina HA, Ouchi N, Akasaki Y, Kharitonenkov A, Walsh K. FGF21 is an Akt-regulated myokine. FEBS Lett 2008; 582(27): 3805-10.
[http://dx.doi.org/10.1016/j.febslet.2008.10.021] [PMID: 18948104]
[135]
Ouchi N, Oshima Y, Ohashi K, et al. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem 2008; 283(47): 32802-11.
[http://dx.doi.org/10.1074/jbc.M803440200] [PMID: 18718903]
[136]
Lu J, Xiang G, Liu M, Mei W, Xiang L, Dong J. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-Null diabetic mice. Atherosclerosis 2015; 243(2): 438-48.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.10.020] [PMID: 26520898]
[137]
Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol 2003; 546(Pt 3): 851-8.
[http://dx.doi.org/10.1113/jphysiol.2002.034850] [PMID: 12563009]
[138]
Baar K, Wende AR, Jones TE, et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 2002; 16(14): 1879-86.
[http://dx.doi.org/10.1096/fj.02-0367com] [PMID: 12468452]
[139]
Schuler M, Ali F, Chambon C, et al. PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab 2006; 4(5): 407-14.
[http://dx.doi.org/10.1016/j.cmet.2006.10.003] [PMID: 17084713]
[140]
Fan W, Waizenegger W, Lin CS, et al. PPARdelta promotes running endurance by preserving glucose. Cell Metab 2017; 25(5): 1186-93: e4.
[141]
Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 2006; 45(2): 120-59.
[http://dx.doi.org/10.1016/j.plipres.2005.12.002] [PMID: 16476485]
[142]
Swindell WR. Rapamycin in mice. Aging 2017; 9(9): 1941-2.
[http://dx.doi.org/10.18632/aging.101289] [PMID: 28876223]
[143]
Trivax JE, Franklin BA, Goldstein JA, et al. Acute cardiac effects of marathon running. J Appl Physiol 2010; 108(5): 1148-53.
[http://dx.doi.org/10.1152/japplphysiol.01151.2009] [PMID: 20150567]
[144]
La Gerche A, Burns AT, Mooney DJ, et al. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J 2012; 33(8): 998-1006.
[http://dx.doi.org/10.1093/eurheartj/ehr397] [PMID: 22160404]
[145]
Baldesberger S, Bauersfeld U, Candinas R, et al. Sinus node disease and arrhythmias in the long-term follow-up of former professional cyclists. Eur Heart J 2008; 29(1): 71-8.
[http://dx.doi.org/10.1093/eurheartj/ehm555] [PMID: 18065754]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy