Abstract
Studies on fluorinated inhalation anesthetics, including synthesis, physical chemistry and pharmacology, have been summarized in this review. Retrospecting the history of inhalation anesthetics revealed their increasing reliance on fluorine and ether structures. Halothane causes a rare but severe immune-based hepatotoxicity, which was replaced by enflurane in the 1970s. Isoflurane replaced enflurane in the 1980s, showing modest advantages (e.g. lower solubility, better metabolic stability, and without convulsive predisposition). Desflurane and sevoflurane came into use in the 1990s, which are better anesthetics than isoflurane (less hepatotoxicity, lower solubility, and/or markedly decreased pungency). However, they are still less than perfect. To gain more ideal inhalation anesthetics, a large number of fluorinated halocarbons, polyfluorocycloalkanes, polyfluorocycloalkenes, fluoroarenes, and polyfluorooxetanes, were prepared and their potency and toxicity were evaluated. Although the pharmacology studies suggested that some of these agents produced anesthesia, no further studies were continued on these compounds because they showed obvious lacking as anesthetics. Moreover, the anesthetic activity cannot be simply predicted from the molecular structures but has to be inferred from the experiments. Several regularities were found by experimental studies: 1) the potency and toxicity of the saturated linear chain halogenated ether are enhanced when its molecular weight is increased; 2) the margin of safety decreases and the recovery time is prolonged when the boiling point of the candidate increases; and 3) compounds with an asymmetric carbon terminal exhibit good anesthesia. Nevertheless, the development of new inhalation anesthetics, better than desflurane and sevoflurane, is still challenging not only because of the poor structure/activity relationship known so far but also due to synthetic issues.
Keywords: Fluorine, anesthetics, inhalation, volatile, pharmacology, halocarbons.
[http://dx.doi.org/10.1038/nrn.2016.128] [PMID: 27752068]
(b)Kallman, M.J. General Anesthetics. Drug Discovery and Evaluation: Pharmacological Assays, 2016, 1593-1607.
[http://dx.doi.org/10.1007/978-3-319-05392-9_34]
(c)Hartung, H.P. Local Anesthetic Activity. Drug Discovery and Evaluation: Pharmacological Assays, 2016, 1717- 1766,
[http://dx.doi.org/10.1007/978-3-319-05392-9_38]
[http://dx.doi.org/10.1517/17425247.2012.738664] [PMID: 23140102]
(b)Maestrelli, F.; Bragagni, M.; Mura, P. Advanced formulations for improving therapies with anti-inflammatory or anesthetic drugs: a review. J. Drug Deliv. Sci. Technol., 2016, 32(Part B), 192-205.
[http://dx.doi.org/10.1016/j.jddst.2015.09.011]
(c)Tsuchiya, H. Anesthetic agents of plant origin: a review of phytochemicals with anesthetic activity. Molecules, 2017, 22(8), 1369.
[http://dx.doi.org/10.3390/molecules22081369] [PMID: 28820497]
(d)Izzo, A.A.; Ernst, E. Interactions between herbal medicines and prescribed drugs: an updated systematic review. Drugs, 2009, 69(13), 1777-1798.
[http://dx.doi.org/10.2165/11317010-000000000-00000] [PMID: 19719333]
[http://dx.doi.org/10.1213/ANE.0000000000002756] [PMID: 29256938]
(b)Cho, Y.J.; Park, Y.J.; Min, S.H.; Ryu, H.G. The effect of general anesthesia on aminotransferase levels in patients with elevated aminotransferase levels: a single-center 5-year retrospective study. Anesth. Analg., 2015, 121(6), 1529-1533.
[http://dx.doi.org/10.1213/ANE.0000000000001030] [PMID: 26496369]
(c)Lemoine, S.; Tritapepe, L.; Hanouz, J.L.; Puddu, P.E. The mechanisms of cardio-protective effects of desflurane and sevoflurane at the time of reperfusion: anaesthetic post-conditioning potentially translatable to humans? Br. J. Anaesth., 2016, 116(4), 456-475.
[http://dx.doi.org/10.1093/bja/aev451] [PMID: 26794826]
[http://dx.doi.org/10.1080/14656566.2017.1280461] [PMID: 28067577]
[http://dx.doi.org/10.1093/bja/aeq190] [PMID: 20650920]
[http://dx.doi.org/10.1213/ANE.0000000000001580] [PMID: 27984246]
(b)Ilfeld, B.M. Continuous peripheral nerve blocks: an update of the published evidence and comparison with novel, alternative analgesic modalities. Anesth. Analg., 2017, 124(1), 308-335.
[http://dx.doi.org/10.1213/ANE.0000000000001581] [PMID: 27749354]
(c)Covarrubias, M.; Barber, A.F.; Carnevale, V.; Treptow, W.; Eckenhoff, R.G. Mechanistic insights into the modulation of voltage-gated ion channels by inhalational anesthetics. Biophys. J., 2015, 109(10), 2003-2011.
[http://dx.doi.org/10.1016/j.bpj.2015.09.032] [PMID: 26588560]
(d)Rice, S.A.; Sbordone, L.; Mazze, R.I. Metabolism by rat hepatic microsomes of fluorinated ether anesthetics following isoniazid administration. Anesthesiology, 1980, 53(6), 489-493.
[http://dx.doi.org/10.1097/00000542-198012000-00009] [PMID: 7457965]
(e)Yuki, K.; Eckenhoff, R.G. Mechanisms of the immunological effects of volatile anesthetics: a review. Anesth. Analg., 2016, 123(2), 326-335.
[http://dx.doi.org/10.1213/ANE.0000000000001403] [PMID: 27308954]
(f)Sedghi, S.; Kutscher, H.L.; Davidson, B.A.; Knight, P.R. Volatile anesthetics and immunity. Immunol. Invest., 2017, 46(8), 793-804.
[http://dx.doi.org/10.1080/08820139.2017.1373905] [PMID: 29058547]
(g)Shabbir, A.; Bianchetti, E.; Nistri, A. The volatile anesthetic methoxyflurane protects motoneurons against excitotoxicity in an in vitro model of rat spinal cord injury. Neuroscience, 2015, 285, 269-280.
[http://dx.doi.org/10.1016/j.neuroscience.2014.11.023] [PMID: 25446348]
(h)Soares, J.H.N.; Brosnan, R.J.; Fukushima, F.B.; Hodges, J.; Liu, H. Solubility of haloether anesthetics in human and animal blood. Anesthesiology, 2012, 117(1), 48-55.
[http://dx.doi.org/10.1097/ALN.0b013e3182557cc9] [PMID: 22510863]
(i) Ton, H.T.; Phan, T.X.; Abramyan, A.M.; Shi, L.; Ahern, G.P. Identification of a putative binding site critical for general anesthetic activation of TRPA1. Proc. Natl. Acad. Sci. USA, 2017, 114(14), 3762-3767.
[http://dx.doi.org/10.1073/pnas.1618144114] [PMID: 28320952]
(j)Zhao, H.; Bu, M.; Li, B.; Zhang, Y. Lipoic acid inhibited desflurane-induced hippocampal neuronal apoptosis through Caspase3 and NF-KappaB dependent pathway. Tissue Cell, 2018, 50, 37-42.
[http://dx.doi.org/10.1016/j.tice.2017.12.001] [PMID: 29429516]
[http://dx.doi.org/10.4155/fmc-2017-0095] [PMID: 28929804]
(b)Meanwell, N.A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem., 2018, 61(14), 5822-5880.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01788] [PMID: 29400967]
(c)Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of fluorine in medicinal chemistry. J. Med. Chem., 2015, 58(21), 8315-8359.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00258] [PMID: 26200936]
(d)Zhu, W.; Wang, J.; Wang, S.; Gu, Z.; Aceña, J.L.; Izawa, K.; Liu, H.; Soloshonok, V.A. Recent advances in the trifluoromethylation methodology and new CF3-containing drugs. J. Fluor. Chem., 2014, 167, 37-54.
[http://dx.doi.org/10.1016/j.jfluchem.2014.06.026]
(e)Hodgetts, K.J.; Combs, K.J.; Elder, A.M.; Harriman, G.C. The role of fluorine in the discovery and optimization of CNS agents: modulation of drug-like properties. Annu. Rep. Med. Chem., 2010, 45, 429-448.
[http://dx.doi.org/10.1021/ja01634a101]
[http://dx.doi.org/10.1021/acs.chemrev.5b00392] [PMID: 26756377]
(b)Ilardi, E.A.; Vitaku, E.; Njardarson, J.T. Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem., 2014, 57(7), 2832-2842.
[http://dx.doi.org/10.1021/jm401375q] [PMID: 24102067]
(c)Fujiwara, T.; O’Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluor. Chem., 2014, 167, 16-29.
[http://dx.doi.org/10.1016/j.jfluchem.2014.06.014]
(d)Jeschke, P. Latest generation of halogen-containing pesticides. Pest Manag. Sci., 2017, 73(6), 1053-1066.
[http://dx.doi.org/10.1002/ps.4540] [PMID: 28145087]
[http://dx.doi.org/10.1002/anie.201206566] [PMID: 23873766]
(b)Yang, X.; Wu, T.; Phipps, R.J.; Toste, F.D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev., 2015, 115(2), 826-870.
[http://dx.doi.org/10.1021/cr500277b] [PMID: 25337896]
(c)Yerien, D.E.; Barata-Vallejo, S.; Postigo, A. Difluoromethylation reactions of organic compounds. Chemistry, 2017, 23(59), 14676-14701.
[http://dx.doi.org/10.1002/chem.201702311] [PMID: 28632338]
(d)Yang, J.; Zhao, H.; He, J.; Zhang, C. Pd-catalyzed Mizoroki-Heck reactions using fluorine-containing agents as the cross-coupling partners. Catalysts, 2018, 8(1), 23.
[http://dx.doi.org/10.3390/catal8010023]
(e)Song, H.X.; Han, Q.Y.; Zhao, C.L.; Zhang, C.P. Fluoroalkylation reactions in aqueous media: a review. Green Chem., 2018, 20(8), 1662-1731.
[http://dx.doi.org/10.1039/C8GC00078F]
[http://dx.doi.org/10.1053/j.sane.2005.04.004]
[http://dx.doi.org/10.1213/01.ane.0000195421.46107.d0] [PMID: 16492826]
[http://dx.doi.org/10.1097/00000542-197107000-00003] [PMID: 4996735]
[http://dx.doi.org/10.1097/ALN.0b013e31816499cc] [PMID: 18292690]
[http://dx.doi.org/10.1213/01.ane.0000260299.36174.a8] [PMID: 17456657]
[http://dx.doi.org/10.1093/bja/85.2.305] [PMID: 10992843]
(b)Eger, E.I., II; Bowland, T.; Ionescu, P.; Laster, M.J.; Fang, Z.; Gong, D.; Sonner, J.; Weiskopf, R.B. Recovery and kinetic characteristics of desflurane and sevoflurane in volunteers after 8-h exposure, including kinetics of degradation products. Anesthesiology, 1997, 87(3), 517-526.
[http://dx.doi.org/10.1097/00000542-199709000-00010] [PMID: 9316955]
(c)Mayer, J.; Boldt, J.; Röhm, K.D.; Scheuermann, K.; Suttner, S.W. Desflurane anesthesia after sevoflurane inhaled induction reduces severity of emergence agitation in children undergoing minor ear-nose-throat surgery compared with sevoflurane induction and maintenance. Anesth. Analg., 2006, 102(2), 400-404.
[http://dx.doi.org/10.1213/01.ane.0000189561.44016.99] [PMID: 16428532]
[http://dx.doi.org/10.2116/analsci.20.1475] [PMID: 15524207]
(b)Xu, Y.; Tang, P.; Zhang, W.; Firestone, L.; Winter, P.M. Fluorine-19 nuclear magnetic resonance imaging and spectroscopy of sevoflurane uptake, distribution, and elimination in rat brain. Anesthesiology, 1995, 83(4), 766-774.
[http://dx.doi.org/10.1097/00000542-199510000-00016] [PMID: 7574056]
(c)Venkatasubramanian, P.N.; Shen, Y.J.; Wyrwicz, A.M. Characterization of the cerebral distribution of general anesthetics in vivo by two-dimensional 19F chemical shift imaging. Magn. Reson. Med., 1996, 35(4), 626-630.
[http://dx.doi.org/10.1002/mrm.1910350426] [PMID: 8992217]
(d)Lockwood, G.G.; Dob, D.P.; Bryant, D.J.; Wilson, J.A.; Sargentoni, J.; Sapsed-Byrne, S.M.; Harris, D.N.F.; Menon, D.K. Magnetic resonance spectroscopy of isoflurane kinetics in humans. Part I: Elimination from the head. Br. J. Anaesth., 1997, 79(5), 581-585.
[http://dx.doi.org/10.1093/bja/79.5.581] [PMID: 9422894]
[http://dx.doi.org/10.1039/C6CS00492J] [PMID: 28608906]
(b)Yang, L.; Dong, T.; Revankar, H.M.; Zhang, C.P. Recent progress on fluorination in aqueous media. Green Chem., 2017, 19(17), 3951-3992.
[http://dx.doi.org/10.1039/C7GC01566F]
[http://dx.doi.org/10.1002/cphc.201300559] [PMID: 24123924]
(b)Ortiz de Montellano, P.R.; Kunze, K.L.; Beilan, H.S.; Wheeler, C. Destruction of cytochrome P-450 by vinyl fluoride, fluroxene, and acetylene. Evidence for a radical intermediate in olefin oxidation. Biochemistry, 1982, 21(6), 1331-1339.
[http://dx.doi.org/10.1021/bi00535a035] [PMID: 6122467]
[http://dx.doi.org/10.1093/bja/29.10.466] [PMID: 13471840]
[http://dx.doi.org/10.1135/cccc19632744]
(b)Otto, S.; Heinrich, K. Process for preparing 1, 1, 1- trifluoro-2-chloro-2-bromethane from 1, 1, 2-trifluoro-1- bromo-2- chlorethane, 1960, US 2959624..
[http://dx.doi.org/10.1002/prac.19630190112]
[http://dx.doi.org/10.1016/j.jfluchem.2011.05.024]
[http://dx.doi.org/10.1039/c2cs15352a] [PMID: 22511113]
[http://dx.doi.org/10.1002/(SICI)1520-636X(1996)8:1<3:AID-CHIR2>3.0.CO;2-M]
[http://dx.doi.org/10.1126/science.1846702] [PMID: 1846702]
(b)Wilen, S.H.; Bunding, K.A.; Kascheres, C.M.; Wieder, M.J. On the optical activity of bromochlorofluoromethane. J. Am. Chem. Soc., 1985, 107(24), 6997-6998.
[http://dx.doi.org/10.1021/ja00310a042]
[http://dx.doi.org/10.1016/S0014-2999(97)01488-X] [PMID: 9543259]
(b)Mather, L.E.; Fryirs, B.L.; Duke, C.C.; Cousins, M.J. Lack of whole-body pharmacokinetic differences of halothane enantiomers in the rat. Anesthesiology, 2000, 92(1), 190-196.
[http://dx.doi.org/10.1097/00000542-200001000-00031] [PMID: 10638916]
[http://dx.doi.org/10.1529/biophysj.107.117853] [PMID: 18310239]
[http://dx.doi.org/10.1002/cphc.200800263] [PMID: 18618890]
[http://dx.doi.org/10.1039/c0cp00771d] [PMID: 20856972]
[http://dx.doi.org/10.1016/j.chemphys.2005.09.003]
[http://dx.doi.org/10.1016/j.jfluchem.2008.10.009]
[http://dx.doi.org/10.1016/0300-483X(94)90131-7] [PMID: 8178321]
[http://dx.doi.org/10.1007/BF03003703] [PMID: 6033507]
(b)Murrin, K.R. Adsorption of halothane by activated charcoal. Further studies. Anaesthesia, 1974, 29(4), 458-461.
[http://dx.doi.org/10.1111/j.1365-2044.1974.tb00687.x] [PMID: 4850446]
(c)Herchl, R. Adsorption of halothane vapour in glass syringes. Can. Anaesth. Soc. J., 1970, 17(6), 630-634.
[http://dx.doi.org/10.1007/BF03004723] [PMID: 5501951]
[http://dx.doi.org/10.1093/bja/31.12.518] [PMID: 13848144]
(b)Burns, T.H.S.; Hall, J.M.; Bracken, A.; Gouldstone, G. Fluorine compounds in anaesthesia (8). Examination of seven derivatives of propane and three of normal butane. Anaesthesia, 1974, 29(4), 435-444.
[http://dx.doi.org/10.1111/j.1365-2044.1974.tb00682.x] [PMID: 4852068]
(c)Burns, T.H.S.; Hall, J.M.; Bracken, A.; Gouldstone, G. Fluorine compounds in anaesthesia (9). Examination of six aliphatic compounds and four ethers. Anaesthesia, 1982, 37(3), 278-284.
[http://dx.doi.org/10.1111/j.1365-2044.1982.tb01099.x] [PMID: 7091602]
[http://dx.doi.org/10.1111/j.1365-2044.1962.tb13474.x] [PMID: 13874992]
[http://dx.doi.org/10.1111/j.1365-2044.1961.tb13370.x] [PMID: 13874991]
[http://dx.doi.org/10.1097/00000542-196009000-00009] [PMID: 13794589]
(b)Frangos, J.; Mikkonen, A.; Down, C. Derivation of an occupational exposure limit for an inhalation analgesic methoxyflurane (Penthrox®). Regul. Toxicol. Pharmacol., 2016, 80, 210-225.
[http://dx.doi.org/10.1016/j.yrtph.2016.05.012] [PMID: 27181451]
[http://dx.doi.org/10.1016/S0022-1139(98)00347-9]
[http://dx.doi.org/10.1097/00000542-197703000-00001] [PMID: 842870]
[http://dx.doi.org/10.1016/j.jfluchem.2013.05.006]
[http://dx.doi.org/10.1016/0022-2860(82)85331-3]
[http://dx.doi.org/10.1016/0584-8539(86)80125-8]
[http://dx.doi.org/10.1097/00000542-196609000-00010] [PMID: 5918999]
(b)Kharasch, E.D.; Schroeder, J.L.; Liggitt, H.D.; Park, S.B.; Whittington, D.; Sheffels, P. New insights into the mechanism of methoxyflurane nephrotoxicity and implications for anesthetic development (part 1): identification of the nephrotoxic metabolic pathway. Anesthesiology, 2006, 105(4), 726-736.
[http://dx.doi.org/10.1097/00000542-200610000-00019] [PMID: 17006072]
[http://dx.doi.org/10.1097/00000542-197012000-00001] [PMID: 5477642]
(b)Kharasch, E.D.; Schroeder, J.L.; Liggitt, H.D.; Ensign, D.; Whittington, D. New insights into the mechanism of methoxyflurane nephrotoxicity and implications for anesthetic development (part 2): identification of nephrotoxic metabolites. Anesthesiology, 2006, 105(4), 737-745.
[http://dx.doi.org/10.1097/00000542-200610000-00020] [PMID: 17006073]
[http://dx.doi.org/10.1001/jama.1971.03180280032006] [PMID: 5107910]
(b)Mazze, R.I.; Cousins, M.J.; Kosek, J.C. Dose-related methoxyflurane nephrotoxicity in rats: a biochemical and pathologic correlation. Anesthesiology, 1972, 36(6), 571-587.
[http://dx.doi.org/10.1097/00000542-197206000-00010] [PMID: 5033780]
(c)Cousins, M.J.; Nishimura, T.G.; Mazze, R.I. Renal effects of low-dose methoxyflurane with cardiopulmonary bypass. Anesthesiology, 1972, 36(3), 286-292.
[http://dx.doi.org/10.1097/00000542-197203000-00017] [PMID: 5011422]
(d)McCarty, L.P. Deuterated analogues of methoxyflurane useful as an anesthetic. Patent No. US 4153636, 1979.
[http://dx.doi.org/10.1177/0960327115578743] [PMID: 25926525]
(b)Coffey, F.; Dissmann, P.; Mirza, K.; Lomax, M. Methoxyflurane analgesia in adult patients in the emergency department: a subgroup analysis of a randomized, double-blind, placebo-controlled study (STOP!). Adv. Ther., 2016, 33(11), 2012-2031.
[http://dx.doi.org/10.1007/s12325-016-0405-7] [PMID: 27567918]
(c)Gaskell, A.L.; Jephcott, C.G.; Smithells, J.R.; Sleigh, J.W. Self-administered methoxyflurane for procedural analgesia: experience in a tertiary Australasian centre. Anaesthesia, 2016, 71(4), 417-423.
[http://dx.doi.org/10.1111/anae.13377] [PMID: 26877169]
[http://dx.doi.org/10.1007/s40261-016-0473-0] [PMID: 27738897]
[http://dx.doi.org/10.1089/ham.2008.1075] [PMID: 19519222]
[http://dx.doi.org/10.1097/00000542-197109000-00004] [PMID: 5095537]
(b)Mazze, R.I. Methoxyflurane revisited: tale of an anesthetic from cradle to grave. Anesthesiology, 2006, 105(4), 843-846.
[http://dx.doi.org/10.1097/00000542-200610000-00031] [PMID: 17006084]
(b)Terrell, R.C.; Speers, L.; Szur, A.J.; Treadwell, J.; Ucciardi, T.R. General anesthetics. 1. Halogenated methyl ethyl ethers as anesthetic agents. J. Med. Chem., 1971, 14(6), 517-519.
[http://dx.doi.org/10.1021/jm00288a014] [PMID: 5091966]
[http://dx.doi.org/10.1021/ja980661k]
[http://dx.doi.org/10.1021/jp073772r] [PMID: 17914793]
[http://dx.doi.org/10.1021/ac00185a010] [PMID: 2751107]
[http://dx.doi.org/10.1007/s13361-017-1616-0] [PMID: 28224395]
[http://dx.doi.org/10.1016/j.cplett.2014.04.057]
[http://dx.doi.org/10.1016/j.chemphys.2015.03.010]
[http://dx.doi.org/10.1016/j.jms.2014.07.002]
[http://dx.doi.org/10.1002/chem.201601201] [PMID: 27258776]
[http://dx.doi.org/10.1016/0584-8539(88)80148-X]
[http://dx.doi.org/10.1016/S0022-2860(00)00515-9]
[http://dx.doi.org/10.1016/S0021-9673(98)00322-7]
[http://dx.doi.org/10.1021/acs.jpca.5b08087] [PMID: 26461140]
[http://dx.doi.org/10.1038/367607a0] [PMID: 7509043]
(b)Sandorfy, C. Weak intermolecular associations and anesthesia. Anesthesiology, 2004, 101(5), 1225-1227.
[http://dx.doi.org/10.1097/00000542-200411000-00024] [PMID: 15505460]
(c)Sandorfy, C. Hydrogen bonding and anaesthesia. J. Mol. Struct., 2004, 708, 3-5.
[http://dx.doi.org/10.1016/j.molstruc.2003.12.071]
[http://dx.doi.org/10.1007/s00894-012-1678-7] [PMID: 23212236]
[http://dx.doi.org/10.1016/j.theochem.2009.06.045]
[http://dx.doi.org/10.1016/j.chemphys.2010.05.017]
[http://dx.doi.org/10.1021/jp205081r] [PMID: 21913646]
[http://dx.doi.org/10.1039/c3cp50385b] [PMID: 23493886]
[http://dx.doi.org/10.1016/j.atmosenv.2006.06.031]
[http://dx.doi.org/10.1002/jlcr.2580180507]
[http://dx.doi.org/10.1016/j.saa.2017.08.045] [PMID: 28843877]
(b)Siegemund, G. Halogenoethers and processes for the preparation thereof.Patent No. GB 1475387,, 1977.
(b)Huang, C.G.; Rozov, L.A.; Halpern, D.F.; Vernice, G.G. Preparation of the isoflurane enantiomers. J. Org. Chem., 1993, 58(26), 7382-7387.
[http://dx.doi.org/10.1021/jo00078a015]
(c)Schurig, V. Salient features of enantioselective gas chromatography: the enantiomeric differentiation of chiral inhalation anesthetics as a representative methodological case in point. Top. Curr. Chem., 2013, 340, 153-207.
[http://dx.doi.org/10.1007/128_2013_440] [PMID: 23666082]
[http://dx.doi.org/10.1021/ja00053a038]
[http://dx.doi.org/10.1126/science.1925602] [PMID: 1925602]
(b)Harris, B.; Moody, E.; Skolnick, P. Isoflurane anesthesia is stereoselective. Eur. J. Pharmacol., 1992, 217(2-3), 215-216.
[http://dx.doi.org/10.1016/0014-2999(92)90875-5] [PMID: 1425941]
[http://dx.doi.org/10.1016/0969-8043(94)90189-9] [PMID: 7812274]
[http://dx.doi.org/10.1021/cb600207d] [PMID: 17163775]
[http://dx.doi.org/10.1021/cn900014m] [PMID: 20228895]
[http://dx.doi.org/10.1021/jp075447+] [PMID: 17956078]
[http://dx.doi.org/10.1088/1752-7155/10/4/046006] [PMID: 27732571]
[http://dx.doi.org/10.1097/00000542-198501000-00012] [PMID: 3966671]
[http://dx.doi.org/10.1007/BF03017411] [PMID: 12374707]
[http://dx.doi.org/10.1021/acs.jced.5b00844]
[http://dx.doi.org/10.1021/acs.jced.7b00079]
[http://dx.doi.org/10.1073/pnas.1609939113] [PMID: 27856739]
[http://dx.doi.org/10.1093/bja/aev203] [PMID: 26089447]
[http://dx.doi.org/10.1021/jp502716m] [PMID: 25303275]
[http://dx.doi.org/10.1529/biophysj.107.116772] [PMID: 17993502]
[http://dx.doi.org//10.3892/mmr.2015.3424] [PMID: 25738734]
[http://dx.doi.org/10.1016/j.bbrc.2008.12.092] [PMID: 19116131]
[http://dx.doi.org/10.1097/WNR.0000000000000931] [PMID: 29227343]
[http://dx.doi.org/10.1097/ALN.0000000000000609] [PMID: 25654436]
[http://dx.doi.org/10.1097/EJA.0b013e328340514a] [PMID: 21107265]
[http://dx.doi.org/10.1016/j.neuro.2017.09.009] [PMID: 28939237]
[http://dx.doi.org/10.4103/2045-9912.202910] [PMID: 28480032]
[http://dx.doi.org/10.1155/2015/242709] [PMID: 26101769]
[http://dx.doi.org/10.1093/bja/aeu408] [PMID: 25501719]
[http://dx.doi.org/10.1042/BSR20170818] [PMID: 28951521]
[http://dx.doi.org/10.1002/nbm.3856] [PMID: 29206326]
[http://dx.doi.org/10.1093/bja/aew124] [PMID: 27199319]
[http://dx.doi.org/10.3892/etm.2017.4157] [PMID: 28413517]
[http://dx.doi.org/10.1016/j.fct.2007.03.005] [PMID: 17459552]
[http://dx.doi.org/10.2131/jts.41.595] [PMID: 27665769]
(b)Terrell, R.C. Anesthetic composition and method of using the same. U.S. Patent No. 4762856. 1988.
(b)Halpern, D.F.; Robin, M.L. Process for the production of polyfluorinated ethers. U.S. Patent No. 4874901,. 2012.
(c)Wu, F.; Ye, W.; Zhao, M.; Wang, Q.; Shen, G. Synthesis method of desflurane. Patent No. CN 102617298 A, 2012.
(b)Cicco, C.F. Process for production of 1,2,2,2- tetrafluoroethyl difluoromethyl ether. Patent No. US 5026924. 1991.
(b)Terrell, R.C. Process for production of 1,2,2,2- tetrafluoro ethyl difluoro methyl ether. Patent No. WO 2006055749A1,. 2006.
(b)Swinson, J. Synthesis of fluorinated ethers.Patent No. WO 2006076324A2,, 2006.
[http://dx.doi.org/10.1021/op100318b]
(b)Kurosawa, S.; Arimura, T.; Sekiya, A. Monofluorination of fluorinated ethers with high-valency metal fluorides. J. Fluor. Chem., 1997, 85(2), 111-114.
[http://dx.doi.org/10.1016/S0022-1139(97)00075-4]
(c)Fowler, R.; Burford, B., III; Hamilton, J., Jr; Sweet, R.; Weber, C.; Kasper, J.; Litant, I. Synthesis of Fluorocarbons. Ind. Eng. Chem., 1947, 39(3), 292-298.
[http://dx.doi.org/10.1021/ie50447a612]
(d)Brandwood, M.; Coe, P.L.; Ely, C.S.; Tatlow, J.C. Polyfluoro diethyl and ethyl methyl ethers: their preparation using cobalt (III) fluoride and potassium tetrafluorocobaltate (III) and their dehydrofluorination. J. Fluor. Chem., 1975, 5(6), 521-535.
[http://dx.doi.org/10.1016/S0022-1139(00)81733-9]
(e)Coe, P.L.; Lennard, M.S.; Tatlow, J.C. Chloropolyfluorodiethyl ethers. J. Fluor. Chem., 1996, 80(2), 87-90.
[http://dx.doi.org/10.1016/S0022-1139(96)03501-4]
(f)Kurosawa, S.; Sekiya, A.; Arimura, T.; Yamada, T. The monofluorination of hydrofluorocarbons over cobalt trifluoride. J. Fluor. Chem., 1993, 62(1), 69-76.
[http://dx.doi.org/10.1016/S0022-1139(00)80082-2]
[http://dx.doi.org/10.1002/1099-0801(200006)14:4<213:AID-BMC975>3.0.CO;2-R] [PMID: 10861731]
[http://dx.doi.org/10.1016/S0957-4166(97)00382-0]
(b)Rozov, L.A.; Huang, C.; Halpern, D.F.; Vernice, G.G. Preparation of purified optical isomers of desflurane. Patent.No. US 5283372A, 1994.
[http://dx.doi.org/10.1016/0040-4020(95)00860-B]
[http://dx.doi.org/10.1016/S0021-9673(97)00024-1] [PMID: 9188178]
[http://dx.doi.org/10.1021/jp990550n]
[http://dx.doi.org/10.1021/jp402023u] [PMID: 23547928]
(b)Di Paulo, T.; Sandorfy, C. Fluorocarbon anaesthetics break hydrogen bonds. Nature, 1974, 252(5483), 471-472.
[http://dx.doi.org/10.1038/252471a0] [PMID: 4431468]
(c)Trudeau, G.; Dumas, J.M.; Dupuis, P.; Guérin, M.; Sandorfy, C. Intermolecular interactions and anesthesia: infrared spectroscopic studies. Top. Curr. Chem., 1980, 93, 91-125.
[http://dx.doi.org/10.1007/3-540-10058-X_9] [PMID: 7008260]
(d)Abraham, M.H.; Lieb, W.R.; Franks, N.P. Role of hydrogen bonding in general anesthesia. J. Pharm. Sci., 1991, 80(8), 719-724.
[http://dx.doi.org/10.1002/jps.2600800802] [PMID: 1791528]
(e)Sandorfy, C. The site of action of general anesthetics-a chemical approach. Collect. Czech. Chem. Commun., 2005, 70(5), 539-549.
[http://dx.doi.org/10.1135/cccc20050539]
[http://dx.doi.org/10.1016/j.cplett.2015.07.063]
[http://dx.doi.org/10.1016/j.saa.2017.04.084] [PMID: 28494378]
[http://dx.doi.org/10.1016/j.cplett.2012.11.011]
[http://dx.doi.org/10.1016/j.cplett.2016.06.031]
[http://dx.doi.org/10.1080/10934529.2016.1181438]] [PMID: 27222158]
[http://dx.doi.org/10.1097/00003643-199805000-00014] [PMID: 9649993]
[http://dx.doi.org/10.1039/C7CC06534E] [PMID: 29210379]
[http://dx.doi.org/10.1007/s12013-008-9022-7] [PMID: 18719861]
[http://dx.doi.org/10.1097/00000542-200212000-00026] [PMID: 12459680]
[http://dx.doi.org/10.1093/bja/aeg186] [PMID: 12925480]
[http://dx.doi.org/10.4103/2045-9912.179338] [PMID: 27826417]
[http://dx.doi.org/10.1016/j.clinbiochem.2006.01.001] [PMID: 16494857]
[http://dx.doi.org/10.1093/bja/aep238] [PMID: 19713280]
[http://dx.doi.org/10.1213/ANE.0000000000001754] [PMID: 28067710]
[http://dx.doi.org/10.1016/j.transproceed.2015.12.034] [PMID: 26915850]
[http://dx.doi.org/10.1093/bja/89.3.486] [PMID: 12402730]
[http://dx.doi.org/10.3892/ijmm.2015.2335] [PMID: 26329693]
[http://dx.doi.org/10.1093/bja/83.3.422] [PMID: 10655913]
[http://dx.doi.org/10.1213/ANE.0000000000001022] [PMID: 26569427]
[http://dx.doi.org/10.15272/ajbps.v5i51.761]
[http://dx.doi.org/10.4103/0019-5049.162985] [PMID: 26379291]
[http://dx.doi.org/10.1177/0300060515591064] [PMID: 26232124]
[http://dx.doi.org/10.18433/J31882] [PMID: 26158285]
[http://dx.doi.org/10.1007/s12035-016-9982-3] [PMID: 27343182]
[http://dx.doi.org/10.1213/ANE.0000000000002729] [PMID: 29293177]
[http://dx.doi.org/10.4103/joacp.JOACP_350_15] [PMID: 29109639]
[http://dx.doi.org/10.1016/j.bbrc.2017.11.017] [PMID: 29113802]
[http://dx.doi.org/10.1093/bja/aeu189] [PMID: 24989774]
[http://dx.doi.org/10.1097/MD.0000000000007977] [PMID: 28858134]
[http://dx.doi.org/10.1007/s12035-017-0787-9] [PMID: 28986748]
(b)Kudzma, L.V.; Lessor, R.A.; Rozov, L.A.; Ramig, K. Method of preparing monofluoromethyl ethers.Patent No. US 5886239,, 1999.
(c)Kudzma, L.V.; Huang, C.G.; Lessor, R.A.; Rozov, L.A.; Afrin, S.; Kallashi, F.; McCutcheon, C.; Ramig, K. Diisopropylethylamine mono(hydrogen fluoride) for nucleophilic fluorination of sensitive substrates: synthesis of sevoflurane. J. Fluor. Chem., 2001, 111(1), 11-16.
[http://dx.doi.org/10.1016/S0022-1139(01)00396-7]
(d)Sebastian, M.B. Processes for the preparation of sevoflurane and desflurane.Patent No. UK GB2547651,, 2016.
(b)Khrimian, A.; Jones, B.M. Production of fluormethyl 2,2,2-trifluoro-1--(trifluoromethyl)ethyl ether. Patent No. WO 2001068577A1,. 2001.
(b)Bieniarz, C.; Behme, C.; Ramakrishna, K. An efficient and environmentally friendly synthesis of the inhalation anesthetic sevoflurane. J. Fluor. Chem., 2000, 106(1), 99-102.
[http://dx.doi.org/10.1016/S0022-1139(00)00316-X]
(c)Ramakrishna, K.; Behme, C.; Schure, R.M.; Bieniarz, C. A safe and efficient process for the synthesis of the inhalation anesthetic sevoflurane. Org. Process Res. Dev., 2000, 4(6), 581-584.
[http://dx.doi.org/10.1021/op000207c]
(d)Fang, R.; Liu, H. Method of synthesizing fluoromethyl- 1,1,1,3,3,3- hexafluoroisopropyl ether. Patent No. CN 101058533A,. 2007.
(e)Li, Y.; Zheng, B.; Feng, H.; Hou, Q.; Zhang, B. Preparation method of sevoflurane. Patent No. CN 103804151A,, 2014.
(f)Wang, T.; Jiang, C.; Guo, Z. Sevoflurane synthesizing method. Patent No. CN 101381289A, 2009.
(g)Moghimi, A.; Vojdani, M.R.; Banan, A.; Mollaei, A.; Mahmoodian, M.; Moosavi, S.M. Reinvestigation of the two-step synthesis of sevoflurane. Iran. J. Pharm. Res., 2015, 14(3), 733-738.
[PMID: 26330861]
(b)Zhang, F.; Shen, X.; Sun, P. Method for preparing sevoflurane. Patent No. CN102199076A,, 2011.
(b)Zhao, Z. Process for synthesizing Sevoflurane. Patent No. CN 101314560B,, 2008.
(b)Sharratt, A.P.; Draper, L.C. Process for the production of fluoromethyl hexafluoroisopropyl ether.Patent No. WO 2002050003A1, , 2002.
(c)Katsuhara, Y.; Takahashi, H.; Ishida, M. Process for producing fluoromethyl hexafluoroisopropyl ether. Patent No. WO 2010125899A1, 2010.
(b)Ohtsuka, T.; Kuroki, Y.; Suzuki, A. Novel Α- fluoromethoxycarboxylic ester, process for producing the α- fluoromethoxy carboxylic ester and process for producing sevoflurane. Patent No. WO 2008004466A1,. 2013.
[http://dx.doi.org/10.1021/ol702500u] [PMID: 18198880]
[http://dx.doi.org/10.1002/jlcr.2580330902]
[http://dx.doi.org/10.1097/00000542-197908000-00003] [PMID: 453609]
(b)Holaday, D.A.; Smith, F.R. Clinical characteristics and biotransformation of sevoflurane in healthy human volunteers. Anesthesiology, 1981, 54(2), 100-106.
[http://dx.doi.org/10.1097/00000542-198102000-00002] [PMID: 6781380]
[http://dx.doi.org/10.1016/S0022-1139(97)00135-8]
[http://dx.doi.org/10.1039/c002123g] [PMID: 20505891]
[http://dx.doi.org/10.1021/jp211949m] [PMID: 22233417]
[http://dx.doi.org/10.1002/1096-987X(200103)22:4<436:AID-JCC1014>3.0.CO;2-U]
[http://dx.doi.org/10.1021/acschembio.7b00222] [PMID: 28333442]
[http://dx.doi.org/10.1021/la049128a] [PMID: 15323471]
[http://dx.doi.org/10.3762/bjoc.10.310] [PMID: 25550759]
[http://dx.doi.org/10.3390/molecules200610264] [PMID: 26046323]
[http://dx.doi.org/10.1016/S0378-4347(01)00239-0] [PMID: 11499484]
(b)Saito, K.; Takayasu, T.; Nishigami, J.; Kondo, T.; Ohtsuji, M.; Lin, Z.; Ohshima, T. Determination of the volatile anesthetics halothane, enflurane, isoflurane, and sevoflurane in biological specimens by pulse-heating GC-MS. J. Anal. Toxicol., 1995, 19(2), 115-119.
[http://dx.doi.org/10.1093/jat/19.2.115] [PMID: 7769780]
(c)Kojima, T.; Ishii, A.; Watanabe-Suzuki, K.; Kurihara, R.; Seno, H.; Kumazawa, T.; Suzuki, O.; Katsumata, Y. Sensitive determination of four general anaesthetics in human whole blood by capillary gas chromatography with cryogenic oven trapping. J. Chromatogr. B Biomed. Sci. Appl., 2001, 762(1), 103-108.
[http://dx.doi.org/10.1016/S0378-4347(01)00348-6] [PMID: 11589453]
(d)Levin, P.D.; Levin, D.; Avidan, A. Medical aerosol propellant interference with infrared anaesthetic gas monitors. Br. J. Anaesth., 2004, 92(6), 865-869.
[http://dx.doi.org/10.1093/bja/aeh154] [PMID: 15121726]
(e)Rasmussen, H.; Thorud, S. Using a refrigerant leak detector to monitor waste gases from halogenated anesthetics. J. Am. Assoc. Lab. Anim. Sci., 2007, 46(5), 64-68.
[PMID: 17877331]
(f)Floate, S.; Hahn, C.E.W. Electrochemical reduction of the anaesthetic agent sevoflurane (fluoromethyl 2,2,2-trifluoro-1-[trifluoromethyl] ethyl ether) in the presence of oxygen and nitrous oxide. Sens. Actuators B Chem., 2004, 99, 236-252.
[http://dx.doi.org/10.1016/j.snb.2003.11.017]
[http://dx.doi.org/10.1016/j.snb.2007.03.026]
[http://dx.doi.org/10.1016/j.sna.2007.07.002]
[http://dx.doi.org/10.1016/j.proeng.2011.12.269]
[http://dx.doi.org/10.1039/C4TB01177E] [PMID: 32262042]
[http://dx.doi.org/10.1039/C4RA05905K]
[http://dx.doi.org/10.1002/cite.201600051]
(b)Hua, Y.; Gargiulo, N.; Peluso, A.; Aprea, P.; Eic´, M.; Caputo, D. Adsorption behavior of halogenated anesthetic and water vapor on Cr‐based MOF (MIL‐101) adsorbent. Part II. Multiple‐cycle breakthrough tests. Che Ing. Tech.,, 2016, 88(11), 1739-1745.
[http://dx.doi.org/10.1002/cite.201600052]
[http://dx.doi.org/10.1093/clinchem/47.2.281] [PMID: 11159777]
[http://dx.doi.org/10.1002/1520-636X(2000)12:10<751:AID-CHIR8>3.0.CO;2-H] [PMID: 11054834]
[http://dx.doi.org/10.1021/jp2077598] [PMID: 22146013]
[http://dx.doi.org/10.1007/s00894-013-1977-7] [PMID: 24022782]
[http://dx.doi.org/10.1016/j.cplett.2017.12.059]
[http://dx.doi.org/10.1016/j.cplett.2018.02.044]
[http://dx.doi.org/10.1021/bi050896q] [PMID: 16142911]
[http://dx.doi.org/10.1097/00000542-199907000-00026] [PMID: 10422943]
[PMID: 25973096]
[http://dx.doi.org/10.1016/j.aca.2017.11.052] [PMID: 30292318]
[http://dx.doi.org/10.1213/ANE.0000000000000736] [PMID: 25851179]
[http://dx.doi.org/10.1097/ALN.0b013e31817f5baf] [PMID: 18648232]
[http://dx.doi.org/10.3892/br.2015.428] [PMID: 26137246]
[http://dx.doi.org/10.1186/s12871-016-0227-9] [PMID: 27538808]
[http://dx.doi.org/10.1186/s12871-017-0326-2] [PMID: 28259141]
[http://dx.doi.org/10.1186/s12871-017-0368-5] [PMID: 28615047]
[http://dx.doi.org/10.1007/s12192-018-0904-3] [PMID: 29728856]
[http://dx.doi.org/10.1111/cns.12823] [PMID: 29427321]
[http://dx.doi.org/10.3325/cmj.2014.55.628] [PMID: 25559834]
[http://dx.doi.org/10.1097/EJA.0b013e32832a0c61] [PMID: 19522051]
[PMID: 27785338]
[PMID: 26629039]
[http://dx.doi.org/10.1159/000485008] [PMID: 29141245]
[http://dx.doi.org/10.1016/j.bbr.2018.03.031] [PMID: 29574103]
[http://dx.doi.org/10.1113/jphysiol.2012.233965] [PMID: 22674720]
[http://dx.doi.org/10.1016/j.lfs.2017.11.025] [PMID: 29155302]
[http://dx.doi.org/10.1007/s12031-018-1029-y] [PMID: 29352445]
[http://dx.doi.org/10.3892/ijmm.2016.2797] [PMID: 27840895]
[http://dx.doi.org/10.3892/mmr.2017.6219] [PMID: 28260068]
[PMID: 26885010]
[http://dx.doi.org/10.1016/j.brainres.2017.10.019] [PMID: 29074343]
[http://dx.doi.org/10.1016/j.ejphar.2009.09.022] [PMID: 19765574]
[http://dx.doi.org/10.3892/etm.2015.2938] [PMID: 26893661]
[http://dx.doi.org/10.1016/j.etp.2008.12.011] [PMID: 19181502]
[http://dx.doi.org/10.1177/0394632017739530] [PMID: 29087224]
[http://dx.doi.org/10.4103/2045-9912.215748] [PMID: 29152212]
(b)Ong Sio, L.C.L.; Dela Cruz, R.G.C.; Bautista, A.F. A comparison of renal responses to sevoflurane and isoflurane in patients undergoing donor nephrectomy: a randomized controlled trial. Med. Gas Res., 2017, 7(1), 19-27.
[http://dx.doi.org/10.4103/2045-9912.202906] [PMID: 28480028]
[http://dx.doi.org/10.1124/mol.117.108290] [PMID: 28325748]
[http://dx.doi.org/10.1016/j.neuropharm.2018.04.004] [PMID: 29627444]
[http://dx.doi.org/10.7860/JCDR/2017/23565.9643] [PMID: 28571236]
[http://dx.doi.org/10.1213/01.ane.0000270207.84083.ba] [PMID: 17646484]
[http://dx.doi.org/10.1111/j.1365-2044.1961.tb13424.x] [PMID: 13874993]
(b)Speers, L.; Szur, A.J.; Terrell, R.C.; Treadwell, J.; Ucciardi, T.U. General anesthetics. 2. Halogenated methyl isopropyl ethers. J. Med. Chem., 1971, 14(17), 593-595.
[http://dx.doi.org/10.1021/jm00289a009] [PMID: 5164450]
(c)Terrell, R.C.; Speers, L.; Szur, A.J.; Ucciardi, T.; Vitcha, J.F. General anesthetics. 3. Fluorinated methyl ethyl ethers as anesthetic agents. J. Med. Chem., 1972, 15(6), 604-606.
[http://dx.doi.org/10.1021/jm00276a008] [PMID: 5030924]
(d)Koblin, D.D.; Laster, M.J.; Ionescu, P.; Gong, D.; Eger, E.I., II; Halsey, M.J.; Hudlicky, T. Polyhalogenated methyl ethyl ethers: solubilities and anesthetic properties. Anesth. Analg., 1999, 88(5), 1161-1167.
[http://dx.doi.org/10.1213/00000539-199905000-00036] [PMID: 10320188]
[http://dx.doi.org/10.1021/jo00150a019]
(b)Randolph, B.B.; DesMarteau, D.D. Synthesis of functionalized polyfluoroalkyl hypochlorites and fluoroxy compounds and their reactions with some fluoroalkenes. J. Fluor. Chem., 1993, 64, 129-149.
[http://dx.doi.org/10.1016/S0022-1139(00)80070-6]
[http://dx.doi.org/10.1021/jm00276a009] [PMID: 5030925]
[http://dx.doi.org/10.1016/S0022-1139(99)00302-4]
[http://dx.doi.org/10.1021/ja00868a009]
(b)Bissell, E.R.; Fields, D.B. Addition of acetaldehyde to fluoroethylenes1. J. Org. Chem., 1964, 29(1), 249-252.
[http://dx.doi.org/10.1021/jo01024a523]
(c)Barlow, M.G.; Coles, B.; Haszeldine, R.N. Heterocyclic polyfluoro-compounds. Part 33. Photochemical oxetane formation from fluoro ketones and perfluoro aldehydes and 1,2-difluoroethylene. J. Chem. Soc., Perkin Trans. 1, 1980, 10, 2258-2267.
[http://dx.doi.org/10.1039/p19800002258]
(d)Tarrant, P.; Bull, R.N. The reaction of some 3- and 4-fluorooexetanes with acids. J. Fluor. Chem., 1988, 40, 201-215.
[http://dx.doi.org/10.1016/S0022-1139(00)83066-3]
[http://dx.doi.org/10.1002/jhet.5570020329]
[http://dx.doi.org/10.1021/jo00110a041]
[http://dx.doi.org/10.1021/jp908228h] [PMID: 19950919]
[http://dx.doi.org/10.1111/j.1365-2044.1964.tb00364.x] [PMID: 14150671]
[http://dx.doi.org/10.1111/j.1365-2044.1966.tb02563.x] [PMID: 5901796]
[http://dx.doi.org/10.1002/cmdc.201600325] [PMID: 27629993]
[http://dx.doi.org/10.1021/acs.jpcb.7b02079] [PMID: 28548837]
(b)Yip, G.M.S.; Chen, Z-W.; Edge, C.J.; Smith, E.H.; Dickinson, R.; Hohenester, E.; Townsend, R.R.; Fuchs, K.; Sieghart, W.; Evers, A.S.; Franks, N.P. A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nat. Chem. Biol., 2013, 9(11), 715-720.
[http://dx.doi.org/10.1038/nchembio.1340] [PMID: 24056400]
(c)Zhang, H.; Xu, X.; Chen, Y.; Qiu, Y.; Liu, X.; Liu, B.F.; Zhang, G. Synthesis and evaluation of fluorine-substituted phenyl acetate derivatives as ultra-short recovery sedative/hypnotic agents. PLoS One, 2014, 9(5) e96518
[http://dx.doi.org/10.1371/journal.pone.0096518] [PMID: 24796695]
(d)Baker, M.T.; Naguib, M. Fluorine-substituted alkyl phenol compounds and their uses.Patent No. US 20030176513A1,, 2003.
(e)Baker, M.T. Hydrofluoroalkyl phenols having anesthetic properties.Patent No. WO 2008008492A2,, 2008.
(f)Lu, H. One kind anesthesia class compound and its production and use.Patent No. CN 107556167A, 2018.
(g)Li, Q.; Wang, T.; Wu, T.; Zeng, L.; Wang, Y.; Mao, W.; Chen, G. Water-soluble propofol derivatives and uses thereof. Patent No. WO 2015120821A1, 2015.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.01.014] [PMID: 19423012]
(b)Erlandsson, M.; Hall, H.; Långström, B. Synthesis and in vitro evaluation of 18F‐labelled di‐ and tri(ethylene glycol) metomidate esters. J. Labelled Comp. Radiopharm., 2009, 52(7), 278-285.
[http://dx.doi.org/10.1002/jlcr.1597]
(c)Wadsak, W.; Mitterhauser, M. Synthesis of [18F]FETO, a novel potential 11-β hydroxylase inhibitor. J. Labelled Comp. Radiopharm., 2003, 46(4), 379-388.
[http://dx.doi.org/10.1002/jlcr.680]
(d)Mitterhauser, M.; Wadsak, W.; Wabnegger, L.; Sieghart, W.; Viernstein, H.; Kletter, K.; Dudczak, R. In vivo and in vitro evaluation of [18F]FETO with respect to the adrenocortical and GABAergic system in rats. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(10), 1398-1401.
[http://dx.doi.org/10.1007/s00259-003-1252-8] [PMID: 12845489]
(e)Li, Q.; Wang, T.; Zeng, L.; Zhang, G.; Xu, X.; Ren, L. Etomidate derivative and intermediate, preparation method and use thereof. WO 2017059827A1,. 2017.
[http://dx.doi.org/10.2165/00002018-199716030-00002] [PMID: 9098654]
[http://dx.doi.org/10.3762/bjoc.12.76] [PMID: 27340468]
[http://dx.doi.org/10.1073/pnas.92.24.11076] [PMID: 7479940]