摘要
尽管研究已经建立了整联蛋白在骨稳态,特别是在破骨细胞形成中的作用,并且这些分子是骨丢失疾病的新的和有希望的治疗药物靶标,例如:骨溶解,细胞机制仍然难以捉摸。骨稳态通过骨细胞(成骨细胞和破骨细胞)之间的相互作用,通过激活细胞间粘附分子1(ICAM-1)而发生,该分子是整联蛋白的关键亚分子。在本研究中,我们综述了关于骨稳态中整联蛋白及其亚分子ICAM-1的一些新颖研究。为了证明ICAM-1可能通过直接影响成熟破骨细胞的粘附能力并间接参与RANKL / RANK诱导的破骨细胞前体分化而对破骨细胞产生双重作用。尽管这些结果将来仍需验证,但有关ICAM-1在破骨细胞形成中作用的扩展研究将肯定为骨丢失疾病的治疗提供有希望的治疗靶标。
关键词: 整联蛋白,骨稳态,破骨细胞生成,ICAM-1,LFA-1,治疗药物靶标。
[1]
Civitarese RA, Talior-Volodarsky I, Desjardins JF, et al. The α11 integrin mediates fibroblast-extracellular matrix-cardiomyocyte interactions in health and disease. Am J Physiol Heart Circ Physiol 2016; 311(1): H96-H106.
[http://dx.doi.org/10.1152/ajpheart.00918.2015] [PMID: 27199132]
[http://dx.doi.org/10.1152/ajpheart.00918.2015] [PMID: 27199132]
[2]
Chen L, Liu C, Rui F, Zhu G. 1H, 15N and 13C chemical shift assignments of the SH2 domain of human tensin2 (TENC1). Biomol NMR Assign 2011; 5(2): 211-4.
[http://dx.doi.org/10.1007/s12104-011-9302-9] [PMID: 21461930]
[http://dx.doi.org/10.1007/s12104-011-9302-9] [PMID: 21461930]
[3]
Lee KJ, Lee SH, Yadav BK, et al. The activation of CD99 inhibits cell-extracellular matrix adhesion by suppressing β(1) integrin affinity. BMB Rep 2012; 45(3): 159-64.
[http://dx.doi.org/10.5483/BMBRep.2012.45.3.159] [PMID: 22449702]
[http://dx.doi.org/10.5483/BMBRep.2012.45.3.159] [PMID: 22449702]
[4]
Bridgen DT, Gilchrist CL, Richardson WJ, et al. Integrin-mediated interactions with extracellular matrix proteins for nucleus pulposus cells of the human intervertebral disc. J Orthop Res 2013; 31(10): 1661-7.
[http://dx.doi.org/10.1002/jor.22395] [PMID: 23737292]
[http://dx.doi.org/10.1002/jor.22395] [PMID: 23737292]
[5]
Wang SB, Jang JY, Chae YH, et al. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation. Free Radic Biol Med 2015; 83: 41-53.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.01.018] [PMID: 25645952]
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.01.018] [PMID: 25645952]
[6]
Fraioli R, Rechenmacher F, Neubauer S, et al. Mimicking bone extracellular matrix: integrin-binding peptidomimetics enhance osteoblast-like cells adhesion, proliferation, and differentiation on titanium. Colloids Surf B Biointerfaces 2015; 128: 191-200.
[http://dx.doi.org/10.1016/j.colsurfb.2014.12.057] [PMID: 25637448]
[http://dx.doi.org/10.1016/j.colsurfb.2014.12.057] [PMID: 25637448]
[7]
Liu C, Qu L, Zhao C, Shou C. Extracellular gamma-synuclein promotes tumor cell motility by activating β1 integrin-focal adhesion kinase signaling pathway and increasing matrix metalloproteinase-24, -2 protein secretion. J Exp Clin Cancer Res 2018; 37(1): 117.
[http://dx.doi.org/10.1186/s13046-018-0783-6] [PMID: 29903032]
[http://dx.doi.org/10.1186/s13046-018-0783-6] [PMID: 29903032]
[8]
Dånmark S, Finne-Wistrand A, Albertsson AC, Patarroyo M, Mustafa K. Integrin-mediated adhesion of human mesenchymal stem cells to extracellular matrix proteins adsorbed to polymer surfaces. Biomed Mater 2012; 7(3)035011
[http://dx.doi.org/10.1088/1748-6041/7/3/035011] [PMID: 22475565]
[http://dx.doi.org/10.1088/1748-6041/7/3/035011] [PMID: 22475565]
[9]
Levy-Apter E, Finkelshtein E, Vemulapalli V, Li SS, Bedford MT, Elson A. Adaptor protein GRB2 promotes Src tyrosine kinase activation and podosomal organization by protein-tyrosine phosphatase ϵ in osteoclasts. J Biol Chem 2014; 289(52): 36048-58.
[http://dx.doi.org/10.1074/jbc.M114.603548] [PMID: 25381250]
[http://dx.doi.org/10.1074/jbc.M114.603548] [PMID: 25381250]
[10]
Haynie DT. Molecular physiology of the tensin brotherhood of integrin adaptor proteins. Proteins 2014; 82(7): 1113-27.
[http://dx.doi.org/10.1002/prot.24560] [PMID: 24634006]
[http://dx.doi.org/10.1002/prot.24560] [PMID: 24634006]
[11]
Zhang C, Miller DJ, Guibao CD, Donato DM, Hanks SK, Zheng JJ. Structural and functional insights into the interaction between the Cas family scaffolding protein p130Cas and the focal adhesion-associated protein paxillin. J Biol Chem 2017; 292(44): 18281-9.
[http://dx.doi.org/10.1074/jbc.M117.807271] [PMID: 28860193]
[http://dx.doi.org/10.1074/jbc.M117.807271] [PMID: 28860193]
[12]
Meyer dos Santos S, Klinkhardt U, Schneppenheim R, Harder S. Using ImageJ for the quantitative analysis of flow-based adhesion assays in real-time under physiologic flow conditions. Platelets 2010; 21(1): 60-6.
[http://dx.doi.org/10.3109/09537100903410609] [PMID: 20001786]
[http://dx.doi.org/10.3109/09537100903410609] [PMID: 20001786]
[13]
Chen Z, Ding X, Jin S, et al. WISP1-αvβ3 integrin signaling positively regulates TLR-triggered inflammation response in sepsis induced lung injury. Sci Rep 2016; 6: 28841.
[http://dx.doi.org/10.1038/srep28841] [PMID: 27349568]
[http://dx.doi.org/10.1038/srep28841] [PMID: 27349568]
[14]
Leask A. A sticky wicket: Overexpression of integrin alpha 11 is sufficient for cardiac fibrosis. Acta Physiol (Oxf) 2018; 222(2)
[http://dx.doi.org/10.1111/apha.13025] [PMID: 29282884]
[http://dx.doi.org/10.1111/apha.13025] [PMID: 29282884]
[15]
Szabo AM, Howell NR, Pellegrini P, Greguric I, Katsifis A. Development and validation of competition binding assays for affinity to the extracellular matrix receptors, α(v)β(3) and α(IIb)β(3) integrin. Anal Biochem 2012; 423(1): 70-7.
[http://dx.doi.org/10.1016/j.ab.2011.12.046] [PMID: 22285979]
[http://dx.doi.org/10.1016/j.ab.2011.12.046] [PMID: 22285979]
[16]
Springer TA. Adhesion receptors of the immune system. Nature 1990; 346(6283): 425-34.
[http://dx.doi.org/10.1038/346425a0] [PMID: 1974032]
[http://dx.doi.org/10.1038/346425a0] [PMID: 1974032]
[17]
Shams H, Mofrad MRK. α-Actinin Induces a Kink in the Transmembrane Domain of β3-Integrin and Impairs Activation via Talin. Biophys J 2017; 113(4): 948-56.
[http://dx.doi.org/10.1016/j.bpj.2017.06.064] [PMID: 28834730]
[http://dx.doi.org/10.1016/j.bpj.2017.06.064] [PMID: 28834730]
[18]
Ah Kioon MD, Asensio C, Ea HK, Uzan B, Cohen-Solal M, Lioté F. Adrenomedullin increases fibroblast-like synoviocyte adhesion to extracellular matrix proteins by upregulating integrin activation. Arthritis Res Ther 2010; 12(5): R190.
[http://dx.doi.org/10.1186/ar3160] [PMID: 20942979]
[http://dx.doi.org/10.1186/ar3160] [PMID: 20942979]
[19]
Devallière J, Charreau B. The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling. Biochem Pharmacol 2011; 82(10): 1391-402.
[http://dx.doi.org/10.1016/j.bcp.2011.06.023] [PMID: 21723852]
[http://dx.doi.org/10.1016/j.bcp.2011.06.023] [PMID: 21723852]
[20]
Kolanus W, Nagel W, Schiller B, et al. Alpha L beta 2 integrin/LFA-1 binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regulatory molecule. Cell 1996; 86(2): 233-42.
[http://dx.doi.org/10.1016/S0092-8674(00)80095-1] [PMID: 8706128]
[http://dx.doi.org/10.1016/S0092-8674(00)80095-1] [PMID: 8706128]
[21]
Lin CH, Lin HH, Kuo CY, Kao SH. Aeroallergen Der p 2 promotes motility of human non-small cell lung cancer cells via toll-like receptor-mediated up-regulation of urokinase-type plasminogen activator and integrin/focal adhesion kinase signaling. Oncotarget 2017; 8(7): 11316-28.
[http://dx.doi.org/10.18632/oncotarget.14514] [PMID: 28076322]
[http://dx.doi.org/10.18632/oncotarget.14514] [PMID: 28076322]
[22]
Kashiwagi H, Schwartz MA, Eigenthaler M, Davis KA, Ginsberg MH, Shattil SJ. Affinity modulation of platelet integrin alphaIIbbeta3 by beta3-endonexin, a selective binding partner of the beta3 integrin cytoplasmic tail. J Cell Biol 1997; 137(6): 1433-43.
[http://dx.doi.org/10.1083/jcb.137.6.1433] [PMID: 9182673]
[http://dx.doi.org/10.1083/jcb.137.6.1433] [PMID: 9182673]
[23]
Luo T, Liu H, Feng W, et al. Adipocytes enhance expression of osteoclast adhesion-related molecules through the CXCL12/CXCR4 signalling pathway. Cell Prolif 2017; 50(3)
[http://dx.doi.org/10.1111/cpr.12317] [PMID: 27868262]
[http://dx.doi.org/10.1111/cpr.12317] [PMID: 27868262]
[24]
Menaa C, Esser E, Sprague SM. Beta2-microglobulin stimulates osteoclast formation. Kidney Int 2008; 73(11): 1275-81.
[http://dx.doi.org/10.1038/ki.2008.100] [PMID: 18368032]
[http://dx.doi.org/10.1038/ki.2008.100] [PMID: 18368032]
[25]
Korthäuer U, Nagel W, Davis EM, et al. Anergic T lymphocytes selectively express an integrin regulatory protein of the cytohesin family. J Immunol 2000; 164(1): 308-18.
[http://dx.doi.org/10.4049/jimmunol.164.1.308] [PMID: 10605025]
[http://dx.doi.org/10.4049/jimmunol.164.1.308] [PMID: 10605025]
[26]
Balasubramanian S, Quinones L, Kasiganesan H, et al. β3 integrin in cardiac fibroblast is critical for extracellular matrix accumulation during pressure overload hypertrophy in mouse. PLoS One 2012; 7(9)e45076
[http://dx.doi.org/10.1371/journal.pone.0045076] [PMID: 22984613]
[http://dx.doi.org/10.1371/journal.pone.0045076] [PMID: 22984613]
[27]
Ikeda F, Nishimura R, Matsubara T, Hata K, Reddy SV, Yoneda T. Activation of NFAT signal in vivo leads to osteopenia associated with increased osteoclastogenesis and bone-resorbing activity. J Immunol 2006; 177(4): 2384-90.
[http://dx.doi.org/10.4049/jimmunol.177.4.2384] [PMID: 16888000]
[http://dx.doi.org/10.4049/jimmunol.177.4.2384] [PMID: 16888000]
[28]
Thummuri D, Guntuku L, Challa VS, Ramavat RN, Naidu VGM. Abietic acid attenuates RANKL induced osteoclastogenesis and inflammation associated osteolysis by inhibiting the NF-KB and MAPK signaling. J Cell Physiol 2018; 234(1): 443-53.
[http://dx.doi.org/10.1002/jcp.26575] [PMID: 29932225]
[http://dx.doi.org/10.1002/jcp.26575] [PMID: 29932225]
[29]
Hwang YH, Ha H, Kim R, et al. Anti-Osteoporotic Effects of Polysaccharides Isolated from Persimmon Leaves via Osteoclastogenesis Inhibition. Nutrients 2018; 10(7)E901
[http://dx.doi.org/10.3390/nu10070901] [PMID: 30011853]
[http://dx.doi.org/10.3390/nu10070901] [PMID: 30011853]
[30]
Noguchi T, Ebina K, Hirao M, et al. Apolipoprotein E plays crucial roles in maintaining bone mass by promoting osteoblast differentiation via ERK1/2 pathway and by suppressing osteoclast differentiation via c-Fos, NFATc1, and NF-κB pathway. Biochem Biophys Res Commun 2018; 503(2): 644-50.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.055] [PMID: 29906458]
[http://dx.doi.org/10.1016/j.bbrc.2018.06.055] [PMID: 29906458]
[31]
Chen X, Zhi X, Pan P, et al. Matrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis. FASEB J 2017; 31(11): 4855-65.
[http://dx.doi.org/10.1096/fj.201700316R] [PMID: 28739641]
[http://dx.doi.org/10.1096/fj.201700316R] [PMID: 28739641]
[32]
Song C, Yang X, Lei Y, et al. Evaluation of efficacy on RANKL induced osteoclast from RAW264.7 cells. J Cell Physiol 2018.
[PMID: 30515780]
[PMID: 30515780]
[33]
Wanachewin O, Pothacharoen P, Kongtawelert P, Phitak T. Inhibitory effects of sesamin on human osteoclastogenesis. Arch Pharm Res 2017; 40(10): 1186-96.
[http://dx.doi.org/10.1007/s12272-017-0926-x] [PMID: 28861734]
[http://dx.doi.org/10.1007/s12272-017-0926-x] [PMID: 28861734]
[34]
Niu C, Xiao F, Yuan K, et al. Nardosinone Suppresses RANKL-Induced Osteoclastogenesis and Attenuates Lipopolysaccharide-Induced Alveolar Bone Resorption. Front Pharmacol 2017; 8: 626.
[http://dx.doi.org/10.3389/fphar.2017.00626] [PMID: 28955231]
[http://dx.doi.org/10.3389/fphar.2017.00626] [PMID: 28955231]
[35]
Takito J, Nakamura M, Yoda M, et al. The transient appearance of zipper-like actin superstructures during the fusion of osteoclasts. J Cell Sci 2012; 125(Pt 3): 662-72.
[http://dx.doi.org/10.1242/jcs.090886] [PMID: 22349694]
[http://dx.doi.org/10.1242/jcs.090886] [PMID: 22349694]
[36]
Wei B, Jin C, Xu Y, et al. Chondrogenic differentiation of marrow clots after microfracture with BMSC-derived ECM scaffold in vitro. Tissue Eng Part A 2014; 20(19-20): 2646-55.
[http://dx.doi.org/10.1089/ten.tea.2013.0662] [PMID: 24665837]
[http://dx.doi.org/10.1089/ten.tea.2013.0662] [PMID: 24665837]
[37]
Ramaraju H, Miller SJ, Kohn DH. Dual-functioning peptides discovered by phage display increase the magnitude and specificity of BMSC attachment to mineralized biomaterials. Biomaterials 2017; 134: 1-12.
[http://dx.doi.org/10.1016/j.biomaterials.2017.04.034] [PMID: 28453953]
[http://dx.doi.org/10.1016/j.biomaterials.2017.04.034] [PMID: 28453953]
[38]
Cipriani F, Bernhagen D, García-Arévalo C, de Torre IG, Timmerman P, Rodríguez-Cabello JC. Bicyclic RGD peptides with high integrin α v β 3 and α 5 β 1 affinity promote cell adhesion on elastin-like recombinamers. Biomed Mater 2019; 14(3)035009
[http://dx.doi.org/10.1088/1748-605X/aafd83] [PMID: 30630151]
[http://dx.doi.org/10.1088/1748-605X/aafd83] [PMID: 30630151]
[39]
Wang H, Ning T, Song C, et al. Priming integrin α5 promotes human dental pulp stem cells odontogenic differentiation due to extracellular matrix deposition and amplified extracellular matrix-receptor activity. J Cell Physiol 2019; 234(8): 12897-909.
[http://dx.doi.org/10.1002/jcp.27954] [PMID: 30556904]
[http://dx.doi.org/10.1002/jcp.27954] [PMID: 30556904]
[40]
Li B, Gao P, Zhang H, Guo Z, Zheng Y, Han Y. Osteoimmunomodulation, osseointegration, and in vivo mechanical integrity of pure Mg coated with HA nanorod/pore-sealed MgO bilayer. Biomater Sci 2018; 6(12): 3202-18.
[http://dx.doi.org/10.1039/C8BM00901E] [PMID: 30328849]
[http://dx.doi.org/10.1039/C8BM00901E] [PMID: 30328849]
[41]
Kang HR, da Costa Fernandes CJ, da Silva RA, Constantino VRL, Koh IHJ, Zambuzzi WF. Mg-Al and Zn-Al Layered double hydroxides promote dynamic expression of marker genes in osteogenic differentiation by modulating mitogen-activated protein kinases. Adv Healthc Mater 2018; 7(4)
[http://dx.doi.org/10.1002/adhm.201700693] [PMID: 29280352]
[http://dx.doi.org/10.1002/adhm.201700693] [PMID: 29280352]
[42]
Schütt P, Rebmann V, Brandhorst D, et al. The clinical significance of soluble human leukocyte antigen class-I, ICTP, and RANKL molecules in multiple myeloma patients. Hum Immunol 2008; 69(2): 79-87.
[http://dx.doi.org/10.1016/j.humimm.2008.01.006] [PMID: 18361931]
[http://dx.doi.org/10.1016/j.humimm.2008.01.006] [PMID: 18361931]
[43]
Zeltz C, Alam J, Liu H, et al. α11β1 integrin is induced in a subset of cancer-associated fibroblasts in desmoplastic tumor stroma and mediates in vitro cell migration. Cancers (Basel) 2019; 11(6)E765
[http://dx.doi.org/10.3390/cancers11060765] [PMID: 31159419]
[http://dx.doi.org/10.3390/cancers11060765] [PMID: 31159419]
[44]
Stichler S, Böck T, Paxton N, et al. Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis. Biofabrication 2017; 9(4)044108
[http://dx.doi.org/10.1088/1758-5090/aa8cb7] [PMID: 28906257]
[http://dx.doi.org/10.1088/1758-5090/aa8cb7] [PMID: 28906257]
[45]
Shao PL, Wu SC, Lin ZY, Ho ML, Chen CH, Wang CZ. Alpha-5 integrin mediates simvastatin-induced osteogenesis of bone marrow mesenchymal stem cells. Int J Mol Sci 2019; 20(3)E506
[http://dx.doi.org/10.3390/ijms20030506] [PMID: 30682874]
[http://dx.doi.org/10.3390/ijms20030506] [PMID: 30682874]
[46]
Shattil SJ, O’Toole T, Eigenthaler M, et al. Beta 3-endonexin, a novel polypeptide that interacts specifically with the cytoplasmic tail of the integrin beta 3 subunit. J Cell Biol 1995; 131(3): 807-16.
[http://dx.doi.org/10.1083/jcb.131.3.807] [PMID: 7593198]
[http://dx.doi.org/10.1083/jcb.131.3.807] [PMID: 7593198]
[47]
Reyes R, Monjas A, Yánez-Mó M, et al. Different states of integrin LFA-1 aggregation are controlled through its association with tetraspanin CD9. Biochim Biophys Acta 2015; 1853(10 Pt A): 2464-80.
[http://dx.doi.org/10.1016/j.bbamcr.2015.05.018] [PMID: 26003300]
[http://dx.doi.org/10.1016/j.bbamcr.2015.05.018] [PMID: 26003300]
[48]
Yang G, Chen X, Yan Z, Zhu Q, Yang C. CD11b promotes the differentiation of osteoclasts induced by RANKL through the spleen tyrosine kinase signalling pathway. J Cell Mol Med 2017; 21(12): 3445-52.
[http://dx.doi.org/10.1111/jcmm.13254] [PMID: 28661042]
[http://dx.doi.org/10.1111/jcmm.13254] [PMID: 28661042]
[49]
Smith CW, Marlin SD, Rothlein R, Toman C, Anderson DC. Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest 1989; 83(6): 2008-17.
[http://dx.doi.org/10.1172/JCI114111] [PMID: 2566624]
[http://dx.doi.org/10.1172/JCI114111] [PMID: 2566624]
[50]
Yu CH, Rafiq NB, Krishnasamy A, et al. Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep 2013; 5(5): 1456-68.
[http://dx.doi.org/10.1016/j.celrep.2013.10.040] [PMID: 24290759]
[http://dx.doi.org/10.1016/j.celrep.2013.10.040] [PMID: 24290759]
[51]
Bonnelye E, Saltel F, Chabadel A, Zirngibl RA, Aubin JE, Jurdic P. Involvement of the orphan nuclear estrogen receptor-related receptor α in osteoclast adhesion and transmigration. J Mol Endocrinol 2010; 45(6): 365-77.
[http://dx.doi.org/10.1677/JME-10-0024] [PMID: 20841427]
[http://dx.doi.org/10.1677/JME-10-0024] [PMID: 20841427]
[52]
Myers RB, Wei L, Castellot JJ Jr. The matricellular protein CCN5 regulates podosome function via interaction with integrin αvβ 3. J Cell Commun Signal 2014; 8(2): 135-46.
[http://dx.doi.org/10.1007/s12079-013-0218-2] [PMID: 24488697]
[http://dx.doi.org/10.1007/s12079-013-0218-2] [PMID: 24488697]
[53]
Tavares AM, Silva JH, Bensusan CO, et al. Altered superoxide dismutase-1 activity and intercellular adhesion molecule 1 (ICAM-1) levels in patients with type 2 diabetes mellitus. PLoS One 2019; 14(5)e0216256
[http://dx.doi.org/10.1371/journal.pone.0216256] [PMID: 31042755]
[http://dx.doi.org/10.1371/journal.pone.0216256] [PMID: 31042755]
[54]
Shi JX, Su X, Xu J, Zhang WY, Shi Y. MK2 posttranscriptionally regulates TNF-α-induced expression of ICAM-1 and IL-8 via tristetraprolin in human pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2012; 302(8): L793-9.
[http://dx.doi.org/10.1152/ajplung.00339.2011] [PMID: 22268119]
[http://dx.doi.org/10.1152/ajplung.00339.2011] [PMID: 22268119]
[55]
Gui T, Lin YK, Huan SW, et al. Elevated expression of ICAM-1 in synovium is associated with early inflammatory response for cartilage degeneration in type 2 diabetes mellitus. J Cell Biochem 2019; 120(8): 13177-86.
[http://dx.doi.org/10.1002/jcb.28592] [PMID: 30887556]
[http://dx.doi.org/10.1002/jcb.28592] [PMID: 30887556]
[56]
Marcos-Contreras OA, Brenner JS, Kiseleva RY, et al. Combining vascular targeting and the local first pass provides 100-fold higher uptake of ICAM-1-targeted vs untargeted nanocarriers in the inflamed brain. J Control Release 2019; 301: 54-61.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.008] [PMID: 30871995]
[http://dx.doi.org/10.1016/j.jconrel.2019.03.008] [PMID: 30871995]
[57]
Traub S, Nikonova A, Carruthers A, et al. An anti-human ICAM-1 antibody inhibits rhinovirus-induced exacerbations of lung inflammation. PLoS Pathog 2013; 9(8)e1003520
[http://dx.doi.org/10.1371/journal.ppat.1003520] [PMID: 23935498]
[http://dx.doi.org/10.1371/journal.ppat.1003520] [PMID: 23935498]
[58]
Kroon J, Schaefer A, van Rijssel J, et al. inflammation-sensitive myosin-x functionally supports leukocyte extravasation by Cdc42-mediated icam-1-rich endothelial filopodia Formation. J Immunol 2018; 200(5): 1790-801.
[http://dx.doi.org/10.4049/jimmunol.1700702] [PMID: 29386254]
[http://dx.doi.org/10.4049/jimmunol.1700702] [PMID: 29386254]
[59]
Tunçer S, Keşküş AG, Çolakoğlu M, et al. 15-Lipoxygenase-1 re-expression in colorectal cancer alters endothelial cell features through enhanced expression of TSP-1 and ICAM-1. Cell Signal 2017; 39: 44-54.
[http://dx.doi.org/10.1016/j.cellsig.2017.07.022] [PMID: 28757355]
[http://dx.doi.org/10.1016/j.cellsig.2017.07.022] [PMID: 28757355]
[60]
Zhang X, Huang J, Bai J, Lu W, Zhang M, Mei H. Association of polymorphisms in intercellular adhesion molecule 1 (icam-1) gene with cancer susceptibility: a meta-analysis of 14 case-control studies. Med Sci Monit 2016; 22: 569-79.
[http://dx.doi.org/10.12659/MSM.895811] [PMID: 26897511]
[http://dx.doi.org/10.12659/MSM.895811] [PMID: 26897511]
[61]
Haustein M, Ramer R, Linnebacher M, Manda K, Hinz B. Cannabinoids increase lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1. Biochem Pharmacol 2014; 92(2): 312-25.
[http://dx.doi.org/10.1016/j.bcp.2014.07.014] [PMID: 25069049]
[http://dx.doi.org/10.1016/j.bcp.2014.07.014] [PMID: 25069049]
[62]
Novikov VV, Shumilova SV, Novikov DV, Kalugin AV, Fomina SG, Karaulov AV. Genetic Instability in Locus rs5498 E469K (A/G) of ICAM-1 Gene in Patients with Colorectal Cancer and Breast Cancer. Bull Exp Biol Med 2016; 160(6): 811-3.
[http://dx.doi.org/10.1007/s10517-016-3316-3] [PMID: 27169635]
[http://dx.doi.org/10.1007/s10517-016-3316-3] [PMID: 27169635]
[63]
Cheng D, Liang B. Intercellular adhesion molecule-1 (icam-1) polymorphisms and cancer risk: A Meta-Analysis. Iran J Public Health 2015; 44(5): 615-24.
[PMID: 26284202]
[PMID: 26284202]
[64]
Liu X, Chen Q, Yan J, et al. MiRNA-296-3p-ICAM-1 axis promotes metastasis of prostate cancer by possible enhancing survival of natural killer cell-resistant circulating tumour cells. Cell Death Dis 2013; 4e928.
[http://dx.doi.org/10.1038/cddis.2013.458]] [PMID: 24263102]
[http://dx.doi.org/10.1038/cddis.2013.458]] [PMID: 24263102]
[65]
Zhang Y, Wang M, Liu W, Peng X. Optical imaging of triple-negative breast cancer cells in xenograft athymic mice using an icam-1-targeting small-molecule probe. Mol Imaging Biol 2019; 21(5): 835-41.
[http://dx.doi.org/10.1007/s11307-018-01312-3] [PMID: 30623283]
[http://dx.doi.org/10.1007/s11307-018-01312-3] [PMID: 30623283]
[66]
Hartana CA, Ahlén Bergman E, Zirakzadeh AA, et al. Urothelial bladder cancer may suppress perforin expression in CD8+ T cells by an ICAM-1/TGFβ2 mediated pathway. PLoS One 2018; 13(7)e0200079
[http://dx.doi.org/10.1371/journal.pone.0200079] [PMID: 29966014]
[http://dx.doi.org/10.1371/journal.pone.0200079] [PMID: 29966014]
[67]
Ferrer MC, Shuvaev VV, Zern BJ, Composto RJ, Muzykantov VR, Eckmann DM. Icam-1 targeted nanogels loaded with dexamethasone alleviate pulmonary inflammation. PLoS One 2014; 9(7)e102329
[http://dx.doi.org/10.1371/journal.pone.0102329] [PMID: 25019304]
[http://dx.doi.org/10.1371/journal.pone.0102329] [PMID: 25019304]
[68]
Yang J, Gu Y, Huang X, Shen A, Cheng C. Dynamic changes of ICAM-1 expression in peripheral nervous system following sciatic nerve injury. Neurol Res 2011; 33(1): 75-83.
[http://dx.doi.org/10.1179/016164110X12714125204353] [PMID: 20546684]
[http://dx.doi.org/10.1179/016164110X12714125204353] [PMID: 20546684]
[69]
Dai J, Wang P, Bai F, Town T, Fikrig E. Icam-1 participates in the entry of west nile virus into the central nervous system. J Virol 2008; 82(8): 4164-8.
[http://dx.doi.org/10.1128/JVI.02621-07] [PMID: 18256150]
[http://dx.doi.org/10.1128/JVI.02621-07] [PMID: 18256150]
[70]
Wang Q, Zhang M, Ding G, et al. Anti-ICAM-1 antibody and CTLA-4Ig synergistically enhance immature dendritic cells to induce donor-specific immune tolerance in vivo. Immunol Lett 2003; 90(1): 33-42.
[http://dx.doi.org/10.1016/S0165-2478(03)00160-3] [PMID: 14611905]
[http://dx.doi.org/10.1016/S0165-2478(03)00160-3] [PMID: 14611905]
[71]
Staunton DE, Dustin ML, Erickson HP, Springer TA. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell 1990; 61(2): 243-54.
[http://dx.doi.org/10.1016/0092-8674(90)90805-O] [PMID: 1970514]
[http://dx.doi.org/10.1016/0092-8674(90)90805-O] [PMID: 1970514]
[72]
Tibbetts SA, Chirathaworn C, Nakashima M, et al. Peptides derived from ICAM-1 and LFA-1 modulate T cell adhesion and immune function in a mixed lymphocyte culture. Transplantation 1999; 68(5): 685-92.
[http://dx.doi.org/10.1097/00007890-199909150-00015] [PMID: 10507489]
[http://dx.doi.org/10.1097/00007890-199909150-00015] [PMID: 10507489]
[73]
Boal F, Puhar A, Xuereb JM, et al. PI5P triggers icam-1 degradation in shigella infected cells, thus dampening immune cell recruitment. Cell Rep 2016; 14(4): 750-9.
[http://dx.doi.org/10.1016/j.celrep.2015.12.079] [PMID: 26776508]
[http://dx.doi.org/10.1016/j.celrep.2015.12.079] [PMID: 26776508]
[74]
Nishibori M, Takahashi HK, Mori S. The regulation of ICAM-1 and LFA-1 interaction by autacoids and statins: a novel strategy for controlling inflammation and immune responses. J Pharmacol Sci 2003; 92(1): 7-12.
[http://dx.doi.org/10.1254/jphs.92.7] [PMID: 12832849]
[http://dx.doi.org/10.1254/jphs.92.7] [PMID: 12832849]
[75]
Pastre MJ, Casagrande L, Gois MB, et al. Toxoplasma gondii causes increased ICAM-1 and serotonin expression in the jejunum of rats 12 h after infection. Biomed Pharmacother 2019; •••114108797
[http://dx.doi.org/10.1016/j.biopha.2019.108797] [PMID: 30951950]
[http://dx.doi.org/10.1016/j.biopha.2019.108797] [PMID: 30951950]
[76]
Steinhoff U, Klemm U, Greiner M, Bordasch K, Kaufmann SH. Altered intestinal immune system but normal antibacterial resistance in the absence of P-selectin and ICAM-1. J Immunol 1998; 160(12): 6112-20.
[PMID: 9637528]
[PMID: 9637528]
[77]
Aslam Z, Mumtaz M, Malkani N. Evaluation of serum circulating levels of icam-1 as tuberculosis risk-assessment factor in type 2 diabetes patients. P R Health Sci J 2019; 38(1): 22-6.
[PMID: 30924911]
[PMID: 30924911]
[78]
Azcutia V, Routledge M, Williams MR, et al. CD47 plays a critical role in T-cell recruitment by regulation of LFA-1 and VLA-4 integrin adhesive functions. Mol Biol Cell 2013; 24(21): 3358-68.
[http://dx.doi.org/10.1091/mbc.e13-01-0063] [PMID: 24006483]
[http://dx.doi.org/10.1091/mbc.e13-01-0063] [PMID: 24006483]
[79]
Robker RL, Collins RG, Beaudet AL, Mersmann HJ, Smith CW. Leukocyte migration in adipose tissue of mice null for ICAM-1 and Mac-1 adhesion receptors. Obes Res 2004; 12(6): 936-40.
[http://dx.doi.org/10.1038/oby.2004.114] [PMID: 15229332]
[http://dx.doi.org/10.1038/oby.2004.114] [PMID: 15229332]
[80]
Di Lorenzo A, Manes TD, Davalos A, Wright PL, Sessa WC. Endothelial reticulon-4B (Nogo-B) regulates ICAM-1-mediated leukocyte transmigration and acute inflammation. Blood 2011; 117(7): 2284-95.
[http://dx.doi.org/10.1182/blood-2010-04-281956] [PMID: 21183689]
[http://dx.doi.org/10.1182/blood-2010-04-281956] [PMID: 21183689]
[81]
Salek-Ardakani S, Arrand JR, Mackett M. Epstein-Barr virus encoded interleukin-10 inhibits HLA-class I, ICAM-1, and B7 expression on human monocytes: implications for immune evasion by EBV. Virology 2002; 304(2): 342-51.
[http://dx.doi.org/10.1006/viro.2002.1716] [PMID: 12504574]
[http://dx.doi.org/10.1006/viro.2002.1716] [PMID: 12504574]
[82]
Wilcox CE, Ward AM, Evans A, Baker D, Rothlein R, Turk JL. Endothelial cell expression of the intercellular adhesion molecule-1 (ICAM-1) in the central nervous system of guinea pigs during acute and chronic relapsing experimental allergic encephalomyelitis. J Neuroimmunol 1990; 30(1): 43-51.
[http://dx.doi.org/10.1016/0165-5728(90)90051-N] [PMID: 1977768]
[http://dx.doi.org/10.1016/0165-5728(90)90051-N] [PMID: 1977768]
[83]
Weber MC, Groger RK, Tykocinski ML. Antisense modulation of the ICAM-1 phenotype of a model human bone marrow stromal cell line. Exp Cell Res 1998; 244(1): 239-48.
[http://dx.doi.org/10.1006/excr.1998.4192] [PMID: 9770366]
[http://dx.doi.org/10.1006/excr.1998.4192] [PMID: 9770366]
[84]
El azreq MA, Bourgoin SG. Cytohesin-1 regulates human blood neutrophil adhesion to endothelial cells through β2 integrin activation. Mol Immunol 2011; 48(12-13): 1408-16.
[http://dx.doi.org/10.1016/j.molimm.2011.03.018] [PMID: 21511340]
[http://dx.doi.org/10.1016/j.molimm.2011.03.018] [PMID: 21511340]
[85]
Wang X, Clowes C, Duarte R, Pu QQ. Serum ICAM-1 concentrations following conventional dose consolidation chemotherapy for acute myeloid leukemia and after high dose chemotherapy with autologous haematopoietic stem cell rescue. Int J Oncol 2000; 17(3): 591-5.
[http://dx.doi.org/10.3892/ijo.17.3.591] [PMID: 10938403]
[http://dx.doi.org/10.3892/ijo.17.3.591] [PMID: 10938403]
[86]
Dustin ML, Rothlein R, Bhan AK, Dinarello CA, Springer TA. Induction by IL 1 and interferon-γ: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J. Immunol. 1986. 137: 245-254. J Immunol 2011; 186(9): 5024-33.
[PMID: 21505214]
[PMID: 21505214]
[87]
Pober JS, Gimbrone MA Jr, Lapierre LA, et al. Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J Immunol 1986; 137(6): 1893-6.
[PMID: 3091693]
[PMID: 3091693]
[88]
Pober JS, Bevilacqua MP, Mendrick DL, Lapierre LA, Fiers W, Gimbrone MA Jr. Two distinct monokines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells. J Immunol 1986; 136(5): 1680-7.
[PMID: 3485132]
[PMID: 3485132]
[89]
Kong L, Zhao Q, Wang X, Zhu J, Hao D, Yang C. Angelica sinensis extract inhibits RANKL-mediated osteoclastogenesis by down-regulated the expression of NFATc1 in mouse bone marrow cells. BMC Complement Altern Med 2014; 14: 481.
[http://dx.doi.org/10.1186/1472-6882-14-481] [PMID: 25496242]
[http://dx.doi.org/10.1186/1472-6882-14-481] [PMID: 25496242]
[90]
Wang B, Hao D, Zhang Z, et al. Inhibition effects of a natural inhibitor on RANKL downstream cellular signalling cascades cross-talking. J Cell Mol Med 2018; 22(9): 4236-42.
[http://dx.doi.org/10.1111/jcmm.13703] [PMID: 29911332]
[http://dx.doi.org/10.1111/jcmm.13703] [PMID: 29911332]
[91]
Yang X, Gao W, Wang B, et al. Picroside ii inhibits rankl-mediated osteoclastogenesis by attenuating the nf-κb and mapks signaling pathway in vitro and prevents bone loss in lipopolysaccharide treatment mice. J Cell Biochem 2017; 118(12): 4479-86.
[http://dx.doi.org/10.1002/jcb.26105] [PMID: 28464271]
[http://dx.doi.org/10.1002/jcb.26105] [PMID: 28464271]
[92]
Kong L, Ma R, Yang X, et al. Psoralidin suppresses osteoclastogenesis in BMMs and attenuates LPS-mediated osteolysis by inhibiting inflammatory cytokines. Int Immunopharmacol 2017; 51: 31-9.
[http://dx.doi.org/10.1016/j.intimp.2017.07.003] [PMID: 28779592]
[http://dx.doi.org/10.1016/j.intimp.2017.07.003] [PMID: 28779592]
[93]
Kong L, Yang C, Yu L, et al. Pyrroloquinoline quinine inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos in mouse bone marrow cells and inhibits wear particle-induced osteolysis in mice. PLoS One 2013; 8(4)e61013
[http://dx.doi.org/10.1371/journal.pone.0061013] [PMID: 23613773]
[http://dx.doi.org/10.1371/journal.pone.0061013] [PMID: 23613773]
[94]
Naranjo MC, Garcia I, Bermudez B, et al. Acute effects of dietary fatty acids on osteclastogenesis via RANKL/RANK/OPG system. Mol Nutr Food Res 2016; 60(11): 2505-13.
[http://dx.doi.org/10.1002/mnfr.201600303] [PMID: 27339288]
[http://dx.doi.org/10.1002/mnfr.201600303] [PMID: 27339288]
[95]
Lampiasi N, Russo R, Zito F. The Alternative Faces of Macrophage Generate Osteoclasts. BioMed Res Int 2016; •••20169089610
[http://dx.doi.org/10.1155/2016/9089610] [PMID: 26977415]
[http://dx.doi.org/10.1155/2016/9089610] [PMID: 26977415]
[96]
Binder N, Miller C, Yoshida M, et al. Def6 restrains osteoclastogenesis and inflammatory bone resorption. J Immunol 2017; 198(9): 3436-47.
[http://dx.doi.org/10.4049/jimmunol.1601716] [PMID: 28314855]
[http://dx.doi.org/10.4049/jimmunol.1601716] [PMID: 28314855]
[97]
Chiu YG, Ritchlin CT. Denosumab: targeting the RANKL pathway to treat rheumatoid arthritis. Expert Opin Biol Ther 2017; 17(1): 119-28.
[http://dx.doi.org/10.1080/14712598.2017.1263614] [PMID: 27871200]
[http://dx.doi.org/10.1080/14712598.2017.1263614] [PMID: 27871200]
[98]
Cascão R, Vidal B, Jalmari Finnilä MA, et al. Effect of celastrol on bone structure and mechanics in arthritic rats. RMD Open 2017; 3(2)e000438
[http://dx.doi.org/10.1136/rmdopen-2017-000438] [PMID: 28955491]
[http://dx.doi.org/10.1136/rmdopen-2017-000438] [PMID: 28955491]
[99]
Futosi K, Fodor S, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 2013; 17(3): 638-50.
[http://dx.doi.org/10.1016/j.intimp.2013.06.034] [PMID: 23994464]
[http://dx.doi.org/10.1016/j.intimp.2013.06.034] [PMID: 23994464]
[100]
Futosi K, Fodor S, Mócsai A. Reprint of Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 2013; 17(4): 1185-97.
[http://dx.doi.org/10.1016/j.intimp.2013.11.010] [PMID: 24263067]
[http://dx.doi.org/10.1016/j.intimp.2013.11.010] [PMID: 24263067]
[101]
Tajima M, Higuchi Y, Miyamoto N, et al. Ability of osteoclast formation from peripheral monocytes using anti-fusion regulatory protein-1/CD98/4F2 monoclonal antibodies in patients with osteoporosis. J Orthop Res 2000; 18(2): 265-8.
[http://dx.doi.org/10.1002/jor.1100180215] [PMID: 10815828]
[http://dx.doi.org/10.1002/jor.1100180215] [PMID: 10815828]
[102]
Ma B, Dohle E, Li M, Kirkpatrick CJ. TLR4 stimulation by LPS enhances angiogenesis in a co-culture system consisting of primary human osteoblasts and outgrowth endothelial cells. J Tissue Eng Regen Med 2017; 11(6): 1779-91.
[http://dx.doi.org/10.1002/term.2075] [PMID: 26205614]
[http://dx.doi.org/10.1002/term.2075] [PMID: 26205614]
[103]
Albiero ML, Amorim BR, Casati MZ, Sallum EA, Nociti FHJ, Silvério KG. Osteogenic potential of periodontal ligament stem cells are unaffected after exposure to lipopolysaccharides. Braz Oral Res 2017; 31e17.
[http://dx.doi.org/10.1590/1807-3107bor-2017.vol31.0017] [PMID: 28146221]
[http://dx.doi.org/10.1590/1807-3107bor-2017.vol31.0017] [PMID: 28146221]
[104]
Tanaka M, Aze Y, Fujita T. Adhesion molecule LFA-1/ICAM-1 influences on LPS-induced megakaryocytic emperipolesis in the rat bone marrow. Vet Pathol 1997; 34(5): 463-6.
[http://dx.doi.org/10.1177/030098589703400511] [PMID: 9381658]
[http://dx.doi.org/10.1177/030098589703400511] [PMID: 9381658]
[105]
Mafi P, Hindocha S, Mafi R, Griffin M, Khan W. Adult mesenchymal stem cells and cell surface characterization - a systematic review of the literature. Open Orthop J 2011; 5(Suppl. 2): 253-60.
[http://dx.doi.org/10.2174/1874325001105010253] [PMID: 21966340]
[http://dx.doi.org/10.2174/1874325001105010253] [PMID: 21966340]
[106]
Fu L, Liu W, Sun H, et al. Effect of ligustrazine on the expression of LFA-1, ICAM-1 following bone marrow transplantation in mice. J Huazhong Univ Sci Technolog Med Sci 2004; 24(3): 239-42.
[http://dx.doi.org/10.1007/BF02832000] [PMID: 15315336]
[http://dx.doi.org/10.1007/BF02832000] [PMID: 15315336]
[107]
Liu YF, Zhang SY, Chen YY, et al. ICAM-1 deficiency in the bone marrow niche impairs quiescence and repopulation of hematopoietic stem cells. Stem Cell Reports 2018; 11(1): 258-73.
[http://dx.doi.org/10.1016/j.stemcr.2018.05.016] [PMID: 29937143]
[http://dx.doi.org/10.1016/j.stemcr.2018.05.016] [PMID: 29937143]
[108]
van Buul JD, Mul FP, van der Schoot CE, Hordijk PL. ICAM-3 activation modulates cell-cell contacts of human bone marrow endothelial cells. J Vasc Res 2004; 41(1): 28-37.
[http://dx.doi.org/10.1159/000076126] [PMID: 14726630]
[http://dx.doi.org/10.1159/000076126] [PMID: 14726630]
[109]
Cenni E, Ciapetti G, Granchi D, et al. Endothelial cells incubated with platelet-rich plasma express PDGF-B and ICAM-1 and induce bone marrow stromal cell migration. J Orthop Res 2009; 27(11): 1493-8.
[http://dx.doi.org/10.1002/jor.20896] [PMID: 19396860]
[http://dx.doi.org/10.1002/jor.20896] [PMID: 19396860]
[110]
Shi Q, Benderdour M, Lavigne P, Ranger P, Fernandes JC. Evidence for two distinct pathways in TNFalpha-induced membrane and soluble forms of ICAM-1 in human osteoblast-like cells isolated from osteoarthritic patients. Osteoarthritis Cartilage 2007; 15(3): 300-8.
[http://dx.doi.org/10.1016/j.joca.2006.08.010] [PMID: 17161959]
[http://dx.doi.org/10.1016/j.joca.2006.08.010] [PMID: 17161959]
[111]
Lavigne P, Benderdour M, Shi Q, Lajeunesse D, Fernandes JC. Involvement of ICAM-1 in bone metabolism: a potential target in the treatment of bone diseases? Expert Opin Biol Ther 2005; 5(3): 313-20.
[http://dx.doi.org/10.1517/14712598.5.3.313] [PMID: 15833069]
[http://dx.doi.org/10.1517/14712598.5.3.313] [PMID: 15833069]
[112]
Kurokouchi K, Kambe F, Yasukawa K, et al. TNF-alpha increases expression of IL-6 and ICAM-1 genes through activation of NF-kappaB in osteoblast-like ROS17/2.8 cells. J Bone Miner Res 1998; 13(8): 1290-9.
[http://dx.doi.org/10.1359/jbmr.1998.13.8.1290] [PMID: 9718198]
[http://dx.doi.org/10.1359/jbmr.1998.13.8.1290] [PMID: 9718198]
[113]
Rubtsov Y, Goryunov K, Romanov A, Suzdaltseva Y, Sharonov G, Tkachuk V. Molecular mechanisms of immunomodulation properties of mesenchymal stromal cells: a new insight into the role of icam-1. Stem Cells Int 2017; •••20176516854
[http://dx.doi.org/10.1155/2017/6516854] [PMID: 28761447]
[http://dx.doi.org/10.1155/2017/6516854] [PMID: 28761447]
[114]
Lavigne P, Benderdour M, Lajeunesse D, Shi Q, Fernandes JC. Expression of ICAM-1 by osteoblasts in healthy individuals and in patients suffering from osteoarthritis and osteoporosis. Bone 2004; 35(2): 463-70.
[http://dx.doi.org/10.1016/j.bone.2003.12.030] [PMID: 15268898]
[http://dx.doi.org/10.1016/j.bone.2003.12.030] [PMID: 15268898]
[115]
Kurachi T, Morita I, Murota S. Involvement of adhesion molecules LFA-1 and ICAM-1 in osteoclast development. Biochim Biophys Acta 1993; 1178(3): 259-66.
[http://dx.doi.org/10.1016/0167-4889(93)90202-Z] [PMID: 7779165]
[http://dx.doi.org/10.1016/0167-4889(93)90202-Z] [PMID: 7779165]
[116]
Tanaka Y, Maruo A, Fujii K, et al. Intercellular adhesion molecule 1 discriminates functionally different populations of human osteoblasts: characteristic involvement of cell cycle regulators. J Bone Miner Res 2000; 15(10): 1912-23.
[http://dx.doi.org/10.1359/jbmr.2000.15.10.1912] [PMID: 11028443]
[http://dx.doi.org/10.1359/jbmr.2000.15.10.1912] [PMID: 11028443]
[117]
Yin Z, Jiang G, Fung JJ, Lu L, Qian S. ICAM-1 expressed on hepatic stellate cells plays an important role in immune regulation. Microsurgery 2007; 27(4): 328-32.
[http://dx.doi.org/10.1002/micr.20366] [PMID: 17477408]
[http://dx.doi.org/10.1002/micr.20366] [PMID: 17477408]
[118]
Fernandes JC, Shi Q, Benderdour M, Lajeunesse D, Lavigne P. An active role for soluble and membrane intercellular adhesion molecule-1 in osteoclast activity in vitro. J Bone Miner Metab 2008; 26(6): 543-50.
[http://dx.doi.org/10.1007/s00774-008-0866-0] [PMID: 18979153]
[http://dx.doi.org/10.1007/s00774-008-0866-0] [PMID: 18979153]
[119]
Silvestris F, Cafforio P, Calvani N, Dammacco F. Impaired osteoblastogenesis in myeloma bone disease: role of upregulated apoptosis by cytokines and malignant plasma cells. Br J Haematol 2004; 126(4): 475-86.
[http://dx.doi.org/10.1111/j.1365-2141.2004.05084.x] [PMID: 15287939]
[http://dx.doi.org/10.1111/j.1365-2141.2004.05084.x] [PMID: 15287939]
[120]
Cheung WY, Simmons CA, You L. Osteocyte apoptosis regulates osteoclast precursor adhesion via osteocytic IL-6 secretion and endothelial ICAM-1 expression. Bone 2012; 50(1): 104-10.
[http://dx.doi.org/10.1016/j.bone.2011.09.052] [PMID: 21986000]
[http://dx.doi.org/10.1016/j.bone.2011.09.052] [PMID: 21986000]
[121]
Sanadgol N, Mostafaie A, Mansouri K, Bahrami G. Effect of palmitic acid and linoleic acid on expression of ICAM-1 and VCAM-1 in human bone marrow endothelial cells (HBMECs). Arch Med Sci 2012; 8(2): 192-8.
[http://dx.doi.org/10.5114/aoms.2012.28544] [PMID: 22661989]
[http://dx.doi.org/10.5114/aoms.2012.28544] [PMID: 22661989]
[122]
Winter SS, Sweatman JJ, Lawrence MB, Rhoades TH, Hart AL, Larson RS. Enhanced T-lineage acute lymphoblastic leukaemia cell survival on bone marrow stroma requires involvement of LFA-1 and ICAM-1. Br J Haematol 2001; 115(4): 862-71.
[http://dx.doi.org/10.1046/j.1365-2141.2001.03182.x] [PMID: 11843820]
[http://dx.doi.org/10.1046/j.1365-2141.2001.03182.x] [PMID: 11843820]
[123]
Zeng XZ, He LG, Wang S, et al. Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression. Acta Pharmacol Sin 2016; 37(2): 255-63.
[http://dx.doi.org/10.1038/aps.2015.85] [PMID: 26592521]
[http://dx.doi.org/10.1038/aps.2015.85] [PMID: 26592521]
[124]
Yang B, Zhou H, Zhang XD, Liu Z, Fan FY, Sun YM. Effect of radiation on the expression of osteoclast marker genes in RAW264.7 cells. Mol Med Rep 2012; 5(4): 955-8.
[http://dx.doi.org/10.3892/mmr.2012.765] [PMID: 22294242]
[http://dx.doi.org/10.3892/mmr.2012.765] [PMID: 22294242]
[125]
Gu J, Tong XS, Chen GH, et al. Effects of 1α,25-(OH)2D3 on the formation and activity of osteoclasts in RAW264.7 cells. J Steroid Biochem Mol Biol 2015; 152: 25-33.
[http://dx.doi.org/10.1016/j.jsbmb.2015.04.003] [PMID: 25864627]
[http://dx.doi.org/10.1016/j.jsbmb.2015.04.003] [PMID: 25864627]
[126]
Baek JM, Park SH, Cheon YH, et al. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway. Biochem Biophys Res Commun 2015; 461(2): 334-41.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.034] [PMID: 25887803]
[http://dx.doi.org/10.1016/j.bbrc.2015.04.034] [PMID: 25887803]
[127]
Napimoga MH, Demasi AP, Jarry CR, Ortega MC, de Araújo VC, Martinez EF. In vitro evaluation of the biological effect of SOFAT on osteoblasts. Int Immunopharmacol 2015; 26(2): 378-83.
[http://dx.doi.org/10.1016/j.intimp.2015.04.033] [PMID: 25916677]
[http://dx.doi.org/10.1016/j.intimp.2015.04.033] [PMID: 25916677]
[128]
Mbalaviele G, Orcel P, Morieux C, Nijweide PJ, de Vernejoul MC. Osteoclast formation from human cord blood mononuclear cells co-cultured with mice embryonic metatarsals in the presence of M-CSF. Bone 1995; 16(1): 171-7.
[http://dx.doi.org/10.1016/8756-3282(95)80029-P] [PMID: 7742078]
[http://dx.doi.org/10.1016/8756-3282(95)80029-P] [PMID: 7742078]
[129]
Oelzner P, Franke S, Lehmann G, Eidner T, Hein G, Wolf G. The balance between soluble receptors regulating IL-6 trans-signaling is predictive for the RANKL/osteoprotegerin ratio in postmenopausal women with rheumatoid arthritis. Rheumatol Int 2012; 32(1): 199-206.
[http://dx.doi.org/10.1007/s00296-010-1606-z] [PMID: 20821212]
[http://dx.doi.org/10.1007/s00296-010-1606-z] [PMID: 20821212]
[130]
Kim Y, Yi H, Jung H, et al. A Dual target-directed agent against interleukin-6 receptor and tumor necrosis factor α ameliorates experimental arthritis. Sci Rep 2016; 6: 20150.
[http://dx.doi.org/10.1038/srep20150] [PMID: 26841833]
[http://dx.doi.org/10.1038/srep20150] [PMID: 26841833]
[131]
O’Brien W, Fissel BM, Maeda Y, et al. RANK-independent osteoclast
formation and bone erosion in inflammatory arthritis. arthritis
rheumatol 2016; 68(12): 2889-900.
[http://dx.doi.org/10.1002/art.39837] [PMID: 27563728]
[http://dx.doi.org/10.1002/art.39837] [PMID: 27563728]
[132]
Feng W, Liu H, Luo T, et al. Combination of IL-6 and sIL-6R differentially regulate varying levels of RANKL-induced osteoclastogenesis through NF-κB, ERK and JNK signaling pathways. Sci Rep 2017; 7: 41411.
[http://dx.doi.org/10.1038/srep41411] [PMID: 28128332]
[http://dx.doi.org/10.1038/srep41411] [PMID: 28128332]
[133]
Suzuki M, Hashizume M, Yoshida H, Shiina M, Mihara M. Intercellular adhesion molecule-1 on synovial cells attenuated interleukin-6-induced inhibition of osteoclastogenesis induced by receptor activator for nuclear factor κB ligand. Clin Exp Immunol 2011; 163(1): 88-95.
[http://dx.doi.org/10.1111/j.1365-2249.2010.04276.x] [PMID: 21039424]
[http://dx.doi.org/10.1111/j.1365-2249.2010.04276.x] [PMID: 21039424]
[134]
Tanaka Y, Nomi M, Fujii K, et al. Intercellular adhesion molecule 1 underlies the functional heterogeneity of synovial cells in patients with rheumatoid arthritis: involvement of cell cycle machinery. Arthritis Rheum 2000; 43(11): 2513-22.
[http://dx.doi.org/10.1002/1529-0131(200011)43:11<2513:AID-ANR19>3.0.CO;2-C] [PMID: 11083275]
[http://dx.doi.org/10.1002/1529-0131(200011)43:11<2513:AID-ANR19>3.0.CO;2-C] [PMID: 11083275]
[135]
Hofmann N, Lachnit N, Streppel M, et al. Increased expression of ICAM-1, VCAM-1, MCP-1, and MIP-1 alpha by spinal perivascular macrophages during experimental allergic encephalomyelitis in rats. BMC Immunol 2002; 3: 11.
[http://dx.doi.org/10.1186/1471-2172-3-11] [PMID: 12196270]
[http://dx.doi.org/10.1186/1471-2172-3-11] [PMID: 12196270]
[136]
Panoskaltsis-Mortari A, Hermanson JR, Haddad IY, Wangensteen OD, Blazar BR. Intercellular adhesion molecule-I (ICAM-I, CD54) deficiency segregates the unique pathophysiological requirements for generating idiopathic pneumonia syndrome (IPS) versus graft-versus-host disease following allogeneic murine bone marrow transplantation. Biol Blood Marrow Transplant 2001; 7(7): 368-77.
[http://dx.doi.org/10.1053/bbmt.2001.v7.pm11529486] [PMID: 11529486]
[http://dx.doi.org/10.1053/bbmt.2001.v7.pm11529486] [PMID: 11529486]
[137]
Hill GD, Mangum JB, Moss OR, Everitt JI. Soluble ICAM-1, MCP-1, and MIP-2 protein secretion by rat pleural mesothelial cells following exposure to amosite asbestos. Exp Lung Res 2003; 29(5): 277-90.
[http://dx.doi.org/10.1080/01902140303788] [PMID: 12746042]
[http://dx.doi.org/10.1080/01902140303788] [PMID: 12746042]
[138]
Shukla SD, Hansbro PM, Walters EH. Blocking rhinoviral adhesion molecule (ICAM-1): potential to prevent COPD exacerbations. Int J Chron Obstruct Pulmon Dis 2017; 12: 1413-4.
[http://dx.doi.org/10.2147/COPD.S138612] [PMID: 28546749]
[http://dx.doi.org/10.2147/COPD.S138612] [PMID: 28546749]
[139]
Zandvoort A, van der Geld YM, Jonker MR, et al. High ICAM-1 gene expression in pulmonary fibroblasts of COPD patients: a reflection of an enhanced immunological function. Eur Respir J 2006; 28(1): 113-22.
[http://dx.doi.org/10.1183/09031936.06.00116205] [PMID: 16611655]
[http://dx.doi.org/10.1183/09031936.06.00116205] [PMID: 16611655]
[140]
Pillay J, Kamp VM, Pennings M, et al. Acute-phase concentrations of soluble fibrinogen inhibit neutrophil adhesion under flow conditions in vitro through interactions with ICAM-1 and MAC-1 (CD11b/CD18). J Thromb Haemost 2013; 11(6): 1172-82.
[http://dx.doi.org/10.1111/jth.12250] [PMID: 23581432]
[http://dx.doi.org/10.1111/jth.12250] [PMID: 23581432]
[141]
Dong Z, Fu S, Xu X, et al. Leptin-mediated regulation of ICAM-1 is Rho/ROCK dependent and enhances gastric cancer cell migration. Br J Cancer 2014; 110(7): 1801-10.
[http://dx.doi.org/10.1038/bjc.2014.70] [PMID: 24548863]
[http://dx.doi.org/10.1038/bjc.2014.70] [PMID: 24548863]
[142]
Kotteas EA, Gkiozos I, Tsagkouli S, et al. Soluble ICAM-1 levels in small-cell lung cancer: prognostic value for survival and predictive significance for response during chemotherapy. Med Oncol 2013; 30(3): 662.
[http://dx.doi.org/10.1007/s12032-013-0662-0] [PMID: 23884579]
[http://dx.doi.org/10.1007/s12032-013-0662-0] [PMID: 23884579]
[143]
Song R, Ao L, Zhao KS, et al. Soluble biglycan induces the production of ICAM-1 and MCP-1 in human aortic valve interstitial cells through TLR2/4 and the ERK1/2 pathway. Inflamm Res 2014; 63(9): 703-10.
[http://dx.doi.org/10.1007/s00011-014-0743-3] [PMID: 24875140]
[http://dx.doi.org/10.1007/s00011-014-0743-3] [PMID: 24875140]
[144]
Sapna S, Shivakumar K. Substance P enhances soluble ICAM-1 release from adult rat cardiac fibroblasts by a p42/44 MAPK- and PKC-mediated mechanism. Cell Biol Int 2007; 31(8): 856-9.
[http://dx.doi.org/10.1016/j.cellbi.2007.01.031] [PMID: 17336102]
[http://dx.doi.org/10.1016/j.cellbi.2007.01.031] [PMID: 17336102]
[145]
Roescher N, Vosters JL, Yin H, Illei GG, Tak PP, Chiorini JA. Effect of soluble ICAM-1 on a Sjögren’s syndrome-like phenotype in NOD mice is disease stage dependent. PLoS One 2011; 6(5)e19962
[http://dx.doi.org/10.1371/journal.pone.0019962] [PMID: 21589878]
[http://dx.doi.org/10.1371/journal.pone.0019962] [PMID: 21589878]
[146]
Mikuła-Pietrasik J, Uruski P, Kucińska M, Tykarski A, Książek K. The protective activity of mesothelial cells against peritoneal growth of gastrointestinal tumors: The role of soluble ICAM-1. Int J Biochem Cell Biol 2017; 86: 26-31.
[http://dx.doi.org/10.1016/j.biocel.2017.03.013] [PMID: 28323210]
[http://dx.doi.org/10.1016/j.biocel.2017.03.013] [PMID: 28323210]
[147]
Johnston TP. Poloxamer 407 increases soluble adhesion molecules, ICAM-1, VCAM-1 and E-selectin, in C57BL/6 mice. J Pharm Pharmacol 2009; 61(12): 1681-8.
[PMID: 19958592]
[PMID: 19958592]
[148]
Sanadgol N, Mostafaie A, Bahrami G, Mansouri K, Ghanbari F, Bidmeshkipour A. Elaidic acid sustains LPS and TNF-alpha induced ICAM-1 and VCAM-I expression on human bone marrow endothelial cells (HBMEC). Clin Biochem 2010; 43(12): 968-72.
[http://dx.doi.org/10.1016/j.clinbiochem.2010.04.066] [PMID: 20451511]
[http://dx.doi.org/10.1016/j.clinbiochem.2010.04.066] [PMID: 20451511]
[149]
Kuessel L, Wenzl R, Proestling K, et al. Soluble VCAM-1/soluble ICAM-1 ratio is a promising biomarker for diagnosing endometriosis. Hum Reprod 2017; 32(4): 770-9.
[http://dx.doi.org/10.1093/humrep/dex028] [PMID: 28333208]
[http://dx.doi.org/10.1093/humrep/dex028] [PMID: 28333208]
[150]
Garcia-Palacios V, Chung HY, Choi SJ, et al. Eosinophil chemotactic factor-L (ECF-L) enhances osteoclast formation by increasing ICAM-1 expression. Ann N Y Acad Sci 2006; 1068: 240-3.
[http://dx.doi.org/10.1196/annals.1346.048] [PMID: 16831924]
[http://dx.doi.org/10.1196/annals.1346.048] [PMID: 16831924]
[151]
Azcutia V, Bassil R, Herter JM, et al. Defects in CD4+ T cell LFA-1 integrin-dependent adhesion and proliferation protect Cd47-/- mice from EAE. J Leukoc Biol 2017; 101(2): 493-505.
[http://dx.doi.org/10.1189/jlb.3A1215-546RR] [PMID: 27965383]
[http://dx.doi.org/10.1189/jlb.3A1215-546RR] [PMID: 27965383]
[152]
Grönholm M, Jahan F, Bryushkova EA, et al. LFA-1 integrin antibodies inhibit leukocyte α4β1-mediated adhesion by intracellular signaling. Blood 2016; 128(9): 1270-81.
[http://dx.doi.org/10.1182/blood-2016-03-705160] [PMID: 27443292]
[http://dx.doi.org/10.1182/blood-2016-03-705160] [PMID: 27443292]
[153]
Sen M, Koksal AC, Yuki K, Wang J, Springer TA. Ligand- and cation-induced structural alterations of the leukocyte integrin LFA-1. J Biol Chem 2018; 293(17): 6565-77.
[http://dx.doi.org/10.1074/jbc.RA117.000710] [PMID: 29507098]
[http://dx.doi.org/10.1074/jbc.RA117.000710] [PMID: 29507098]
[154]
Kanner SB, Grosmaire LS, Ledbetter JA, Damle NK. Beta 2-integrin LFA-1 signaling through phospholipase C-gamma 1 activation. Proc Natl Acad Sci USA 1993; 90(15): 7099-103.
[http://dx.doi.org/10.1073/pnas.90.15.7099] [PMID: 7688472]
[http://dx.doi.org/10.1073/pnas.90.15.7099] [PMID: 7688472]
[155]
Fukamachi H, Kawakami Y, Takei M, Ishizaka T, Ishizaka K, Kawakami T. Association of protein-tyrosine kinase with phospholipase C-gamma 1 in bone marrow-derived mouse mast cells. Proc Natl Acad Sci USA 1992; 89(20): 9524-8.
[http://dx.doi.org/10.1073/pnas.89.20.9524] [PMID: 1384056]
[http://dx.doi.org/10.1073/pnas.89.20.9524] [PMID: 1384056]
[156]
Pemmari A, Paukkeri EL, Hamalainen M, Leppanen T, Korhonen R, Moilanen E. MKP-1 promotes anti-inflammatory M(IL-4/IL-13) macrophage phenotype and mediates the anti-inflammatory effects of glucocorticoids. Basic Clin Pharmacol Toxicol 2018.
[PMID: 30388313]
[PMID: 30388313]
[157]
Ishida A, Sueyoshi N, Shigeri Y, Kameshita I. Negative regulation of multifunctional Ca2+/calmodulin-dependent protein kinases: physiological and pharmacological significance of protein phosphatases. Br J Pharmacol 2008; 154(4): 729-40.
[http://dx.doi.org/10.1038/bjp.2008.127] [PMID: 18454172]
[http://dx.doi.org/10.1038/bjp.2008.127] [PMID: 18454172]