Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Stem Cell Transplant for Advanced Stage Liver Disorders: Current Scenario and Future Prospects

Author(s): Anjum Mahmood, Rajasekar Seetharaman, Prashant Kshatriya, Divyang Patel and Anand S. Srivastava*

Volume 27, Issue 37, 2020

Page: [6276 - 6293] Pages: 18

DOI: 10.2174/0929867326666191004161802

Price: $65

Abstract

Background: Chronic Liver Disorders (CLD), caused by the lifestyle patterns like alcoholism or by non-alcoholic fatty liver disease or because of virus-mediated hepatitis, affect a large population fraction across the world. CLD progresses into end-stage diseases with a high mortality rate. Liver transplant is the only approved treatment available for such end-stage disease patients. However, the number of liver transplants is limited due to the limited availability of suitable donors and the extremely high cost of performing the procedure. Under such circumstances, Stem Cell (SC) mediated liver regeneration has emerged as a potential therapeutic alternative approach.

Objective: This review aims to critically analyze the current status and future prospects of stem cellbased interventions for end-stage liver diseases. The clinical studies undertaken, the mechanism underlying therapeutic effects and future directions have been examined.

Method: The clinical trial databases were searched at https://clinicaltrials.gov.in and http://www.isrctn.com to identify randomized, non-randomized and controlled studies undertaken with keywords such as “liver disorder and Mesenchymal Stem Cells (MSCs)”, “liver cirrhosis and MSCs” and “liver disorder and SCs”. Furthermore, https://www.ncbi.nlm.nih.gov/pubmed/ database was also explored with similar keywords for finding the available reports and their critical analyses.

Results: The search results yielded a significant number of studies that used bone marrow-derived stem cells, MSCs and hepatocytes. The studies clearly indicated that SCs play a key role in the hepatoprotection process by some mechanisms involving anti-inflammation, auto-immune-suppression, angiogenesis and anti-apoptosis. Further, studies indicated that SCs derived paracrine factors promote angiogenesis, reduce inflammation and inhibit hepatocyte apoptosis.

Conclusion: The SC-based interventions provide a significant improvement in patients with CLD; however, there is a need for randomized, controlled studies with the analysis of a long-term follow-up.

Keywords: Mesenchymal stem cells, end-stage liver disease, hepatocytes, bone marrow-derived stem cells, exosomes, chronic liver disorder.

[1]
Byass, P. The global burden of liver disease: a challenge for methods and for public health. BMC Med., 2014, 12, 159.
[http://dx.doi.org/10.1186/s12916-014-0159-5 ] [PMID: 25286285]
[2]
Sarwar, N.; Gao, P.; Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; Ingelsson, E.; Lawlor, D.A.; Selvin, E.; Stampfer, M.; Stehouwer, C.D.; Lewington, S.; Pennells, L.; Thompson, A.; Sattar, N.; White, I.R.; Ray, K.K.; Danesh, J. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet, 2010, 375(9733), 2215-2222.
[http://dx.doi.org/10.1016/S0140-6736(10)60484-9 ] [PMID: 20609967]
[3]
GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Lond Engl, 2017, 390, 1211-1259.
[http://dx.doi.org/10.1016/S0140-6736(17)32154-2]
[4]
Marcellin, P.; Kutala, B.K. Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int., 2018, 38(Suppl. 1), 2-6.
[http://dx.doi.org/10.1111/liv.13682 ] [PMID: 29427496]
[5]
Gazdic, M.; Arsenijevic, A.; Markovic, B.S.; Volarevic, A.; Dimova, I.; Djonov, V.; Arsenijevic, N.; Stojkovic, M.; Volarevic, V. Mesenchymal stem cell-dependent modulation of liver diseases. Int. J. Biol. Sci., 2017, 13(9), 1109-1117.
[http://dx.doi.org/10.7150/ijbs.20240 ] [PMID: 29104502]
[6]
Volarevic, V.; Milovanovic, M.; Ljujic, B.; Pejnovic, N.; Arsenijevic, N.; Nilsson, U.; Leffler, H.; Lukic, M.L. Galectin-3 deficiency prevents concanavalin A-induced hepatitis in mice. Hepatology, 2012, 55(6), 1954-1964.
[http://dx.doi.org/10.1002/hep.25542 ] [PMID: 22213244]
[7]
Volarevic, V.; Mitrovic, M.; Milovanovic, M.; Zelen, I.; Nikolic, I.; Mitrovic, S.; Pejnovic, N.; Arsenijevic, N.; Lukic, M.L. Protective role of IL-33/ST2 axis in Con A-induced hepatitis. J. Hepatol., 2012, 56(1), 26-33.
[http://dx.doi.org/10.1016/j.jhep.2011.03.022 ] [PMID: 21703183]
[8]
Volarevic, V.; Misirkic, M.; Vucicevic, L.; Paunovic, V.; Simovic Markovic, B.; Stojanovic, M.; Milovanovic, M.; Jakovljevic, V.; Micic, D.; Arsenijevic, N.; Trajkovic, V.; Lukic, M.L. Metformin aggravates immune-mediated liver injury in mice. Arch. Toxicol., 2015, 89(3), 437-450.
[http://dx.doi.org/10.1007/s00204-014-1263-1 ] [PMID: 24770553]
[9]
Eom, Y.W.; Shim, K.Y.; Baik, S.K. Mesenchymal stem cell therapy for liver fibrosis. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2015, 30(5), 580-589.
[http://dx.doi.org/10.3904/kjim.2015.30.5.580 ] [PMID: 26354051]
[10]
Pinter, M.; Trauner, M.; Peck-Radosavljevic, M.; Sieghart, W. Cancer and liver cirrhosis: implications on prognosis and management. ESMO Open, 2016, 1(2), e000042.
[http://dx.doi.org/10.1136/esmoopen-2016-000042 ] [PMID: 27843598]
[11]
Zhao, B.; Zhang, H.Y.; Xie, G.J.; Liu, H.M.; Chen, Q.; Li, R.F.; You, J.P.; Yang, S.; Mao, Q.; Zhang, X.Q. Evaluation of the efficacy of steroid therapy on acute liver failure. Exp. Ther. Med., 2016, 12(5), 3121-3129.
[http://dx.doi.org/10.3892/etm.2016.3720 ] [PMID: 27882127]
[12]
Iansante, V.; Mitry, R.R.; Filippi, C.; Fitzpatrick, E.; Dhawan, A. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr. Res., 2018, 83(1-2), 232-240.
[http://dx.doi.org/10.1038/pr.2017.284 ] [PMID: 29149103]
[13]
Berry, M.N.; Friend, D.S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J. Cell Biol., 1969, 43(3), 506-520.
[http://dx.doi.org/10.1083/jcb.43.3.506 ] [PMID: 4900611]
[14]
Seglen, P.O. Preparation of isolated rat liver cells. Methods Cell Biol., 1976, 13, 29-83.
[http://dx.doi.org/10.1016/S0091-679X(08)61797-5 ] [PMID: 177845]
[15]
Mitry, R.R.; Hughes, R.D.; Aw, M.M.; Terry, C.; Mieli-Vergani, G.; Girlanda, R.; Muiesan, P.; Rela, M.; Heaton, N.D.; Dhawan, A. Human hepatocyte isolation and relationship of cell viability to early graft function. Cell Transplant., 2003, 12(1), 69-74.
[http://dx.doi.org/10.3727/000000003783985197 ] [PMID: 12693666]
[16]
Dhawan, A. Clinical human hepatocyte transplantation: Current status and challenges. Liver Transpl., 2015, 21(Suppl. 1), S39-S44.
[http://dx.doi.org/10.1002/lt.24226 ] [PMID: 26249755]
[17]
Sagias, F.G.; Mitry, R.R.; Hughes, R.D.; Lehec, S.C.; Patel, A.G.; Rela, M.; Mieli-Vergani, G.; Heaton, N.D.; Dhawan, A. N-acetylcysteine improves the viability of human hepatocytes isolated from severely steatotic donor liver tissue. Cell Transplant., 2010, 19(11), 1487-1492.
[http://dx.doi.org/10.3727/096368910X514620 ] [PMID: 20587150]
[18]
Sangeeta, N. B.; Gregory, H.; Underhill, K. S. Z.; Ira, J. F. Cell and tissue engineering for liver disease. Sci Transl Med, 2014, 16, 6(245), 245sr2.
[http://dx.doi.org/10.1126/scitranslmed.3005975] [PMID: 25031271]
[19]
Lee, K.D.; Kuo, T.K.; Whang-Peng, J.; Chung, Y.F.; Lin, C.T.; Chou, S.H.; Chen, J.R.; Chen, Y.P.; Lee, O.K. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 2004, 40(6), 1275-1284.
[http://dx.doi.org/10.1002/hep.20469 ] [PMID: 15562440]
[20]
Aurich, I.; Mueller, L.P.; Aurich, H.; Luetzkendorf, J.; Tisljar, K.; Dollinger, M.M.; Schormann, W.; Walldorf, J.; Hengstler, J.G.; Fleig, W.E.; Christ, B. Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut, 2007, 56(3), 405-415.
[http://dx.doi.org/10.1136/gut.2005.090050 ] [PMID: 16928726]
[21]
Zagoura, D.S.; Roubelakis, M.G.; Bitsika, V.; Trohatou, O.; Pappa, K.I.; Kapelouzou, A.; Antsaklis, A.; Anagnou, N.P. Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut, 2012, 61(6), 894-906.
[http://dx.doi.org/10.1136/gutjnl-2011-300908 ] [PMID: 21997562]
[22]
Banas, A.; Teratani, T.; Yamamoto, Y.; Tokuhara, M.; Takeshita, F.; Quinn, G.; Okochi, H.; Ochiya, T. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology, 2007, 46(1), 219-228.
[http://dx.doi.org/10.1002/hep.21704 ] [PMID: 17596885]
[23]
Sullivan, G.J.; Hay, D.C.; Park, I.H. Generation of functional human hepatic endoderm from human iPS cells. Hepatology, 2010, 51(1), 329-335.
[http://dx.doi.org/10.1002/hep.23335 ] [PMID: 19877180]
[24]
Song, Z.; Cai, J.; Liu, Y.; Zhao, D.; Yong, J.; Duo, S.; Song, X.; Guo, Y.; Zhao, Y.; Qin, H.; Yin, X.; Wu, C.; Che, J.; Lu, S.; Ding, M.; Deng, H. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res., 2009, 19(11), 1233-1242.
[http://dx.doi.org/10.1038/cr.2009.107 ] [PMID: 19736565]
[25]
Yu, Y.; Wang, X.; Nyberg, S.L. Application of induced pluripotent stem cells in liver diseases. Cell Med., 2014, 7(1), 1-13.
[http://dx.doi.org/10.3727/215517914X680056 ] [PMID: 26858888]
[26]
Flaim, C.J.; Chien, S.; Bhatia, S.N. An extracellular matrix microarray for probing cellular differentiation. Nat. Methods, 2005, 2(2), 119-125.
[http://dx.doi.org/10.1038/nmeth736 ] [PMID: 15782209]
[27]
Shan, J.; Schwartz, R.E.; Ross, N.T.; Logan, D.J.; Thomas, D.; Duncan, S.A.; North, T.E.; Goessling, W.; Carpenter, A.E.; Bhatia, S.N. Identification of small molecules for human hepatocyte expansion and iPS differentiation. Nat. Chem. Biol., 2013, 9(8), 514-520.
[http://dx.doi.org/10.1038/nchembio.1270 ] [PMID: 23728495]
[28]
Eom, Y.W.; Kim, G.; Baik, S.K. Mesenchymal stem cell therapy for cirrhosis: Present and future perspectives. World J. Gastroenterol., 2015, 21(36), 10253-10261.
[http://dx.doi.org/10.3748/wjg.v21.i36.10253 ] [PMID: 26420953]
[29]
AlAhmari, L.S.; AlShenaifi, J.Y.; AlAnazi, R.A.; Abdo, A.A. Autologous bone marrow-derived cells in the treatment of liver disease patients. Saudi J. Gastroenterol., 2015, 21(1), 5-10.
[http://dx.doi.org/10.4103/1319-3767.151211 ] [PMID: 25672232]
[30]
Wang, X.; Willenbring, H.; Akkari, Y.; Torimaru, Y.; Foster, M.; Al-Dhalimy, M.; Lagasse, E.; Finegold, M.; Olson, S.; Grompe, M. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature, 2003, 422(6934), 897-901.
[http://dx.doi.org/10.1038/nature01531 ] [PMID: 12665832]
[31]
Gruh, I.; Martin, U. Transdifferentiation of stem cells: a critical view. Adv. Biochem. Eng. Biotechnol., 2009, 114, 73-106.
[http://dx.doi.org/10.1007/10_2008_49 ] [PMID: 19343303]
[32]
Taub, R. Liver regeneration: from myth to mechanism. Nat. Rev. Mol. Cell Biol., 2004, 5(10), 836-847.
[http://dx.doi.org/10.1038/nrm1489 ] [PMID: 15459664]
[33]
Li, Q.; Zhou, X.; Shi, Y.; Li, J.; Zheng, L.; Cui, L.; Zhang, J.; Wang, L.; Han, Z.; Han, Y.; Fan, D. In vivo tracking and comparison of the therapeutic effects of MSCs and HSCs for liver injury. PLoS One, 2013, 8(4), e62363.
[http://dx.doi.org/10.1371/journal.pone.0062363 ] [PMID: 23638052]
[34]
Boulter, L.; Govaere, O.; Bird, T.G.; Radulescu, S.; Ramachandran, P.; Pellicoro, A.; Ridgway, R.A.; Seo, S.S.; Spee, B.; Van Rooijen, N.; Sansom, O.J.; Iredale, J.P.; Lowell, S.; Roskams, T.; Forbes, S.J. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med., 2012, 18(4), 572-579.
[http://dx.doi.org/10.1038/nm.2667 ] [PMID: 22388089]
[35]
Aldeguer, X.; Debonera, F.; Shaked, A.; Krasinkas, A.M.; Gelman, A.E.; Que, X.; Zamir, G.A.; Hiroyasu, S.; Kovalovich, K.K.; Taub, R.; Olthoff, K.M. Interleukin-6 from intrahepatic cells of bone marrow origin is required for normal murine liver regeneration. Hepatology, 2002, 35(1), 40-48.
[http://dx.doi.org/10.1053/jhep.2002.30081 ] [PMID: 11786958]
[36]
Vainshtein, J.M.; Kabarriti, R.; Mehta, K.J.; Roy-Chowdhury, J.; Guha, C. Bone marrow-derived stromal cell therapy in cirrhosis: clinical evidence, cellular mechanisms, and implications for the treatment of hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys., 2014, 89(4), 786-803.
[http://dx.doi.org/10.1016/j.ijrobp.2014.02.017 ] [PMID: 24969793]
[37]
Kwak, K.A.; Cho, H.J.; Yang, J.Y.; Park, Y.S. Current perspectives regarding stem cell-based therapy for liver cirrhosis. Can. J. Gastroenterol. Hepatol., 2018, 2018, 4197857.
[http://dx.doi.org/10.1155/2018/4197857 ] [PMID: 29670867]
[38]
Akiyama, K.; Chen, C.; Wang, D.; Xu, X.; Qu, C.; Yamaza, T.; Cai, T.; Chen, W.; Sun, L.; Shi, S. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell, 2012, 10(5), 544-555.
[http://dx.doi.org/10.1016/j.stem.2012.03.007 ] [PMID: 22542159]
[39]
Zhang, Y.; Cai, W.; Huang, Q.; Gu, Y.; Shi, Y.; Huang, J.; Zhao, F.; Liu, Q.; Wei, X.; Jin, M.; Wu, C.; Xie, Q.; Zhang, Y.; Wan, B.; Zhang, Y. Mesenchymal stem cells alleviate bacteria-induced liver injury in mice by inducing regulatory dendritic cells. Hepatology, 2014, 59(2), 671-682.
[http://dx.doi.org/10.1002/hep.26670 ] [PMID: 23929707]
[40]
Corcione, A.; Benvenuto, F.; Ferretti, E.; Giunti, D.; Cappiello, V.; Cazzanti, F.; Risso, M.; Gualandi, F.; Mancardi, G.L.; Pistoia, V.; Uccelli, A. Human mesenchymal stem cells modulate B-cell functions. Blood, 2006, 107(1), 367-372.
[http://dx.doi.org/10.1182/blood-2005-07-2657 ] [PMID: 16141348]
[41]
Moore, J.K.; Stutchfield, B.M.; Forbes, S.J. Systematic review: the effects of autologous stem cell therapy for patients with liver disease. Aliment. Pharmacol. Ther., 2014, 39(7), 673-685.
[http://dx.doi.org/10.1111/apt.12645 ] [PMID: 24528093]
[42]
Suk, K.T.; Yoon, J.H.; Kim, M.Y.; Kim, C.W.; Kim, J.K.; Park, H.; Hwang, S.G.; Kim, D.J.; Lee, B.S.; Lee, S.H.; Kim, H.S.; Jang, J.Y.; Lee, C.H.; Kim, B.S.; Jang, Y.O.; Cho, M.Y.; Jung, E.S.; Kim, Y.M.; Bae, S.H.; Baik, S.K. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial. Hepatology, 2016, 64(6), 2185-2197.
[http://dx.doi.org/10.1002/hep.28693 ] [PMID: 27339398]
[43]
Liu, L.; Yan, Y.; Zhou, J.; Huang, L.W.; He, C.P.; Ling, K.; Zhou, H.C.; Wen, Q.M.; Wang, X.M. Curative effect of combined lamivudine, adefovir dipivoxil, and stem cell transplantation on decompensated hepatitis B cirrhosis. Genet. Mol. Res., 2014, 13(4), 9336-9342.
[http://dx.doi.org/10.4238/2014.February.21.13 ] [PMID: 24634299]
[44]
Newsome, P.N.; Fox, R.; King, A.L.; Barton, D.; Than, N.N.; Moore, J.; Corbett, C.; Townsend, S.; Thomas, J.; Guo, K.; Hull, D.; Beard, H.A.; Thompson, J.; Atkinson, A.; Bienek, C.; McGowan, N.; Guha, N.; Campbell, J.; Hollyman, D.; Stocken, D.; Yap, C.; Forbes, S.J. Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. Lancet Gastroenterol. Hepatol., 2018, 3(1), 25-36.
[http://dx.doi.org/10.1016/S2468-1253(17)30326-6 ] [PMID: 29127060]
[45]
King, A.; Barton, D.; Beard, H.A.; Than, N.; Moore, J.; Corbett, C.; Thomas, J.; Guo, K.; Guha, I.; Hollyman, D.; Stocken, D.; Yap, C.; Fox, R.; Forbes, S.J.; Newsome, P.N. REpeated AutoLogous Infusions of STem cells In Cirrhosis (REALISTIC): a multicentre, phase II, open-label, randomised controlled trial of repeated autologous infusions of granulocyte colony-stimulating factor (GCSF) mobilised CD133+ bone marrow stem cells in patients with cirrhosis. A study protocol for a randomised controlled trial. BMJ Open, 2015, 5(3), e007700.
[http://dx.doi.org/10.1136/bmjopen-2015-007700 ] [PMID: 25795699]
[46]
Lanthier, N. Haemopoietic stem cell therapy in cirrhosis: the end of the story? Lancet Gastroenterol. Hepatol., 2018, 3(1), 3-5.
[http://dx.doi.org/10.1016/S2468-1253(17)30359-X ] [PMID: 29127062]
[47]
Mohamadnejad, M.; Vosough, M.; Moossavi, S.; Nikfam, S.; Mardpour, S.; Akhlaghpoor, S.; Ashrafi, M.; Azimian, V.; Jarughi, N.; Hosseini, S.E.; Moeininia, F.; Bagheri, M.; Sharafkhah, M.; Aghdami, N.; Malekzadeh, R.; Baharvand, H. Intraportal infusion of bone marrow mononuclear or CD133+ cells in patients with decompensated cirrhosis: a double-blind randomized controlled trial. Stem Cells Transl. Med., 2016, 5(1), 87-94.
[http://dx.doi.org/10.5966/sctm.2015-0004 ] [PMID: 26659833]
[48]
Maleki, M.; Ghanbarvand, F.; Reza Behvarz, M.; Ejtemaei, M.; Ghadirkhomi, E. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int. J. Stem Cells, 2014, 7(2), 118-126.
[http://dx.doi.org/10.15283/ijsc.2014.7.2.118 ] [PMID: 25473449]
[49]
Pelekanos, R.A.; Li, J.; Gongora, M.; Chandrakanthan, V.; Scown, J.; Suhaimi, N.; Brooke, G.; Christensen, M.E.; Doan, T.; Rice, A.M.; Osborne, G.W.; Grimmond, S.M.; Harvey, R.P.; Atkinson, K.; Little, M.H. Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. Stem Cell Res. (Amst.), 2012, 8(1), 58-73.
[http://dx.doi.org/10.1016/j.scr.2011.08.003 ] [PMID: 22099021]
[50]
Chong, J.J.; Chandrakanthan, V.; Xaymardan, M.; Asli, N.S.; Li, J.; Ahmed, I.; Heffernan, C.; Menon, M.K.; Scarlett, C.J.; Rashidianfar, A.; Biben, C.; Zoellner, H.; Colvin, E.K.; Pimanda, J.E.; Biankin, A.V.; Zhou, B.; Pu, W.T.; Prall, O.W.; Harvey, R.P. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell, 2011, 9(6), 527-540.
[http://dx.doi.org/10.1016/j.stem.2011.10.002 ] [PMID: 22136928]
[51]
Yamada, Y.; Yokoyama, S.; Fukuda, N.; Kidoya, H.; Huang, X.Y.; Naitoh, H.; Satoh, N.; Takakura, N. A novel approach for myocardial regeneration with educated cord blood cells cocultured with cells from brown adipose tissue. Biochem. Biophys. Res. Commun., 2007, 353(1), 182-188.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.017 ] [PMID: 17174277]
[52]
Robey, P. Mesenchymal stem cells: fact or fiction, and implications in their therapeutic use. F1000Research, 2017, 6(F1000 Faculty Rev), 524.
[http://dx.doi.org/10.12688/f1000research.10955.1] [PMID: 28491279]
[53]
Caplan, A.I. Mesenchymal stem cells: time to change the name! Stem Cells Transl. Med., 2017, 6(6), 1445-1451.
[http://dx.doi.org/10.1002/sctm.17-0051 ] [PMID: 28452204]
[54]
Luo, X.Y.; Meng, X.J.; Cao, D.C.; Wang, W.; Zhou, K.; Li, L.; Guo, M.; Wang, P. Transplantation of bone marrow mesenchymal stromal cells attenuates liver fibrosis in mice by regulating macrophage subtypes. Stem Cell Res. Ther., 2019, 10(1), 16.
[http://dx.doi.org/10.1186/s13287-018-1122-8 ] [PMID: 30635047]
[55]
Fu, X.; Jiang, B.; Zheng, B.; Yan, Y.; Wang, J.; Duan, Y.; Li, S.; Yan, L.; Wang, H.; Chen, B.; Sang, X.; Ji, W.; Xu, R.H.; Si, W. Heterogenic transplantation of bone marrow-derived rhesus macaque mesenchymal stem cells ameliorates liver fibrosis induced by carbon tetrachloride in mouse. PeerJ, 2018, 6, e4336.
[http://dx.doi.org/10.7717/peerj.4336 ] [PMID: 29456886]
[56]
Lin, B.L.; Chen, J.F.; Qiu, W.H.; Wang, K.W.; Xie, D.Y.; Chen, X.Y.; Liu, Q.L.; Peng, L.; Li, J.G.; Mei, Y.Y.; Weng, W.Z.; Peng, Y.W.; Cao, H.J.; Xie, J.Q.; Xie, S.B.; Xiang, A.P.; Gao, Z.L. Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: A randomized controlled trial. Hepatology, 2017, 66(1), 209-219.
[http://dx.doi.org/10.1002/hep.29189 ] [PMID: 28370357]
[57]
Lee, P.H.; Tu, C.T.; Hsiao, C.C.; Tsai, M.S.; Ho, C.M.; Cheng, N.C.; Hung, T.M.; Shih, D.T. Antifibrotic activity of human placental amnion membrane-derived CD34+ mesenchymal stem/progenitor cell transplantation in mice with thioacetamide-induced liver injury. Stem Cells Transl. Med., 2016, 5(11), 1473-1484.
[http://dx.doi.org/10.5966/sctm.2015-0343 ] [PMID: 27405780]
[58]
Lou, G.; Yang, Y.; Liu, F.; Ye, B.; Chen, Z.; Zheng, M.; Liu, Y. MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis. J. Cell. Mol. Med., 2017, 21(11), 2963-2973.
[http://dx.doi.org/10.1111/jcmm.13208 ] [PMID: 28544786]
[59]
Bi, Z.M.; Zhou, Q.F.; Geng, Y.; Zhang, H.M. Human umbilical cord mesenchymal stem cells ameliorate experimental cirrhosis through activation of keratinocyte growth factor by suppressing microRNA-199. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(23), 4905-4912.
[PMID: 27981544]
[60]
Najimi, M.; Berardis, S.; El-Kehdy, H.; Rosseels, V.; Evraerts, J.; Lombard, C.; El Taghdouini, A.; Henriet, P.; van Grunsven, L.; Sokal, E.M. Human liver mesenchymal stem/progenitor cells inhibit hepatic stellate cell activation: in vitro and in vivo evaluation. Stem Cell Res. Ther., 2017, 8(1), 131.
[http://dx.doi.org/10.1186/s13287-017-0575-5 ] [PMID: 28583205]
[61]
Huang, B.; Cheng, X.; Wang, H.; Huang, W.; la Ga Hu, Z.; Wang, D.; Zhang, K.; Zhang, H.; Xue, Z.; Da, Y.; Zhang, N.; Hu, Y.; Yao, Z.; Qiao, L.; Gao, F.; Zhang, R. Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. J. Transl. Med., 2016, 14, 45.
[http://dx.doi.org/10.1186/s12967-016-0792-1 ] [PMID: 26861623]
[62]
Chen, L.; Zhang, J.; Yang, L.; Zhang, G.; Wang, Y.; Zhang, S. The effects of conditioned medium derived from mesenchymal stem cells cocultured with hepatocytes on damaged hepatocytes and acute liver failure in rats. Stem Cells Int., 2018, 2018, 9156560.
[http://dx.doi.org/10.1155/2018/9156560 ] [PMID: 30123296]
[63]
Qu, Y.; Zhang, Q.; Cai, X.; Li, F.; Ma, Z.; Xu, M.; Lu, L. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J. Cell. Mol. Med., 2017, 21(10), 2491-2502.
[http://dx.doi.org/10.1111/jcmm.13170 ] [PMID: 28382720]
[64]
Liu, Y.; Lou, G.; Li, A.; Zhang, T.; Qi, J.; Ye, D.; Zheng, M.; Chen, Z. AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages. EBioMedicine, 2018, 36, 140-150.
[http://dx.doi.org/10.1016/j.ebiom.2018.08.054 ] [PMID: 30197023]
[65]
Chen, K.D.; Hsu, L.W.; Goto, S.; Huang, K.T.; Nakano, T.; Weng, W.T.; Lai, C.Y.; Kuo, Y.R.; Chiu, K.W.; Wang, C.C.; Cheng, Y.F.; Lin, C.C.; Ma, Y.Y.; Chen, C.L. Regulation of heme oxygenase 1 expression by miR-27b with stem cell therapy for liver regeneration in rats. Transplant. Proc., 2014, 46(4), 1198-1200.
[http://dx.doi.org/10.1016/j.transproceed.2013.12.013 ] [PMID: 24815159]
[66]
Zhang, Z.; Lin, H.; Shi, M.; Xu, R.; Fu, J.; Lv, J.; Chen, L.; Lv, S.; Li, Y.; Yu, S.; Geng, H.; Jin, L.; Lau, G.K.; Wang, F.S. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J. Gastroenterol. Hepatol., 2012, 27(Suppl. 2), 112-120.
[http://dx.doi.org/10.1111/j.1440-1746.2011.07024.x ] [PMID: 22320928]
[67]
Shi, M.; Zhang, Z.; Xu, R.; Lin, H.; Fu, J.; Zou, Z.; Zhang, A.; Shi, J.; Chen, L.; Lv, S.; He, W.; Geng, H.; Jin, L.; Liu, Z.; Wang, F.S. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl. Med., 2012, 1(10), 725-731.
[http://dx.doi.org/10.5966/sctm.2012-0034 ] [PMID: 23197664]
[68]
Salama, H.; Zekri, A.R.N.; Medhat, E.; Al Alim, S.A.; Ahmed, O.S.; Bahnassy, A.A.; Lotfy, M.M.; Ahmed, R.; Musa, S. Peripheral vein infusion of autologous mesenchymal stem cells in Egyptian HCV-positive patients with end-stage liver disease. Stem Cell Res. Ther., 2014, 5(3), 70.
[http://dx.doi.org/10.1186/scrt459 ] [PMID: 24886681]
[69]
Yu, S.J.; Chen, L.M.; Lyu, S.; Li, Y.Y.; Yang, B.; Geng, H.; Lin, H.; Wang, S.Y.; Xu, R.N.; Wang, L.F.; Shi, M.; Wang, F.S. [Safety and efficacy of human umbilical cord derived-mesenchymal stem cell transplantation for treating patients with HBV-related decompensated cirrhosis] Zhonghua Gan Zang Bing Za Zhi, 2016, 24(1), 51-55.
[PMID: 26983390]
[70]
Zhao, L.; Chen, S.; Shi, X. A pooled analysis of mesenchymal stem cell-based therapy for liver disease. Stem Cell Res Ther, 2018, 21, 9(1), 72.
[http://dx.doi.org/10.1186/s13287-018-0816-2] [PMID: 29562935]
[71]
Xue, R.; Meng, Q.; Dong, J.; Li, J.; Yao, Q.; Zhu, Y.; Yu, H. Clinical performance of stem cell therapy in patients with acute-on-chronic liver failure: a systematic review and meta-analysis. J. Transl. Med., 2018, 16(1), 126.
[http://dx.doi.org/10.1186/s12967-018-1464-0 ] [PMID: 29747694]
[72]
Liang, J.; Zhang, H.; Zhao, C.; Wang, D.; Ma, X.; Zhao, S.; Wang, S.; Niu, L.; Sun, L. Effects of allogeneic mesenchymal stem cell transplantation in the treatment of liver cirrhosis caused by autoimmune diseases. Int. J. Rheum. Dis., 2017, 20(9), 1219-1226.
[http://dx.doi.org/10.1111/1756-185X.13015 ] [PMID: 28217916]
[73]
Li, Y.H.; Xu, Y.; Wu, H.M.; Yang, J.; Yang, L.H.; Yue-Meng, W. Umbilical cord-derived mesenchymal stem cell transplantation in hepatitis B virus related acute-on-chronic liver failure treated with plasma exchange and entecavir: a 24-month prospective study. Stem Cell Rev Rep, 2016, 12(6), 645-653.
[http://dx.doi.org/10.1007/s12015-016-9683-3 ] [PMID: 27687792]
[74]
Cao, Y.; Zhang, B.; Lin, R. Mesenchymal stem cell transplantation for liver cell failure: a new direction and option. Gastroenterology. Research and Practice, 2018, 2018(13), 1-10.
[http://dx.doi.org/10.1155/2018/9231710 ]
[75]
Mohamadnejad, M.; Alimoghaddam, K.; Bagheri, M.; Ashrafi, M.; Abdollahzadeh, L.; Akhlaghpoor, S.; Bashtar, M.; Ghavamzadeh, A.; Malekzadeh, R. Randomized placebo-controlled trial of mesenchymal stem cell transplantation in decompensated cirrhosis. Liver Int., 2013, 33(10), 1490-1496.
[http://dx.doi.org/10.1111/liv.12228 ] [PMID: 23763455]
[76]
Sun, L.; Akiyama, K.; Zhang, H.; Yamaza, T.; Hou, Y.; Zhao, S.; Xu, T.; Le, A.; Shi, S. Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells, 2009, 27(6), 1421-1432.
[http://dx.doi.org/10.1002/stem.68 ] [PMID: 19489103]
[77]
Park, M.J.; Park, H.S.; Cho, M.L.; Oh, H.J.; Cho, Y.G.; Min, S.Y.; Chung, B.H.; Lee, J.W.; Kim, H.Y.; Cho, S.G. Transforming growth factor β-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Th17 cells and osteoclastogenesis. Arthritis Rheum., 2011, 63(6), 1668-1680.
[http://dx.doi.org/10.1002/art.30326 ] [PMID: 21384335]
[78]
Spees, J.L.; Lee, R.H.; Gregory, C.A. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res. Ther., 2016, 7(1), 125.
[http://dx.doi.org/10.1186/s13287-016-0363-7 ] [PMID: 27581859]
[79]
Rubtsov, Y.P.; Rudensky, A.Y. TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat. Rev. Immunol., 2007, 7(6), 443-453.
[http://dx.doi.org/10.1038/nri2095 ] [PMID: 17525753]
[80]
Gao, W.X.; Sun, Y.Q.; Shi, J.; Li, C.L.; Fang, S.B.; Wang, D.; Deng, X.Q.; Wen, W.; Fu, Q.L. Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells. Stem Cell Res. Ther., 2017, 8(1), 48.
[http://dx.doi.org/10.1186/s13287-017-0499-0 ] [PMID: 28253916]
[81]
Ma, O.K.; Chan, K.H. Immunomodulation by mesenchymal stem cells: Interplay between mesenchymal stem cells and regulatory lymphocytes. World J. Stem Cells, 2016, 8(9), 268-278.
[http://dx.doi.org/10.4252/wjsc.v8.i9.268 ] [PMID: 27679683]
[82]
Wang, J.; Cen, P.; Chen, J.; Fan, L.; Li, J.; Cao, H.; Li, L. Role of mesenchymal stem cells, their derived factors, and extracellular vesicles in liver failure. Stem Cell Res. Ther., 2017, 8(1), 137.
[http://dx.doi.org/10.1186/s13287-017-0576-4 ] [PMID: 28583199]
[83]
Liu, Y.C.; Zou, X.B.; Chai, Y.F.; Yao, Y.M. Macrophage polarization in inflammatory diseases. Int. J. Biol. Sci., 2014, 10(5), 520-529.
[http://dx.doi.org/10.7150/ijbs.8879 ] [PMID: 24910531]
[84]
Usunier, B.; Benderitter, M.; Tamarat, R.; Chapel, A. Management of fibrosis: the mesenchymal stromal cells breakthrough. Stem Cells Int., 2014, 2014, 340257.
[http://dx.doi.org/10.1155/2014/340257 ] [PMID: 25132856]
[85]
Verrecchia, F.; Mauviel, A. Transforming growth factor-β and fibrosis. World J. Gastroenterol., 2007, 13(22), 3056-3062.
[http://dx.doi.org/10.3748/wjg.v13.i22.3056 ] [PMID: 17589920]
[86]
Chen, S.; Xu, L.; Lin, N.; Pan, W.; Hu, K.; Xu, R. Activation of Notch1 signaling by marrow-derived mesenchymal stem cells through cell-cell contact inhibits proliferation of hepatic stellate cells. Life Sci., 2011, 89(25-26), 975-981.
[http://dx.doi.org/10.1016/j.lfs.2011.10.012 ] [PMID: 22056375]
[87]
(a)Clara, N.; Yujia, W.; Jennifer, L.W.; Nyberg, S.L. Stem cell therapies for treatment of liver disease. Biomedicines, 2016, 4(1), 2.
[http://dx.doi.org/10.3390/biomedicines4010002] [PMID: 28536370]
(b)Najimi, M.; Khuu, D.N.; Lysy, P.A.; Jazouli, N.; Abarca, J.; Sempoux, C.; Sokal, E.M. Adult-derived human liver mesenchymal-like cells as a potential progenitor reservoir of hepatocytes? Cell Transplant., 2007, 16(7), 717-728.
[http://dx.doi.org/10.3727/000000007783465154] [PMID: 18019361]
[88]
Joshi, M ; B Patil, P.; He, Z.; Holgersson, J.; Olausson, M.; Sumitran-Holgersson, S. Fetal liver-derived mesenchymal stromal cells augment engraftment of transplanted hepatocytes. Cytotherapy, 2012, 14(6), 657-669.
[http://dx.doi.org/10.3109/14653249.2012.663526 ] [PMID: 22424216]
[89]
Shi, X.L.; Zhang, Y.; Gu, J.Y.; Ding, Y.T. Coencapsulation of hepatocytes with bone marrow mesenchymal stem cells improves hepatocyte-specific functions. Transplantation, 2009, 88(10), 1178-1185.
[http://dx.doi.org/10.1097/TP.0b013e3181bc288b ] [PMID: 19935371]
[90]
Stutchfield, B.M.; Forbes, S.J.; Wigmore, S.J. Prospects for stem cell transplantation in the treatment of hepatic disease. Liver Transpl., 2010, 16(7), 827-836.
[http://dx.doi.org/10.1002/lt.22083 ] [PMID: 20583084]
[91]
Wu, Y.; Hughes, R.D.; Fitzpatrick, E.; Lehec, S.; Mitry, R.R.; Dhawan, A. Maintenance of hepatic function in long-term in vitro co-culture with mesenchymal stem cells. Liver Transpl., 2011, 17, S196.
[92]
Takebe, T.; Sekine, K.; Enomura, M.; Koike, H.; Kimura, M.; Ogaeri, T.; Zhang, R.R.; Ueno, Y.; Zheng, Y.W.; Koike, N.; Aoyama, S.; Adachi, Y.; Taniguchi, H. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013, 499(7459), 481-484.
[http://dx.doi.org/10.1038/nature12271 ] [PMID: 23823721]
[93]
Ho, J.C.Y.; Lai, W.H.; Li, M.F.; Au, K.W.; Yip, M.C.; Wong, N.L.; Ng, E.S.; Lam, F.F.; Siu, C.W.; Tse, H.F. Reversal of endothelial progenitor cell dysfunction in patients with type 2 diabetes using a conditioned medium of human embryonic stem cell-derived endothelial cells. Diabetes Metab. Res. Rev., 2012, 28(5), 462-473.
[http://dx.doi.org/10.1002/dmrr.2304 ] [PMID: 22492468]
[94]
Lee, M.J.; Kim, J.; Lee, K.I.; Shin, J.M.; Chae, J.I.; Chung, H.M. Enhancement of wound healing by secretory factors of endothelial precursor cells derived from human embryonic stem cells. Cytotherapy, 2011, 13(2), 165-178.
[http://dx.doi.org/10.3109/14653249.2010.512632 ] [PMID: 21235296]
[95]
Pawitan, J.A. Prospect of stem cell conditioned medium in regenerative medicine. BioMed Res. Int., 2014, 2014(4), 965849.
[http://dx.doi.org/10.1155/2014/965849 ]
[96]
Cantinieaux, D.; Quertainmont, R.; Blacher, S.; Rossi, L.; Wanet, T.; Noël, A.; Brook, G.; Schoenen, J.; Franzen, R. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One, 2013, 8(8), e69515.
[http://dx.doi.org/10.1371/journal.pone.0069515 ] [PMID: 24013448]
[97]
Zarovni, N.; Corrado, A.; Guazzi, P.; Zocco, D.; Lari, E.; Radano, G.; Muhhina, J.; Fondelli, C.; Gavrilova, J.; Chiesi, A. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods, 2015, 87, 46-58.
[http://dx.doi.org/10.1016/j.ymeth.2015.05.028 ] [PMID: 26044649]
[98]
Baglio, S.R.; Rooijers, K.; Koppers-Lalic, D.; Verweij, F.J.; Pérez Lanzón, M.; Zini, N.; Naaijkens, B.; Perut, F.; Niessen, H.W.; Baldini, N.; Pegtel, D.M. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res. Ther., 2015, 6, 127.
[http://dx.doi.org/10.1186/s13287-015-0116-z ] [PMID: 26129847]
[99]
Ferguson, S.W.; Wang, J.; Lee, C.J.; Liu, M.; Neelamegham, S.; Canty, J.M.; Nguyen, J. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci. Rep., 2018, 8(1), 1419.
[http://dx.doi.org/10.1038/s41598-018-19581-x ] [PMID: 29362496]
[100]
Lee, S.K.; Lee, S.C.; Kim, S.J. A novel cell-free strategy for promoting mouse liver regeneration: utilization of a conditioned medium from adipose-derived stem cells. Hepatol. Int., 2015, 9(2), 310-320.
[http://dx.doi.org/10.1007/s12072-014-9599-4 ] [PMID: 25788187]
[101]
Damania, A.; Jaiman, D.; Teotia, A.K.; Kumar, A. Mesenchymal stromal cell-derived exosome-rich fractionated secretome confers a hepatoprotective effect in liver injury. Stem Cell Res. Ther., 2018, 9(1), 31.
[http://dx.doi.org/10.1186/s13287-017-0752-6 ] [PMID: 29409540]
[102]
Lotfinia, M.; Kadivar, M.; Piryaei, A.; Pournasr, B.; Sardari, S.; Sodeifi, N.; Sayahpour, F.A.; Baharvand, H. Effect of secreted molecules of human embryonic stem cell-derived mesenchymal stem cells on acute hepatic failure model. Stem Cells Dev., 2016, 25(24), 1898-1908.
[http://dx.doi.org/10.1089/scd.2016.0244 ] [PMID: 27676103]
[103]
Lee, S.C.; Jeong, H.J.; Lee, S.K.; Kim, S.J. Hypoxic conditioned medium from human adipose-derived stem cells promotes mouse liver regeneration through JAK/STAT3 signaling. Stem Cells Transl. Med., 2016, 5(6), 816-825.
[http://dx.doi.org/10.5966/sctm.2015-0191 ] [PMID: 27102647]
[104]
Li, T.; Yan, Y.; Wang, B.; Qian, H.; Zhang, X.; Shen, L.; Wang, M.; Zhou, Y.; Zhu, W.; Li, W.; Xu, W. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev., 2013, 22(6), 845-854.
[http://dx.doi.org/10.1089/scd.2012.0395 ] [PMID: 23002959]
[105]
Hyun, J.; Wang, S.; Kim, J.; Kim, G.J.; Jung, Y. MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells. Sci. Rep., 2015, 5, 14135.
[http://dx.doi.org/10.1038/srep14135 ] [PMID: 26370741]
[106]
Chiabotto, G.; Camussi, G.; Bruno, S. Role of ncRNAs in modulation of liver fibrosis by extracellular vesicles. ExRNA, 2020, 2, 7.
[http://dx.doi.org/10.1186/s41544-020-00050-5]
[107]
Sukho, P.; Kirpensteijn, J.; Hesselink, J.W.; van Osch, G.J.; Verseijden, F.; Bastiaansen-Jenniskens, Y.M. Effect of cell seeding density and inflammatory cytokines on adipose tissue-derived stem cells: an in vitro study. Stem Cell Rev Rep, 2017, 13(2), 267-277.
[http://dx.doi.org/10.1007/s12015-017-9719-3 ] [PMID: 28120159]
[108]
Yang, Y.; Choi, H.; Seon, M.; Cho, D.; Bang, S.I. LL-37 stimulates the functions of adipose-derived stromal/stem cells via early growth response 1 and the MAPK pathway. Stem Cell Res. Ther., 2016, 7(1), 58.
[http://dx.doi.org/10.1186/s13287-016-0313-4 ] [PMID: 27095351]
[109]
Hsiao, S.T.; Lokmic, Z.; Peshavariya, H.; Abberton, K.M.; Dusting, G.J.; Lim, S.Y.; Dilley, R.J. Hypoxic conditioning enhances the angiogenic paracrine activity of human adipose-derived stem cells. Stem Cells Dev., 2013, 22(10), 1614-1623.
[http://dx.doi.org/10.1089/scd.2012.0602 ] [PMID: 23282141]
[110]
Stubbs, S.L.; Hsiao, S.T.; Peshavariya, H.M.; Lim, S.Y.; Dusting, G.J.; Dilley, R.J. Hypoxic preconditioning enhances survival of human adipose-derived stem cells and conditions endothelial cells in vitro. Stem Cells Dev., 2012, 21(11), 1887-1896.
[http://dx.doi.org/10.1089/scd.2011.0289 ] [PMID: 22165914]
[111]
Gholami Farashah, M.S.; Pasbakhsh, P.; Omidi, A.; Nekoonam, S.; Aryanpour, R.; Regardi Kashani, I. Preconditioning with SDF-1 improves therapeutic outcomes of bone marrow-derived mesenchymal stromal cells in a mouse model of STZ-induced diabetes. Avicenna J. Med. Biotechnol., 2019, 11(1), 35-42.
[PMID: 30800241]
[112]
Zheng, J.; Li, H.; He, L.; Huang, Y.; Cai, J.; Chen, L.; Zhou, C.; Fu, H.; Lu, T.; Zhang, Y.; Yao, J.; Yang, Y. Preconditioning of umbilical cord-derived mesenchymal stem cells by rapamycin increases cell migration and ameliorates liver ischaemia/reperfusion injury in mice via the CXCR4/CXCL12 axis. Cell Prolif., 2019, 52(2), e12546.
[http://dx.doi.org/10.1111/cpr.12546 ] [PMID: 30537044]
[113]
Mortezaee, K.; Khanlarkhani, N.; Sabbaghziarani, F.; Nekoonam, S.; Majidpoor, J.; Hosseini, A.; Pasbakhsh, P.; Kashani, I.R.; Zendedel, A. Preconditioning with melatonin improves therapeutic outcomes of bone marrow-derived mesenchymal stem cells in targeting liver fibrosis induced by CCl4. Cell Tissue Res., 2017, 369(2), 303-312.
[http://dx.doi.org/10.1007/s00441-017-2604-1 ] [PMID: 28413861]
[114]
Hajinejad, M.; Pasbakhsh, P.; Omidi, A.; Mortezaee, K.; Nekoonam, S.; Mahmoudi, R.; Kashani, I.R. Resveratrol pretreatment enhanced homing of SDF-1α-preconditioned bone marrow-derived mesenchymal stem cells in a rat model of liver cirrhosis. J. Cell. Biochem., 2018, 119(3), 2939-2950.
[http://dx.doi.org/10.1002/jcb.26500 ] [PMID: 29130552]
[115]
Lee, S.C.; Jeong, H.J.; Lee, S.K.; Kim, S.J. Lipopolysaccharide preconditioning of adipose-derived stem cells improves liver-regenerating activity of the secretome. Stem Cell Res. Ther., 2015, 6(1), 75.
[http://dx.doi.org/10.1186/s13287-015-0072-7 ] [PMID: 25890074]
[116]
Kim, M.D.; Kim, S.S.; Cha, H.Y.; Jang, S.H.; Chang, D.Y.; Kim, W.; Suh-Kim, H.; Lee, J.H. Therapeutic effect of hepatocyte growth factor-secreting mesenchymal stem cells in a rat model of liver fibrosis. Exp. Mol. Med., 2014, 46(8), e110.
[http://dx.doi.org/10.1038/emm.2014.49 ] [PMID: 25145391]
[117]
Ma, H.C.; Shi, X.L.; Ren, H.Z.; Yuan, X.W.; Ding, Y.T. Targeted migration of mesenchymal stem cells modified with CXCR4 to acute failing liver improves liver regeneration. World J. Gastroenterol., 2014, 20(40), 14884-14894.
[http://dx.doi.org/10.3748/wjg.v20.i40.14884 ] [PMID: 25356048]
[118]
Zheng, Y.B.; Zhang, X.H.; Huang, Z.L.; Lin, C.S.; Lai, J.; Gu, Y.R.; Lin, B.L.; Xie, D.Y.; Xie, S.B.; Peng, L.; Gao, Z.L. Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure. PLoS One, 2012, 7(7), e41392.
[http://dx.doi.org/10.1371/journal.pone.0041392 ] [PMID: 22844472]
[119]
Fiore, E.J.; Bayo, J.M.; Garcia, M.G.; Malvicini, M.; Lloyd, R.; Piccioni, F.; Rizzo, M.; Peixoto, E.; Sola, M.B.; Atorrasagasti, C.; Alaniz, L.; Camilletti, M.A.; Enguita, M.; Prieto, J.; Aquino, J.B.; Mazzolini, G. Mesenchymal stromal cells engineered to produce IGF-I by recombinant adenovirus ameliorate liver fibrosis in mice. Stem Cells Dev., 2015, 24(6), 791-801.
[http://dx.doi.org/10.1089/scd.2014.0174 ] [PMID: 25315017]
[120]
Wu, N.; Zhang, Y.L.; Wang, H.T.; Li, D.W.; Dai, H.J.; Zhang, Q.Q.; Zhang, J.; Ma, Y.; Xia, Q.; Bian, J.M.; Hang, H.L. Overexpression of hepatocyte nuclear factor 4α in human mesenchymal stem cells suppresses hepatocellular carcinoma development through Wnt/β-catenin signaling pathway downregulation. Cancer Biol. Ther., 2016, 17(5), 558-565.
[http://dx.doi.org/10.1080/15384047.2016.1177675 ] [PMID: 27124543]
[121]
Xie, C.; Xie, D.Y.; Lin, B.L.; Zhang, G.L.; Wang, P.P.; Peng, L.; Gao, Z.L. Interferon-β gene-modified human bone marrow mesenchymal stem cells attenuate hepatocellular carcinoma through inhibiting AKT/FOXO3a pathway. Br. J. Cancer, 2013, 109(5), 1198-1205.
[http://dx.doi.org/10.1038/bjc.2013.422 ] [PMID: 23887606]
[122]
Zheng, W.; Yang, Y.; Sequeira, R.C.; Bishop, C.E.; Atala, A.; Gu, Z.; Zhao, W. Effects of extracellular vesicles derived from mesenchymal stem/stromal cells on liver diseases. Curr. Stem Cell Res. Ther., 2019, 14(5), 442-452.
[http://dx.doi.org/10.2174/1574888X14666190308123714 ] [PMID: 30854976]
[123]
Erickson-Miller, C.L.; DeLorme, E.; Tian, S.S.; Hopson, C.B.; Stark, K.; Giampa, L.; Valoret, E.I.; Duffy, K.J.; Luengo, J.L.; Rosen, J.; Miller, S.G.; Dillon, S.B.; Lamb, P. Discovery and characterization of a selective, nonpeptidyl thrombopoietin receptor agonist. Exp. Hematol., 2005, 33(1), 85-93.
[http://dx.doi.org/10.1016/j.exphem.2004.09.006 ] [PMID: 15661401]
[124]
Calandra, G.; McCarty, J.; McGuirk, J.; Tricot, G.; Crocker, S.A.; Badel, K.; Grove, B.; Dye, A.; Bridger, G. AMD3100 plus G-CSF can successfully mobilize CD34+ cells from non-Hodgkin’s lymphoma, Hodgkin’s disease and multiple myeloma patients previously failing mobilization with chemotherapy and/or cytokine treatment: compassionate use data. Bone Marrow Transplant., 2008, 41(4), 331-338.
[http://dx.doi.org/10.1038/sj.bmt.1705908 ] [PMID: 17994119]
[125]
Ramirez, P.; Rettig, M.P.; Uy, G.L.; Deych, E.; Holt, M.S.; Ritchey, J.K.; DiPersio, J.F. BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood, 2009, 114(7), 1340-1343.
[http://dx.doi.org/10.1182/blood-2008-10-184721 ] [PMID: 19571319]
[126]
Cao, B.; Zhang, Z.; Grassinger, J.; Williams, B.; Heazlewood, C.K.; Churches, Q.I.; James, S.A.; Li, S.; Papayannopoulou, T.; Nilsson, S.K. Therapeutic targeting and rapid mobilization of endosteal HSC using a small molecule integrin antagonist. Nat. Commun., 2016, 7, 11007.
[http://dx.doi.org/10.1038/ncomms11007 ] [PMID: 26975966]
[127]
Wang, Y.; Chen, G.; Yan, J.; Chen, X.; He, F.; Zhu, C.; Zhang, J.; Lin, J.; Pan, G.; Yu, J.; Pei, M.; Yang, H.; Liu, T. Upregulation of SIRT1 by Kartogenin enhances antioxidant functions and promotes osteogenesis in human mesenchymal stem cells. Oxid. Med. Cell. Longev., 2018, 2018, 1368142.
[http://dx.doi.org/10.1155/2018/1368142 ] [PMID: 30116472]
[128]
Mohan, G.; Magnitsky, S.; Melkus, G.; Subburaj, K.; Kazakia, G.; Burghardt, A.J.; Dang, A.; Lane, N.E.; Majumdar, S. Kartogenin treatment prevented joint degeneration in a rodent model of osteoarthritis: a pilot study. J. Orthop. Res., 2016, 34(10), 1780-1789.
[http://dx.doi.org/10.1002/jor.23197 ] [PMID: 26895619]
[129]
Russell, J.L.; Goetsch, S.C.; Aguilar, H.R.; Frantz, D.E.; Schneider, J.W. Targeting native adult heart progenitors with cardiogenic small molecules. ACS Chem. Biol., 2012, 7(6), 1067-1076.
[http://dx.doi.org/10.1021/cb200525q ] [PMID: 22413910]
[130]
Russell, J.L.; Goetsch, S.C.; Aguilar, H.R.; Coe, H.; Luo, X.; Liu, N.; van Rooij, E.; Frantz, D.E.; Schneider, J.W. Regulated expression of pH sensing G Protein-coupled receptor-68 identified through chemical biology defines a new drug target for ischemic heart disease. ACS Chem. Biol., 2012, 7(6), 1077-1083.
[http://dx.doi.org/10.1021/cb300001m ] [PMID: 22462679]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy