摘要
本文综述了氟化吸入麻醉药的研究,包括合成,物理化学和药理学。回顾吸入麻醉剂的历史,发现它们越来越依赖氟和醚结构。氟烷引起罕见但严重的基于免疫的肝毒性,在1970年代被安氟醚所取代。异氟烷在1980年代取代了环戊烷,显示出适度的优势(例如,较低的溶解度,更好的代谢稳定性以及无惊厥倾向)。地氟醚和七氟醚在1990年代开始使用,比异氟烷麻醉效果更好(肝毒性较小,溶解度较低和/或刺激性明显降低)。但是,它们仍然不够完美。为了获得更理想的吸入麻醉药,制备了许多氟化卤代烃,多氟环烷烃,多氟环烯烃,氟代芳烃和多氟氧杂环丁烷,并对其效能和毒性进行了评估。尽管药理学研究表明这些药物中的某些能产生麻醉作用,但由于它们明显缺乏麻醉药,因此未对这些化合物进行进一步的研究。而且,不能从分子结构简单地预测麻醉活性,而必须从实验中推断出麻醉活性。通过实验研究发现了一些规律性:1)当分子量增加时,饱和直链卤代醚的效力和毒性增加; 2)当候选物的沸点增加时,安全裕度降低,恢复时间延长; 3)具有不对称碳末端的化合物具有良好的麻醉效果。然而,不仅由于目前已知的不良的结构/活性关系,而且由于合成问题,开发优于地氟醚和七氟醚的新型吸入麻醉剂仍然具有挑战性。
关键词: 氟,麻醉药,吸入,挥发性,药理学,卤代烃。
[http://dx.doi.org/10.1038/nrn.2016.128] [PMID: 27752068]
(b)Kallman, M.J. General Anesthetics. Drug Discovery and Evaluation: Pharmacological Assays, 2016, 1593-1607.
[http://dx.doi.org/10.1007/978-3-319-05392-9_34]
(c)Hartung, H.P. Local Anesthetic Activity. Drug Discovery and Evaluation: Pharmacological Assays, 2016, 1717- 1766,
[http://dx.doi.org/10.1007/978-3-319-05392-9_38]
[http://dx.doi.org/10.1517/17425247.2012.738664] [PMID: 23140102]
(b)Maestrelli, F.; Bragagni, M.; Mura, P. Advanced formulations for improving therapies with anti-inflammatory or anesthetic drugs: a review. J. Drug Deliv. Sci. Technol., 2016, 32(Part B), 192-205.
[http://dx.doi.org/10.1016/j.jddst.2015.09.011]
(c)Tsuchiya, H. Anesthetic agents of plant origin: a review of phytochemicals with anesthetic activity. Molecules, 2017, 22(8), 1369.
[http://dx.doi.org/10.3390/molecules22081369] [PMID: 28820497]
(d)Izzo, A.A.; Ernst, E. Interactions between herbal medicines and prescribed drugs: an updated systematic review. Drugs, 2009, 69(13), 1777-1798.
[http://dx.doi.org/10.2165/11317010-000000000-00000] [PMID: 19719333]
[http://dx.doi.org/10.1213/ANE.0000000000002756] [PMID: 29256938]
(b)Cho, Y.J.; Park, Y.J.; Min, S.H.; Ryu, H.G. The effect of general anesthesia on aminotransferase levels in patients with elevated aminotransferase levels: a single-center 5-year retrospective study. Anesth. Analg., 2015, 121(6), 1529-1533.
[http://dx.doi.org/10.1213/ANE.0000000000001030] [PMID: 26496369]
(c)Lemoine, S.; Tritapepe, L.; Hanouz, J.L.; Puddu, P.E. The mechanisms of cardio-protective effects of desflurane and sevoflurane at the time of reperfusion: anaesthetic post-conditioning potentially translatable to humans? Br. J. Anaesth., 2016, 116(4), 456-475.
[http://dx.doi.org/10.1093/bja/aev451] [PMID: 26794826]
[http://dx.doi.org/10.1080/14656566.2017.1280461] [PMID: 28067577]
[http://dx.doi.org/10.1093/bja/aeq190] [PMID: 20650920]
[http://dx.doi.org/10.1213/ANE.0000000000001580] [PMID: 27984246]
(b)Ilfeld, B.M. Continuous peripheral nerve blocks: an update of the published evidence and comparison with novel, alternative analgesic modalities. Anesth. Analg., 2017, 124(1), 308-335.
[http://dx.doi.org/10.1213/ANE.0000000000001581] [PMID: 27749354]
(c)Covarrubias, M.; Barber, A.F.; Carnevale, V.; Treptow, W.; Eckenhoff, R.G. Mechanistic insights into the modulation of voltage-gated ion channels by inhalational anesthetics. Biophys. J., 2015, 109(10), 2003-2011.
[http://dx.doi.org/10.1016/j.bpj.2015.09.032] [PMID: 26588560]
(d)Rice, S.A.; Sbordone, L.; Mazze, R.I. Metabolism by rat hepatic microsomes of fluorinated ether anesthetics following isoniazid administration. Anesthesiology, 1980, 53(6), 489-493.
[http://dx.doi.org/10.1097/00000542-198012000-00009] [PMID: 7457965]
(e)Yuki, K.; Eckenhoff, R.G. Mechanisms of the immunological effects of volatile anesthetics: a review. Anesth. Analg., 2016, 123(2), 326-335.
[http://dx.doi.org/10.1213/ANE.0000000000001403] [PMID: 27308954]
(f)Sedghi, S.; Kutscher, H.L.; Davidson, B.A.; Knight, P.R. Volatile anesthetics and immunity. Immunol. Invest., 2017, 46(8), 793-804.
[http://dx.doi.org/10.1080/08820139.2017.1373905] [PMID: 29058547]
(g)Shabbir, A.; Bianchetti, E.; Nistri, A. The volatile anesthetic methoxyflurane protects motoneurons against excitotoxicity in an in vitro model of rat spinal cord injury. Neuroscience, 2015, 285, 269-280.
[http://dx.doi.org/10.1016/j.neuroscience.2014.11.023] [PMID: 25446348]
(h)Soares, J.H.N.; Brosnan, R.J.; Fukushima, F.B.; Hodges, J.; Liu, H. Solubility of haloether anesthetics in human and animal blood. Anesthesiology, 2012, 117(1), 48-55.
[http://dx.doi.org/10.1097/ALN.0b013e3182557cc9] [PMID: 22510863]
(i) Ton, H.T.; Phan, T.X.; Abramyan, A.M.; Shi, L.; Ahern, G.P. Identification of a putative binding site critical for general anesthetic activation of TRPA1. Proc. Natl. Acad. Sci. USA, 2017, 114(14), 3762-3767.
[http://dx.doi.org/10.1073/pnas.1618144114] [PMID: 28320952]
(j)Zhao, H.; Bu, M.; Li, B.; Zhang, Y. Lipoic acid inhibited desflurane-induced hippocampal neuronal apoptosis through Caspase3 and NF-KappaB dependent pathway. Tissue Cell, 2018, 50, 37-42.
[http://dx.doi.org/10.1016/j.tice.2017.12.001] [PMID: 29429516]
[http://dx.doi.org/10.4155/fmc-2017-0095] [PMID: 28929804]
(b)Meanwell, N.A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem., 2018, 61(14), 5822-5880.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01788] [PMID: 29400967]
(c)Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of fluorine in medicinal chemistry. J. Med. Chem., 2015, 58(21), 8315-8359.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00258] [PMID: 26200936]
(d)Zhu, W.; Wang, J.; Wang, S.; Gu, Z.; Aceña, J.L.; Izawa, K.; Liu, H.; Soloshonok, V.A. Recent advances in the trifluoromethylation methodology and new CF3-containing drugs. J. Fluor. Chem., 2014, 167, 37-54.
[http://dx.doi.org/10.1016/j.jfluchem.2014.06.026]
(e)Hodgetts, K.J.; Combs, K.J.; Elder, A.M.; Harriman, G.C. The role of fluorine in the discovery and optimization of CNS agents: modulation of drug-like properties. Annu. Rep. Med. Chem., 2010, 45, 429-448.
[http://dx.doi.org/10.1021/ja01634a101]
[http://dx.doi.org/10.1021/acs.chemrev.5b00392] [PMID: 26756377]
(b)Ilardi, E.A.; Vitaku, E.; Njardarson, J.T. Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem., 2014, 57(7), 2832-2842.
[http://dx.doi.org/10.1021/jm401375q] [PMID: 24102067]
(c)Fujiwara, T.; O’Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluor. Chem., 2014, 167, 16-29.
[http://dx.doi.org/10.1016/j.jfluchem.2014.06.014]
(d)Jeschke, P. Latest generation of halogen-containing pesticides. Pest Manag. Sci., 2017, 73(6), 1053-1066.
[http://dx.doi.org/10.1002/ps.4540] [PMID: 28145087]
[http://dx.doi.org/10.1002/anie.201206566] [PMID: 23873766]
(b)Yang, X.; Wu, T.; Phipps, R.J.; Toste, F.D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev., 2015, 115(2), 826-870.
[http://dx.doi.org/10.1021/cr500277b] [PMID: 25337896]
(c)Yerien, D.E.; Barata-Vallejo, S.; Postigo, A. Difluoromethylation reactions of organic compounds. Chemistry, 2017, 23(59), 14676-14701.
[http://dx.doi.org/10.1002/chem.201702311] [PMID: 28632338]
(d)Yang, J.; Zhao, H.; He, J.; Zhang, C. Pd-catalyzed Mizoroki-Heck reactions using fluorine-containing agents as the cross-coupling partners. Catalysts, 2018, 8(1), 23.
[http://dx.doi.org/10.3390/catal8010023]
(e)Song, H.X.; Han, Q.Y.; Zhao, C.L.; Zhang, C.P. Fluoroalkylation reactions in aqueous media: a review. Green Chem., 2018, 20(8), 1662-1731.
[http://dx.doi.org/10.1039/C8GC00078F]
[http://dx.doi.org/10.1053/j.sane.2005.04.004]
[http://dx.doi.org/10.1213/01.ane.0000195421.46107.d0] [PMID: 16492826]
[http://dx.doi.org/10.1097/00000542-197107000-00003] [PMID: 4996735]
[http://dx.doi.org/10.1097/ALN.0b013e31816499cc] [PMID: 18292690]
[http://dx.doi.org/10.1213/01.ane.0000260299.36174.a8] [PMID: 17456657]
[http://dx.doi.org/10.1093/bja/85.2.305] [PMID: 10992843]
(b)Eger, E.I., II; Bowland, T.; Ionescu, P.; Laster, M.J.; Fang, Z.; Gong, D.; Sonner, J.; Weiskopf, R.B. Recovery and kinetic characteristics of desflurane and sevoflurane in volunteers after 8-h exposure, including kinetics of degradation products. Anesthesiology, 1997, 87(3), 517-526.
[http://dx.doi.org/10.1097/00000542-199709000-00010] [PMID: 9316955]
(c)Mayer, J.; Boldt, J.; Röhm, K.D.; Scheuermann, K.; Suttner, S.W. Desflurane anesthesia after sevoflurane inhaled induction reduces severity of emergence agitation in children undergoing minor ear-nose-throat surgery compared with sevoflurane induction and maintenance. Anesth. Analg., 2006, 102(2), 400-404.
[http://dx.doi.org/10.1213/01.ane.0000189561.44016.99] [PMID: 16428532]
[http://dx.doi.org/10.2116/analsci.20.1475] [PMID: 15524207]
(b)Xu, Y.; Tang, P.; Zhang, W.; Firestone, L.; Winter, P.M. Fluorine-19 nuclear magnetic resonance imaging and spectroscopy of sevoflurane uptake, distribution, and elimination in rat brain. Anesthesiology, 1995, 83(4), 766-774.
[http://dx.doi.org/10.1097/00000542-199510000-00016] [PMID: 7574056]
(c)Venkatasubramanian, P.N.; Shen, Y.J.; Wyrwicz, A.M. Characterization of the cerebral distribution of general anesthetics in vivo by two-dimensional 19F chemical shift imaging. Magn. Reson. Med., 1996, 35(4), 626-630.
[http://dx.doi.org/10.1002/mrm.1910350426] [PMID: 8992217]
(d)Lockwood, G.G.; Dob, D.P.; Bryant, D.J.; Wilson, J.A.; Sargentoni, J.; Sapsed-Byrne, S.M.; Harris, D.N.F.; Menon, D.K. Magnetic resonance spectroscopy of isoflurane kinetics in humans. Part I: Elimination from the head. Br. J. Anaesth., 1997, 79(5), 581-585.
[http://dx.doi.org/10.1093/bja/79.5.581] [PMID: 9422894]
[http://dx.doi.org/10.1039/C6CS00492J] [PMID: 28608906]
(b)Yang, L.; Dong, T.; Revankar, H.M.; Zhang, C.P. Recent progress on fluorination in aqueous media. Green Chem., 2017, 19(17), 3951-3992.
[http://dx.doi.org/10.1039/C7GC01566F]
[http://dx.doi.org/10.1002/cphc.201300559] [PMID: 24123924]
(b)Ortiz de Montellano, P.R.; Kunze, K.L.; Beilan, H.S.; Wheeler, C. Destruction of cytochrome P-450 by vinyl fluoride, fluroxene, and acetylene. Evidence for a radical intermediate in olefin oxidation. Biochemistry, 1982, 21(6), 1331-1339.
[http://dx.doi.org/10.1021/bi00535a035] [PMID: 6122467]
[http://dx.doi.org/10.1093/bja/29.10.466] [PMID: 13471840]
[http://dx.doi.org/10.1135/cccc19632744]
(b)Otto, S.; Heinrich, K. Process for preparing 1, 1, 1- trifluoro-2-chloro-2-bromethane from 1, 1, 2-trifluoro-1- bromo-2- chlorethane, 1960, US 2959624..
[http://dx.doi.org/10.1002/prac.19630190112]
[http://dx.doi.org/10.1016/j.jfluchem.2011.05.024]
[http://dx.doi.org/10.1039/c2cs15352a] [PMID: 22511113]
[http://dx.doi.org/10.1002/(SICI)1520-636X(1996)8:1<3:AID-CHIR2>3.0.CO;2-M]
[http://dx.doi.org/10.1126/science.1846702] [PMID: 1846702]
(b)Wilen, S.H.; Bunding, K.A.; Kascheres, C.M.; Wieder, M.J. On the optical activity of bromochlorofluoromethane. J. Am. Chem. Soc., 1985, 107(24), 6997-6998.
[http://dx.doi.org/10.1021/ja00310a042]
[http://dx.doi.org/10.1016/S0014-2999(97)01488-X] [PMID: 9543259]
(b)Mather, L.E.; Fryirs, B.L.; Duke, C.C.; Cousins, M.J. Lack of whole-body pharmacokinetic differences of halothane enantiomers in the rat. Anesthesiology, 2000, 92(1), 190-196.
[http://dx.doi.org/10.1097/00000542-200001000-00031] [PMID: 10638916]
[http://dx.doi.org/10.1529/biophysj.107.117853] [PMID: 18310239]
[http://dx.doi.org/10.1002/cphc.200800263] [PMID: 18618890]
[http://dx.doi.org/10.1039/c0cp00771d] [PMID: 20856972]
[http://dx.doi.org/10.1016/j.chemphys.2005.09.003]
[http://dx.doi.org/10.1016/j.jfluchem.2008.10.009]
[http://dx.doi.org/10.1016/0300-483X(94)90131-7] [PMID: 8178321]
[http://dx.doi.org/10.1007/BF03003703] [PMID: 6033507]
(b)Murrin, K.R. Adsorption of halothane by activated charcoal. Further studies. Anaesthesia, 1974, 29(4), 458-461.
[http://dx.doi.org/10.1111/j.1365-2044.1974.tb00687.x] [PMID: 4850446]
(c)Herchl, R. Adsorption of halothane vapour in glass syringes. Can. Anaesth. Soc. J., 1970, 17(6), 630-634.
[http://dx.doi.org/10.1007/BF03004723] [PMID: 5501951]
[http://dx.doi.org/10.1093/bja/31.12.518] [PMID: 13848144]
(b)Burns, T.H.S.; Hall, J.M.; Bracken, A.; Gouldstone, G. Fluorine compounds in anaesthesia (8). Examination of seven derivatives of propane and three of normal butane. Anaesthesia, 1974, 29(4), 435-444.
[http://dx.doi.org/10.1111/j.1365-2044.1974.tb00682.x] [PMID: 4852068]
(c)Burns, T.H.S.; Hall, J.M.; Bracken, A.; Gouldstone, G. Fluorine compounds in anaesthesia (9). Examination of six aliphatic compounds and four ethers. Anaesthesia, 1982, 37(3), 278-284.
[http://dx.doi.org/10.1111/j.1365-2044.1982.tb01099.x] [PMID: 7091602]
[http://dx.doi.org/10.1111/j.1365-2044.1962.tb13474.x] [PMID: 13874992]
[http://dx.doi.org/10.1111/j.1365-2044.1961.tb13370.x] [PMID: 13874991]
[http://dx.doi.org/10.1097/00000542-196009000-00009] [PMID: 13794589]
(b)Frangos, J.; Mikkonen, A.; Down, C. Derivation of an occupational exposure limit for an inhalation analgesic methoxyflurane (Penthrox®). Regul. Toxicol. Pharmacol., 2016, 80, 210-225.
[http://dx.doi.org/10.1016/j.yrtph.2016.05.012] [PMID: 27181451]
[http://dx.doi.org/10.1016/S0022-1139(98)00347-9]
[http://dx.doi.org/10.1097/00000542-197703000-00001] [PMID: 842870]
[http://dx.doi.org/10.1016/j.jfluchem.2013.05.006]
[http://dx.doi.org/10.1016/0022-2860(82)85331-3]
[http://dx.doi.org/10.1016/0584-8539(86)80125-8]
[http://dx.doi.org/10.1097/00000542-196609000-00010] [PMID: 5918999]
(b)Kharasch, E.D.; Schroeder, J.L.; Liggitt, H.D.; Park, S.B.; Whittington, D.; Sheffels, P. New insights into the mechanism of methoxyflurane nephrotoxicity and implications for anesthetic development (part 1): identification of the nephrotoxic metabolic pathway. Anesthesiology, 2006, 105(4), 726-736.
[http://dx.doi.org/10.1097/00000542-200610000-00019] [PMID: 17006072]
[http://dx.doi.org/10.1097/00000542-197012000-00001] [PMID: 5477642]
(b)Kharasch, E.D.; Schroeder, J.L.; Liggitt, H.D.; Ensign, D.; Whittington, D. New insights into the mechanism of methoxyflurane nephrotoxicity and implications for anesthetic development (part 2): identification of nephrotoxic metabolites. Anesthesiology, 2006, 105(4), 737-745.
[http://dx.doi.org/10.1097/00000542-200610000-00020] [PMID: 17006073]
[http://dx.doi.org/10.1001/jama.1971.03180280032006] [PMID: 5107910]
(b)Mazze, R.I.; Cousins, M.J.; Kosek, J.C. Dose-related methoxyflurane nephrotoxicity in rats: a biochemical and pathologic correlation. Anesthesiology, 1972, 36(6), 571-587.
[http://dx.doi.org/10.1097/00000542-197206000-00010] [PMID: 5033780]
(c)Cousins, M.J.; Nishimura, T.G.; Mazze, R.I. Renal effects of low-dose methoxyflurane with cardiopulmonary bypass. Anesthesiology, 1972, 36(3), 286-292.
[http://dx.doi.org/10.1097/00000542-197203000-00017] [PMID: 5011422]
(d)McCarty, L.P. Deuterated analogues of methoxyflurane useful as an anesthetic. Patent No. US 4153636, 1979.
[http://dx.doi.org/10.1177/0960327115578743] [PMID: 25926525]
(b)Coffey, F.; Dissmann, P.; Mirza, K.; Lomax, M. Methoxyflurane analgesia in adult patients in the emergency department: a subgroup analysis of a randomized, double-blind, placebo-controlled study (STOP!). Adv. Ther., 2016, 33(11), 2012-2031.
[http://dx.doi.org/10.1007/s12325-016-0405-7] [PMID: 27567918]
(c)Gaskell, A.L.; Jephcott, C.G.; Smithells, J.R.; Sleigh, J.W. Self-administered methoxyflurane for procedural analgesia: experience in a tertiary Australasian centre. Anaesthesia, 2016, 71(4), 417-423.
[http://dx.doi.org/10.1111/anae.13377] [PMID: 26877169]
[http://dx.doi.org/10.1007/s40261-016-0473-0] [PMID: 27738897]
[http://dx.doi.org/10.1089/ham.2008.1075] [PMID: 19519222]
[http://dx.doi.org/10.1097/00000542-197109000-00004] [PMID: 5095537]
(b)Mazze, R.I. Methoxyflurane revisited: tale of an anesthetic from cradle to grave. Anesthesiology, 2006, 105(4), 843-846.
[http://dx.doi.org/10.1097/00000542-200610000-00031] [PMID: 17006084]
(b)Terrell, R.C.; Speers, L.; Szur, A.J.; Treadwell, J.; Ucciardi, T.R. General anesthetics. 1. Halogenated methyl ethyl ethers as anesthetic agents. J. Med. Chem., 1971, 14(6), 517-519.
[http://dx.doi.org/10.1021/jm00288a014] [PMID: 5091966]
[http://dx.doi.org/10.1021/ja980661k]
[http://dx.doi.org/10.1021/jp073772r] [PMID: 17914793]
[http://dx.doi.org/10.1021/ac00185a010] [PMID: 2751107]
[http://dx.doi.org/10.1007/s13361-017-1616-0] [PMID: 28224395]
[http://dx.doi.org/10.1016/j.cplett.2014.04.057]
[http://dx.doi.org/10.1016/j.chemphys.2015.03.010]
[http://dx.doi.org/10.1016/j.jms.2014.07.002]
[http://dx.doi.org/10.1002/chem.201601201] [PMID: 27258776]
[http://dx.doi.org/10.1016/0584-8539(88)80148-X]
[http://dx.doi.org/10.1016/S0022-2860(00)00515-9]
[http://dx.doi.org/10.1016/S0021-9673(98)00322-7]
[http://dx.doi.org/10.1021/acs.jpca.5b08087] [PMID: 26461140]
[http://dx.doi.org/10.1038/367607a0] [PMID: 7509043]
(b)Sandorfy, C. Weak intermolecular associations and anesthesia. Anesthesiology, 2004, 101(5), 1225-1227.
[http://dx.doi.org/10.1097/00000542-200411000-00024] [PMID: 15505460]
(c)Sandorfy, C. Hydrogen bonding and anaesthesia. J. Mol. Struct., 2004, 708, 3-5.
[http://dx.doi.org/10.1016/j.molstruc.2003.12.071]
[http://dx.doi.org/10.1007/s00894-012-1678-7] [PMID: 23212236]
[http://dx.doi.org/10.1016/j.theochem.2009.06.045]
[http://dx.doi.org/10.1016/j.chemphys.2010.05.017]
[http://dx.doi.org/10.1021/jp205081r] [PMID: 21913646]
[http://dx.doi.org/10.1039/c3cp50385b] [PMID: 23493886]
[http://dx.doi.org/10.1016/j.atmosenv.2006.06.031]
[http://dx.doi.org/10.1002/jlcr.2580180507]
[http://dx.doi.org/10.1016/j.saa.2017.08.045] [PMID: 28843877]
(b)Siegemund, G. Halogenoethers and processes for the preparation thereof.Patent No. GB 1475387,, 1977.
(b)Huang, C.G.; Rozov, L.A.; Halpern, D.F.; Vernice, G.G. Preparation of the isoflurane enantiomers. J. Org. Chem., 1993, 58(26), 7382-7387.
[http://dx.doi.org/10.1021/jo00078a015]
(c)Schurig, V. Salient features of enantioselective gas chromatography: the enantiomeric differentiation of chiral inhalation anesthetics as a representative methodological case in point. Top. Curr. Chem., 2013, 340, 153-207.
[http://dx.doi.org/10.1007/128_2013_440] [PMID: 23666082]
[http://dx.doi.org/10.1021/ja00053a038]
[http://dx.doi.org/10.1126/science.1925602] [PMID: 1925602]
(b)Harris, B.; Moody, E.; Skolnick, P. Isoflurane anesthesia is stereoselective. Eur. J. Pharmacol., 1992, 217(2-3), 215-216.
[http://dx.doi.org/10.1016/0014-2999(92)90875-5] [PMID: 1425941]
[http://dx.doi.org/10.1016/0969-8043(94)90189-9] [PMID: 7812274]
[http://dx.doi.org/10.1021/cb600207d] [PMID: 17163775]
[http://dx.doi.org/10.1021/cn900014m] [PMID: 20228895]
[http://dx.doi.org/10.1021/jp075447+] [PMID: 17956078]
[http://dx.doi.org/10.1088/1752-7155/10/4/046006] [PMID: 27732571]
[http://dx.doi.org/10.1097/00000542-198501000-00012] [PMID: 3966671]
[http://dx.doi.org/10.1007/BF03017411] [PMID: 12374707]
[http://dx.doi.org/10.1021/acs.jced.5b00844]
[http://dx.doi.org/10.1021/acs.jced.7b00079]
[http://dx.doi.org/10.1073/pnas.1609939113] [PMID: 27856739]
[http://dx.doi.org/10.1093/bja/aev203] [PMID: 26089447]
[http://dx.doi.org/10.1021/jp502716m] [PMID: 25303275]
[http://dx.doi.org/10.1529/biophysj.107.116772] [PMID: 17993502]
[http://dx.doi.org//10.3892/mmr.2015.3424] [PMID: 25738734]
[http://dx.doi.org/10.1016/j.bbrc.2008.12.092] [PMID: 19116131]
[http://dx.doi.org/10.1097/WNR.0000000000000931] [PMID: 29227343]
[http://dx.doi.org/10.1097/ALN.0000000000000609] [PMID: 25654436]
[http://dx.doi.org/10.1097/EJA.0b013e328340514a] [PMID: 21107265]
[http://dx.doi.org/10.1016/j.neuro.2017.09.009] [PMID: 28939237]
[http://dx.doi.org/10.4103/2045-9912.202910] [PMID: 28480032]
[http://dx.doi.org/10.1155/2015/242709] [PMID: 26101769]
[http://dx.doi.org/10.1093/bja/aeu408] [PMID: 25501719]
[http://dx.doi.org/10.1042/BSR20170818] [PMID: 28951521]
[http://dx.doi.org/10.1002/nbm.3856] [PMID: 29206326]
[http://dx.doi.org/10.1093/bja/aew124] [PMID: 27199319]
[http://dx.doi.org/10.3892/etm.2017.4157] [PMID: 28413517]
[http://dx.doi.org/10.1016/j.fct.2007.03.005] [PMID: 17459552]
[http://dx.doi.org/10.2131/jts.41.595] [PMID: 27665769]
(b)Terrell, R.C. Anesthetic composition and method of using the same. U.S. Patent No. 4762856. 1988.
(b)Halpern, D.F.; Robin, M.L. Process for the production of polyfluorinated ethers. U.S. Patent No. 4874901,. 2012.
(c)Wu, F.; Ye, W.; Zhao, M.; Wang, Q.; Shen, G. Synthesis method of desflurane. Patent No. CN 102617298 A, 2012.
(b)Cicco, C.F. Process for production of 1,2,2,2- tetrafluoroethyl difluoromethyl ether. Patent No. US 5026924. 1991.
(b)Terrell, R.C. Process for production of 1,2,2,2- tetrafluoro ethyl difluoro methyl ether. Patent No. WO 2006055749A1,. 2006.
(b)Swinson, J. Synthesis of fluorinated ethers.Patent No. WO 2006076324A2,, 2006.
[http://dx.doi.org/10.1021/op100318b]
(b)Kurosawa, S.; Arimura, T.; Sekiya, A. Monofluorination of fluorinated ethers with high-valency metal fluorides. J. Fluor. Chem., 1997, 85(2), 111-114.
[http://dx.doi.org/10.1016/S0022-1139(97)00075-4]
(c)Fowler, R.; Burford, B., III; Hamilton, J., Jr; Sweet, R.; Weber, C.; Kasper, J.; Litant, I. Synthesis of Fluorocarbons. Ind. Eng. Chem., 1947, 39(3), 292-298.
[http://dx.doi.org/10.1021/ie50447a612]
(d)Brandwood, M.; Coe, P.L.; Ely, C.S.; Tatlow, J.C. Polyfluoro diethyl and ethyl methyl ethers: their preparation using cobalt (III) fluoride and potassium tetrafluorocobaltate (III) and their dehydrofluorination. J. Fluor. Chem., 1975, 5(6), 521-535.
[http://dx.doi.org/10.1016/S0022-1139(00)81733-9]
(e)Coe, P.L.; Lennard, M.S.; Tatlow, J.C. Chloropolyfluorodiethyl ethers. J. Fluor. Chem., 1996, 80(2), 87-90.
[http://dx.doi.org/10.1016/S0022-1139(96)03501-4]
(f)Kurosawa, S.; Sekiya, A.; Arimura, T.; Yamada, T. The monofluorination of hydrofluorocarbons over cobalt trifluoride. J. Fluor. Chem., 1993, 62(1), 69-76.
[http://dx.doi.org/10.1016/S0022-1139(00)80082-2]
[http://dx.doi.org/10.1002/1099-0801(200006)14:4<213:AID-BMC975>3.0.CO;2-R] [PMID: 10861731]
[http://dx.doi.org/10.1016/S0957-4166(97)00382-0]
(b)Rozov, L.A.; Huang, C.; Halpern, D.F.; Vernice, G.G. Preparation of purified optical isomers of desflurane. Patent.No. US 5283372A, 1994.
[http://dx.doi.org/10.1016/0040-4020(95)00860-B]
[http://dx.doi.org/10.1016/S0021-9673(97)00024-1] [PMID: 9188178]
[http://dx.doi.org/10.1021/jp990550n]
[http://dx.doi.org/10.1021/jp402023u] [PMID: 23547928]
(b)Di Paulo, T.; Sandorfy, C. Fluorocarbon anaesthetics break hydrogen bonds. Nature, 1974, 252(5483), 471-472.
[http://dx.doi.org/10.1038/252471a0] [PMID: 4431468]
(c)Trudeau, G.; Dumas, J.M.; Dupuis, P.; Guérin, M.; Sandorfy, C. Intermolecular interactions and anesthesia: infrared spectroscopic studies. Top. Curr. Chem., 1980, 93, 91-125.
[http://dx.doi.org/10.1007/3-540-10058-X_9] [PMID: 7008260]
(d)Abraham, M.H.; Lieb, W.R.; Franks, N.P. Role of hydrogen bonding in general anesthesia. J. Pharm. Sci., 1991, 80(8), 719-724.
[http://dx.doi.org/10.1002/jps.2600800802] [PMID: 1791528]
(e)Sandorfy, C. The site of action of general anesthetics-a chemical approach. Collect. Czech. Chem. Commun., 2005, 70(5), 539-549.
[http://dx.doi.org/10.1135/cccc20050539]
[http://dx.doi.org/10.1016/j.cplett.2015.07.063]
[http://dx.doi.org/10.1016/j.saa.2017.04.084] [PMID: 28494378]
[http://dx.doi.org/10.1016/j.cplett.2012.11.011]
[http://dx.doi.org/10.1016/j.cplett.2016.06.031]
[http://dx.doi.org/10.1080/10934529.2016.1181438]] [PMID: 27222158]
[http://dx.doi.org/10.1097/00003643-199805000-00014] [PMID: 9649993]
[http://dx.doi.org/10.1039/C7CC06534E] [PMID: 29210379]
[http://dx.doi.org/10.1007/s12013-008-9022-7] [PMID: 18719861]
[http://dx.doi.org/10.1097/00000542-200212000-00026] [PMID: 12459680]
[http://dx.doi.org/10.1093/bja/aeg186] [PMID: 12925480]
[http://dx.doi.org/10.4103/2045-9912.179338] [PMID: 27826417]
[http://dx.doi.org/10.1016/j.clinbiochem.2006.01.001] [PMID: 16494857]
[http://dx.doi.org/10.1093/bja/aep238] [PMID: 19713280]
[http://dx.doi.org/10.1213/ANE.0000000000001754] [PMID: 28067710]
[http://dx.doi.org/10.1016/j.transproceed.2015.12.034] [PMID: 26915850]
[http://dx.doi.org/10.1093/bja/89.3.486] [PMID: 12402730]
[http://dx.doi.org/10.3892/ijmm.2015.2335] [PMID: 26329693]
[http://dx.doi.org/10.1093/bja/83.3.422] [PMID: 10655913]
[http://dx.doi.org/10.1213/ANE.0000000000001022] [PMID: 26569427]
[http://dx.doi.org/10.15272/ajbps.v5i51.761]
[http://dx.doi.org/10.4103/0019-5049.162985] [PMID: 26379291]
[http://dx.doi.org/10.1177/0300060515591064] [PMID: 26232124]
[http://dx.doi.org/10.18433/J31882] [PMID: 26158285]
[http://dx.doi.org/10.1007/s12035-016-9982-3] [PMID: 27343182]
[http://dx.doi.org/10.1213/ANE.0000000000002729] [PMID: 29293177]
[http://dx.doi.org/10.4103/joacp.JOACP_350_15] [PMID: 29109639]
[http://dx.doi.org/10.1016/j.bbrc.2017.11.017] [PMID: 29113802]
[http://dx.doi.org/10.1093/bja/aeu189] [PMID: 24989774]
[http://dx.doi.org/10.1097/MD.0000000000007977] [PMID: 28858134]
[http://dx.doi.org/10.1007/s12035-017-0787-9] [PMID: 28986748]
(b)Kudzma, L.V.; Lessor, R.A.; Rozov, L.A.; Ramig, K. Method of preparing monofluoromethyl ethers.Patent No. US 5886239,, 1999.
(c)Kudzma, L.V.; Huang, C.G.; Lessor, R.A.; Rozov, L.A.; Afrin, S.; Kallashi, F.; McCutcheon, C.; Ramig, K. Diisopropylethylamine mono(hydrogen fluoride) for nucleophilic fluorination of sensitive substrates: synthesis of sevoflurane. J. Fluor. Chem., 2001, 111(1), 11-16.
[http://dx.doi.org/10.1016/S0022-1139(01)00396-7]
(d)Sebastian, M.B. Processes for the preparation of sevoflurane and desflurane.Patent No. UK GB2547651,, 2016.
(b)Khrimian, A.; Jones, B.M. Production of fluormethyl 2,2,2-trifluoro-1--(trifluoromethyl)ethyl ether. Patent No. WO 2001068577A1,. 2001.
(b)Bieniarz, C.; Behme, C.; Ramakrishna, K. An efficient and environmentally friendly synthesis of the inhalation anesthetic sevoflurane. J. Fluor. Chem., 2000, 106(1), 99-102.
[http://dx.doi.org/10.1016/S0022-1139(00)00316-X]
(c)Ramakrishna, K.; Behme, C.; Schure, R.M.; Bieniarz, C. A safe and efficient process for the synthesis of the inhalation anesthetic sevoflurane. Org. Process Res. Dev., 2000, 4(6), 581-584.
[http://dx.doi.org/10.1021/op000207c]
(d)Fang, R.; Liu, H. Method of synthesizing fluoromethyl- 1,1,1,3,3,3- hexafluoroisopropyl ether. Patent No. CN 101058533A,. 2007.
(e)Li, Y.; Zheng, B.; Feng, H.; Hou, Q.; Zhang, B. Preparation method of sevoflurane. Patent No. CN 103804151A,, 2014.
(f)Wang, T.; Jiang, C.; Guo, Z. Sevoflurane synthesizing method. Patent No. CN 101381289A, 2009.
(g)Moghimi, A.; Vojdani, M.R.; Banan, A.; Mollaei, A.; Mahmoodian, M.; Moosavi, S.M. Reinvestigation of the two-step synthesis of sevoflurane. Iran. J. Pharm. Res., 2015, 14(3), 733-738.
[PMID: 26330861]
(b)Zhang, F.; Shen, X.; Sun, P. Method for preparing sevoflurane. Patent No. CN102199076A,, 2011.
(b)Zhao, Z. Process for synthesizing Sevoflurane. Patent No. CN 101314560B,, 2008.
(b)Sharratt, A.P.; Draper, L.C. Process for the production of fluoromethyl hexafluoroisopropyl ether.Patent No. WO 2002050003A1, , 2002.
(c)Katsuhara, Y.; Takahashi, H.; Ishida, M. Process for producing fluoromethyl hexafluoroisopropyl ether. Patent No. WO 2010125899A1, 2010.
(b)Ohtsuka, T.; Kuroki, Y.; Suzuki, A. Novel Α- fluoromethoxycarboxylic ester, process for producing the α- fluoromethoxy carboxylic ester and process for producing sevoflurane. Patent No. WO 2008004466A1,. 2013.
[http://dx.doi.org/10.1021/ol702500u] [PMID: 18198880]
[http://dx.doi.org/10.1002/jlcr.2580330902]
[http://dx.doi.org/10.1097/00000542-197908000-00003] [PMID: 453609]
(b)Holaday, D.A.; Smith, F.R. Clinical characteristics and biotransformation of sevoflurane in healthy human volunteers. Anesthesiology, 1981, 54(2), 100-106.
[http://dx.doi.org/10.1097/00000542-198102000-00002] [PMID: 6781380]
[http://dx.doi.org/10.1016/S0022-1139(97)00135-8]
[http://dx.doi.org/10.1039/c002123g] [PMID: 20505891]
[http://dx.doi.org/10.1021/jp211949m] [PMID: 22233417]
[http://dx.doi.org/10.1002/1096-987X(200103)22:4<436:AID-JCC1014>3.0.CO;2-U]
[http://dx.doi.org/10.1021/acschembio.7b00222] [PMID: 28333442]
[http://dx.doi.org/10.1021/la049128a] [PMID: 15323471]
[http://dx.doi.org/10.3762/bjoc.10.310] [PMID: 25550759]
[http://dx.doi.org/10.3390/molecules200610264] [PMID: 26046323]
[http://dx.doi.org/10.1016/S0378-4347(01)00239-0] [PMID: 11499484]
(b)Saito, K.; Takayasu, T.; Nishigami, J.; Kondo, T.; Ohtsuji, M.; Lin, Z.; Ohshima, T. Determination of the volatile anesthetics halothane, enflurane, isoflurane, and sevoflurane in biological specimens by pulse-heating GC-MS. J. Anal. Toxicol., 1995, 19(2), 115-119.
[http://dx.doi.org/10.1093/jat/19.2.115] [PMID: 7769780]
(c)Kojima, T.; Ishii, A.; Watanabe-Suzuki, K.; Kurihara, R.; Seno, H.; Kumazawa, T.; Suzuki, O.; Katsumata, Y. Sensitive determination of four general anaesthetics in human whole blood by capillary gas chromatography with cryogenic oven trapping. J. Chromatogr. B Biomed. Sci. Appl., 2001, 762(1), 103-108.
[http://dx.doi.org/10.1016/S0378-4347(01)00348-6] [PMID: 11589453]
(d)Levin, P.D.; Levin, D.; Avidan, A. Medical aerosol propellant interference with infrared anaesthetic gas monitors. Br. J. Anaesth., 2004, 92(6), 865-869.
[http://dx.doi.org/10.1093/bja/aeh154] [PMID: 15121726]
(e)Rasmussen, H.; Thorud, S. Using a refrigerant leak detector to monitor waste gases from halogenated anesthetics. J. Am. Assoc. Lab. Anim. Sci., 2007, 46(5), 64-68.
[PMID: 17877331]
(f)Floate, S.; Hahn, C.E.W. Electrochemical reduction of the anaesthetic agent sevoflurane (fluoromethyl 2,2,2-trifluoro-1-[trifluoromethyl] ethyl ether) in the presence of oxygen and nitrous oxide. Sens. Actuators B Chem., 2004, 99, 236-252.
[http://dx.doi.org/10.1016/j.snb.2003.11.017]
[http://dx.doi.org/10.1016/j.snb.2007.03.026]
[http://dx.doi.org/10.1016/j.sna.2007.07.002]
[http://dx.doi.org/10.1016/j.proeng.2011.12.269]
[http://dx.doi.org/10.1039/C4TB01177E] [PMID: 32262042]
[http://dx.doi.org/10.1039/C4RA05905K]
[http://dx.doi.org/10.1002/cite.201600051]
(b)Hua, Y.; Gargiulo, N.; Peluso, A.; Aprea, P.; Eic´, M.; Caputo, D. Adsorption behavior of halogenated anesthetic and water vapor on Cr‐based MOF (MIL‐101) adsorbent. Part II. Multiple‐cycle breakthrough tests. Che Ing. Tech.,, 2016, 88(11), 1739-1745.
[http://dx.doi.org/10.1002/cite.201600052]
[http://dx.doi.org/10.1093/clinchem/47.2.281] [PMID: 11159777]
[http://dx.doi.org/10.1002/1520-636X(2000)12:10<751:AID-CHIR8>3.0.CO;2-H] [PMID: 11054834]
[http://dx.doi.org/10.1021/jp2077598] [PMID: 22146013]
[http://dx.doi.org/10.1007/s00894-013-1977-7] [PMID: 24022782]
[http://dx.doi.org/10.1016/j.cplett.2017.12.059]
[http://dx.doi.org/10.1016/j.cplett.2018.02.044]
[http://dx.doi.org/10.1021/bi050896q] [PMID: 16142911]
[http://dx.doi.org/10.1097/00000542-199907000-00026] [PMID: 10422943]
[PMID: 25973096]
[http://dx.doi.org/10.1016/j.aca.2017.11.052] [PMID: 30292318]
[http://dx.doi.org/10.1213/ANE.0000000000000736] [PMID: 25851179]
[http://dx.doi.org/10.1097/ALN.0b013e31817f5baf] [PMID: 18648232]
[http://dx.doi.org/10.3892/br.2015.428] [PMID: 26137246]
[http://dx.doi.org/10.1186/s12871-016-0227-9] [PMID: 27538808]
[http://dx.doi.org/10.1186/s12871-017-0326-2] [PMID: 28259141]
[http://dx.doi.org/10.1186/s12871-017-0368-5] [PMID: 28615047]
[http://dx.doi.org/10.1007/s12192-018-0904-3] [PMID: 29728856]
[http://dx.doi.org/10.1111/cns.12823] [PMID: 29427321]
[http://dx.doi.org/10.3325/cmj.2014.55.628] [PMID: 25559834]
[http://dx.doi.org/10.1097/EJA.0b013e32832a0c61] [PMID: 19522051]
[PMID: 27785338]
[PMID: 26629039]
[http://dx.doi.org/10.1159/000485008] [PMID: 29141245]
[http://dx.doi.org/10.1016/j.bbr.2018.03.031] [PMID: 29574103]
[http://dx.doi.org/10.1113/jphysiol.2012.233965] [PMID: 22674720]
[http://dx.doi.org/10.1016/j.lfs.2017.11.025] [PMID: 29155302]
[http://dx.doi.org/10.1007/s12031-018-1029-y] [PMID: 29352445]
[http://dx.doi.org/10.3892/ijmm.2016.2797] [PMID: 27840895]
[http://dx.doi.org/10.3892/mmr.2017.6219] [PMID: 28260068]
[PMID: 26885010]
[http://dx.doi.org/10.1016/j.brainres.2017.10.019] [PMID: 29074343]
[http://dx.doi.org/10.1016/j.ejphar.2009.09.022] [PMID: 19765574]
[http://dx.doi.org/10.3892/etm.2015.2938] [PMID: 26893661]
[http://dx.doi.org/10.1016/j.etp.2008.12.011] [PMID: 19181502]
[http://dx.doi.org/10.1177/0394632017739530] [PMID: 29087224]
[http://dx.doi.org/10.4103/2045-9912.215748] [PMID: 29152212]
(b)Ong Sio, L.C.L.; Dela Cruz, R.G.C.; Bautista, A.F. A comparison of renal responses to sevoflurane and isoflurane in patients undergoing donor nephrectomy: a randomized controlled trial. Med. Gas Res., 2017, 7(1), 19-27.
[http://dx.doi.org/10.4103/2045-9912.202906] [PMID: 28480028]
[http://dx.doi.org/10.1124/mol.117.108290] [PMID: 28325748]
[http://dx.doi.org/10.1016/j.neuropharm.2018.04.004] [PMID: 29627444]
[http://dx.doi.org/10.7860/JCDR/2017/23565.9643] [PMID: 28571236]
[http://dx.doi.org/10.1213/01.ane.0000270207.84083.ba] [PMID: 17646484]
[http://dx.doi.org/10.1111/j.1365-2044.1961.tb13424.x] [PMID: 13874993]
(b)Speers, L.; Szur, A.J.; Terrell, R.C.; Treadwell, J.; Ucciardi, T.U. General anesthetics. 2. Halogenated methyl isopropyl ethers. J. Med. Chem., 1971, 14(17), 593-595.
[http://dx.doi.org/10.1021/jm00289a009] [PMID: 5164450]
(c)Terrell, R.C.; Speers, L.; Szur, A.J.; Ucciardi, T.; Vitcha, J.F. General anesthetics. 3. Fluorinated methyl ethyl ethers as anesthetic agents. J. Med. Chem., 1972, 15(6), 604-606.
[http://dx.doi.org/10.1021/jm00276a008] [PMID: 5030924]
(d)Koblin, D.D.; Laster, M.J.; Ionescu, P.; Gong, D.; Eger, E.I., II; Halsey, M.J.; Hudlicky, T. Polyhalogenated methyl ethyl ethers: solubilities and anesthetic properties. Anesth. Analg., 1999, 88(5), 1161-1167.
[http://dx.doi.org/10.1213/00000539-199905000-00036] [PMID: 10320188]
[http://dx.doi.org/10.1021/jo00150a019]
(b)Randolph, B.B.; DesMarteau, D.D. Synthesis of functionalized polyfluoroalkyl hypochlorites and fluoroxy compounds and their reactions with some fluoroalkenes. J. Fluor. Chem., 1993, 64, 129-149.
[http://dx.doi.org/10.1016/S0022-1139(00)80070-6]
[http://dx.doi.org/10.1021/jm00276a009] [PMID: 5030925]
[http://dx.doi.org/10.1016/S0022-1139(99)00302-4]
[http://dx.doi.org/10.1021/ja00868a009]
(b)Bissell, E.R.; Fields, D.B. Addition of acetaldehyde to fluoroethylenes1. J. Org. Chem., 1964, 29(1), 249-252.
[http://dx.doi.org/10.1021/jo01024a523]
(c)Barlow, M.G.; Coles, B.; Haszeldine, R.N. Heterocyclic polyfluoro-compounds. Part 33. Photochemical oxetane formation from fluoro ketones and perfluoro aldehydes and 1,2-difluoroethylene. J. Chem. Soc., Perkin Trans. 1, 1980, 10, 2258-2267.
[http://dx.doi.org/10.1039/p19800002258]
(d)Tarrant, P.; Bull, R.N. The reaction of some 3- and 4-fluorooexetanes with acids. J. Fluor. Chem., 1988, 40, 201-215.
[http://dx.doi.org/10.1016/S0022-1139(00)83066-3]
[http://dx.doi.org/10.1002/jhet.5570020329]
[http://dx.doi.org/10.1021/jo00110a041]
[http://dx.doi.org/10.1021/jp908228h] [PMID: 19950919]
[http://dx.doi.org/10.1111/j.1365-2044.1964.tb00364.x] [PMID: 14150671]
[http://dx.doi.org/10.1111/j.1365-2044.1966.tb02563.x] [PMID: 5901796]
[http://dx.doi.org/10.1002/cmdc.201600325] [PMID: 27629993]
[http://dx.doi.org/10.1021/acs.jpcb.7b02079] [PMID: 28548837]
(b)Yip, G.M.S.; Chen, Z-W.; Edge, C.J.; Smith, E.H.; Dickinson, R.; Hohenester, E.; Townsend, R.R.; Fuchs, K.; Sieghart, W.; Evers, A.S.; Franks, N.P. A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nat. Chem. Biol., 2013, 9(11), 715-720.
[http://dx.doi.org/10.1038/nchembio.1340] [PMID: 24056400]
(c)Zhang, H.; Xu, X.; Chen, Y.; Qiu, Y.; Liu, X.; Liu, B.F.; Zhang, G. Synthesis and evaluation of fluorine-substituted phenyl acetate derivatives as ultra-short recovery sedative/hypnotic agents. PLoS One, 2014, 9(5) e96518
[http://dx.doi.org/10.1371/journal.pone.0096518] [PMID: 24796695]
(d)Baker, M.T.; Naguib, M. Fluorine-substituted alkyl phenol compounds and their uses.Patent No. US 20030176513A1,, 2003.
(e)Baker, M.T. Hydrofluoroalkyl phenols having anesthetic properties.Patent No. WO 2008008492A2,, 2008.
(f)Lu, H. One kind anesthesia class compound and its production and use.Patent No. CN 107556167A, 2018.
(g)Li, Q.; Wang, T.; Wu, T.; Zeng, L.; Wang, Y.; Mao, W.; Chen, G. Water-soluble propofol derivatives and uses thereof. Patent No. WO 2015120821A1, 2015.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.01.014] [PMID: 19423012]
(b)Erlandsson, M.; Hall, H.; Långström, B. Synthesis and in vitro evaluation of 18F‐labelled di‐ and tri(ethylene glycol) metomidate esters. J. Labelled Comp. Radiopharm., 2009, 52(7), 278-285.
[http://dx.doi.org/10.1002/jlcr.1597]
(c)Wadsak, W.; Mitterhauser, M. Synthesis of [18F]FETO, a novel potential 11-β hydroxylase inhibitor. J. Labelled Comp. Radiopharm., 2003, 46(4), 379-388.
[http://dx.doi.org/10.1002/jlcr.680]
(d)Mitterhauser, M.; Wadsak, W.; Wabnegger, L.; Sieghart, W.; Viernstein, H.; Kletter, K.; Dudczak, R. In vivo and in vitro evaluation of [18F]FETO with respect to the adrenocortical and GABAergic system in rats. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(10), 1398-1401.
[http://dx.doi.org/10.1007/s00259-003-1252-8] [PMID: 12845489]
(e)Li, Q.; Wang, T.; Zeng, L.; Zhang, G.; Xu, X.; Ren, L. Etomidate derivative and intermediate, preparation method and use thereof. WO 2017059827A1,. 2017.
[http://dx.doi.org/10.2165/00002018-199716030-00002] [PMID: 9098654]
[http://dx.doi.org/10.3762/bjoc.12.76] [PMID: 27340468]
[http://dx.doi.org/10.1073/pnas.92.24.11076] [PMID: 7479940]