Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Crosstalk between Platelet and Bacteria: A Therapeutic Prospect

Author(s): Vivek K. Yadav, Pradeep K. Singh, Vishnu Agarwal* and Sunil K. Singh*

Volume 25, Issue 38, 2019

Page: [4041 - 4052] Pages: 12

DOI: 10.2174/1381612825666190925163347

Price: $65

Abstract

Platelets are typically recognized for their roles in the maintenance of hemostasis and vascular wall repair to reduce blood loss. Beyond hemostasis, platelets also play a critical role in pathophysiological conditions like atherosclerosis, stroke, thrombosis, and infections. During infection, platelets interact directly and indirectly with bacteria through a wide range of cellular and molecular mechanisms. Platelet surface receptors such as GPIbα, FcγRIIA, GPIIbIIIa, and TLRs, etc. facilitate direct interaction with bacterial cells. Besides, the indirect interaction between platelet and bacteria involves host plasma proteins such as von Willebrand Factor (vWF), fibronectin, IgG, and fibrinogen. Bacterial cells induce platelet activation, aggregation, and thrombus formation in the microvasculature. The activated platelets induce the Neutrophil Extracellular Traps (NETs) formation, which further contribute to thrombosis. Thus, platelets are extensively anticipated as vital immune modulator cells during infection, which may further lead to cardiovascular complications. In this review, we cover the interaction mechanisms between platelets and bacteria that may lead to the development of thrombotic disorders. Platelet receptors and other host molecules involved in such interactions can be used to develop new therapeutic strategies to combat against infection-induced cardiovascular complications. In addition, we highlight other receptor and enzyme targets that may further reduce infection-induced platelet activation and various pathological conditions.

Keywords: Platelet, infection, neutrophil extracellular traps, sepsis, thrombosis, cardiovascular complications.

[1]
Mussbacher M, Kral-Pointner JB, Salzmann M, Schrottmaier WC, Assinger A. Mechanisms of Hemostasis: Contributions of Platelets, Coagulation Factors, and the Vessel Wall. In: Geiger M. Fundamentals of Vascular Biology. Cham: Springer 2019; pp. 145-69.
[2]
Ali RA, Wuescher LM, Worth RG. Platelets: essential components of the immune system. Curr Trends Immunol 2015; 16: 65-78.
[PMID: 27818580]
[3]
Yeaman MR. Platelets in defense against bacterial pathogens. Cell Mol Life Sci 2010; 67(4): 525-44.
[http://dx.doi.org/10.1007/s00018-009-0210-4] [PMID: 20013024]
[4]
Yeaman MR. Bacterial-platelet interactions: virulence meets host defense. Future Microbiol 2010; 5(3): 471-506.
[http://dx.doi.org/10.2217/fmb.09.112] [PMID: 20210555]
[5]
McDonald B, Davis RP, Kim S-J, et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017; 129(10): 1357-67.
[http://dx.doi.org/10.1182/blood-2016-09-741298] [PMID: 28073784]
[6]
Yeung J, Li W, Holinstat M. Platelet signaling and disease: targeted therapy for thrombosis and other related diseases. Pharmacol Rev 2018; 70(3): 526-48.
[7]
Kerrigan SW. Platelet Interactions with Bacteria. The Non-Thrombotic Role of Platelets in Health and Disease. InTech 2015.
[http://dx.doi.org/10.5772/60531]
[8]
Kerrigan SW, Cox D. Platelet-bacterial interactions. Cell Mol Life Sci 2010; 67(4): 513-23.
[http://dx.doi.org/10.1007/s00018-009-0207-z] [PMID: 20091082]
[9]
Kerrigan SW, Cox D. Platelet-bacterial interactions as therapeutic targets in infective endocarditis 2007.
[10]
Kerrigan SW. The expanding field of platelet-bacterial interconnections. Platelets 2015; 26(4): 293-301.
[http://dx.doi.org/10.3109/09537104.2014.997690] [PMID: 25734214]
[11]
Wang Y, Ouyang Y, Liu B, Ma X, Ding R. Platelet activation and antiplatelet therapy in sepsis: a narrative review. Thromb Res 2018; 166: 28-36.
[http://dx.doi.org/10.1016/j.thromres.2018.04.007] [PMID: 29655000]
[12]
Levi M, Poll T. Coagulation in patients with severe sepsis Semin Thromb Hemost 2015 41(01): 009-15.
[http://dx.doi.org/10.1055/s-0034-1398376]
[13]
Levi M. The coagulant response in sepsis and inflammation. Hamostaseologie 2010; 30(1): 10-12, 14-16.
[http://dx.doi.org/10.1055/s-0037-1617143] [PMID: 20162247]
[14]
Levi M. The coagulant response in sepsis. Clin Chest Med 2008; 29(4): 627-642 viii.
[http://dx.doi.org/10.1016/j.ccm.2008.06.006] [PMID: 18954698]
[15]
Fleischmann C, Scherag A, Adhikari NKJ, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med 2016; 193(3): 259-72.
[http://dx.doi.org/10.1164/rccm.201504-0781OC] [PMID: 26414292]
[16]
Jawad I, Lukšić I, Rafnsson SB. Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality. J Glob Health 2012; 2(1)010404
[http://dx.doi.org/10.7189/jogh.01.010404] [PMID: 23198133]
[17]
Dellinger RP, Levy MM, Carlet JM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med 2008; 34(1): 17-60.
[http://dx.doi.org/10.1007/s00134-007-0934-2] [PMID: 18058085]
[18]
Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med 2013; 369(9): 840-51.
[http://dx.doi.org/10.1056/NEJMra1208623] [PMID: 23984731]
[19]
Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet 2018; 392(10141): 75-87.
[http://dx.doi.org/10.1016/S0140-6736(18)30696-2] [PMID: 29937192]
[20]
Levi M, van der Poll T. Coagulation and sepsis. Thromb Res 2017; 149: 38-44.
[http://dx.doi.org/10.1016/j.thromres.2016.11.007] [PMID: 27886531]
[21]
Hossain N, Paidas MJ. Disseminated Intravascular Coagulation Critical Care Obstetrics. Chichester, UK: John Wiley & Sons, Ltd 2018; pp. 479-86.
[http://dx.doi.org/10.1002/9781119129400.ch31]
[22]
Vergouwen MDI, Schut ES, Troost D, van de Beek D. Diffuse cerebral intravascular coagulation and cerebral infarction in pneumococcal meningitis. Neurocrit Care 2010; 13(2): 217-27.
[http://dx.doi.org/10.1007/s12028-010-9387-5] [PMID: 20526697]
[23]
Khilnani P. Severe Sepsis and Septic Shock. India: Springer 2012; pp. 703-7.
[24]
Levi M, Schultz M, van der Poll T. Sepsis and thrombosis. Semin Thromb Hemost 2013; 39(5): 559-66.
[http://dx.doi.org/10.1055/s-0033-1343894] [PMID: 23625756]
[25]
Spapen H. Liver perfusion in sepsis, septic shock, and multiorgan failure. Anat Rec (Hoboken) 2008; 291(6): 714-20.
[http://dx.doi.org/10.1002/ar.20646] [PMID: 18484618]
[26]
Levi M, Ten Cate H. Disseminated intravascular coagulation. N Engl J Med 1999; 341(8): 586-92.
[http://dx.doi.org/10.1056/NEJM199908193410807] [PMID: 10451465]
[27]
Semeraro N, Ammollo CT, Semeraro F, Colucci M. Sepsis-associated disseminated intravascular coagulation and thromboembolic disease. Mediterr J Hematol Infect Dis 2010; 2(3)e2010024
[http://dx.doi.org/10.4084/mjhid.2010.024] [PMID: 21415977]
[28]
Isobe M, Uejima E, Seki M, et al. Methicillin-resistant Staphylococcus aureus bacteremia at a university hospital in Japan. J Infect Chemother 2012; 18(6): 841-7.
[http://dx.doi.org/10.1007/s10156-012-0423-6] [PMID: 22576750]
[29]
Machlus KR, Italiano JE Jr. The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol 2013; 201(6): 785-96.
[http://dx.doi.org/10.1083/jcb.201304054] [PMID: 23751492]
[30]
Kaushansky K. Thrombopoietin: understanding and manipulating platelet production. Annu Rev Med 1997; 48(1): 1-11.
[http://dx.doi.org/10.1146/annurev.med.48.1.1] [PMID: 9046940]
[31]
Whiteheart SW. Platelet granules: surprise packages. Blood 2011; 118(5): 1190-1.
[http://dx.doi.org/10.1182/blood-2011-06-359836] [PMID: 21816838]
[32]
Hosseinzadegan H, Tafti DK. Mechanisms of platelet activation, adhesion and aggregation. Thromb Haemost Res 2017; 1(2): 1008.
[33]
Rivera J, Lozano ML, Navarro-Núñez L, Vicente V. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 2009; 94(5): 700-11.
[http://dx.doi.org/10.3324/haematol.2008.003178] [PMID: 19286885]
[34]
Al Dieri R, de Laat B, Hemker HC. Thrombin generation: what have we learned? Blood Rev 2012; 26(5): 197-203.
[http://dx.doi.org/10.1016/j.blre.2012.06.001] [PMID: 22762893]
[35]
Gardiner EE, Andrews RK. Platelets: envoys at the infection frontline. J Infect Dis 2013; 208(6): 871-3.
[http://dx.doi.org/10.1093/infdis/jit305] [PMID: 23852121]
[36]
Semple JW, Italiano JE Jr, Freedman J. Platelets and the immune continuum. Nat Rev Immunol 2011; 11(4): 264-74.
[http://dx.doi.org/10.1038/nri2956] [PMID: 21436837]
[37]
Versteeg HH, Heemskerk JWM, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev 2013; 93(1): 327-58.
[http://dx.doi.org/10.1152/physrev.00016.2011] [PMID: 23303912]
[38]
Hamzeh-Cognasse H, Damien P, Chabert A, Pozzetto B, Cognasse F, Garraud O. Platelets and infections - complex interactions with bacteria. Front Immunol 2015; 6(February): 82.
[http://dx.doi.org/10.3389/fimmu.2015.00082] [PMID: 25767472]
[39]
Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O. Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol 2005; 83(2): 196-8.
[http://dx.doi.org/10.1111/j.1440-1711.2005.01314.x] [PMID: 15748217]
[40]
Aslam R, Speck ER, Kim M, et al. Platelet toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood 2006; 107(2): 637-41.
[http://dx.doi.org/10.1182/blood-2005-06-2202] [PMID: 16179373]
[41]
Cognasse F, Hamzeh-Cognasse H, Lafarge S, et al. Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol 2008; 141(1): 84-91.
[http://dx.doi.org/10.1111/j.1365-2141.2008.06999.x] [PMID: 18279456]
[42]
Berthet J, Damien P, Hamzeh-Cognasse H, et al. Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion. Clin Immunol 2012; 145(3): 189-200.
[http://dx.doi.org/10.1016/j.clim.2012.09.004] [PMID: 23108090]
[43]
Stocker TJ, Ishikawa-Ankerhold H, Massberg S, Schulz C. Small but mighty: platelets as central effectors of host defense. Thromb Haemost 2017; 117(4): 651-61.
[http://dx.doi.org/10.1160/TH16-12-0921] [PMID: 28203681]
[44]
Yeaman MR. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol 2014; 12(6): 426-37.
[http://dx.doi.org/10.1038/nrmicro3269] [PMID: 24830471]
[45]
Cox D, Kerrigan SW, Watson SP. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost 2011; 9(6): 1097-107.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04264.x] [PMID: 21435167]
[46]
Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets. Nat Rev Microbiol 2006; 4(6): 445-57.
[http://dx.doi.org/10.1038/nrmicro1425] [PMID: 16710325]
[47]
Tang Y-Q, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets. Infect Immun 2002; 70(12): 6524-33.
[http://dx.doi.org/10.1128/IAI.70.12.6524-6533.2002] [PMID: 12438321]
[48]
Yount NY, Yeaman MR. Multidimensional signatures in antimicrobial peptides. Proc Natl Acad Sci USA 2004; 101(19): 7363-8.
[http://dx.doi.org/10.1073/pnas.0401567101] [PMID: 15118082]
[49]
Yount NY, Kupferwasser D, Spisni A, et al. Selective reciprocity in antimicrobial activity versus cytotoxicity of hBD-2 and crotamine. Proc Natl Acad Sci USA 2009; 106(35): 14972-7.
[http://dx.doi.org/10.1073/pnas.0904465106] [PMID: 19706485]
[50]
Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev 2007; 21(2): 99-111.
[http://dx.doi.org/10.1016/j.blre.2006.06.001] [PMID: 16987572]
[51]
Miyabe K, Sakamoto N, Wu YH, Mori N, Sakamoto H. Effects of platelet release products on neutrophilic phagocytosis and complement receptors. Thromb Res 2004; 114(1): 29-36.
[http://dx.doi.org/10.1016/j.thromres.2004.04.003] [PMID: 15262482]
[52]
Miedzobrodzki J, Panz T, Płonka PM, et al. Platelets augment respiratory burst in neutrophils activated by selected species of gram-positive or gram-negative bacteria. Folia Histochem Cytobiol 2008; 46(3): 383-8.
[http://dx.doi.org/10.2478/v10042-008-0052-1] [PMID: 19056545]
[53]
Dewitte A, Lepreux S, Villeneuve J, et al. Blood platelets and sepsis pathophysiology: a new therapeutic prospect in critically [corrected] ill patients? Ann Intensive Care 2017; 7(1): 115.
[http://dx.doi.org/10.1186/s13613-017-0337-7] [PMID: 29192366]
[54]
Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 2008; 8(1): 34-47.
[http://dx.doi.org/10.1038/nri2206] [PMID: 18064051]
[55]
McCrae KR, Shattil SJ, Cines DB. Platelet activation induces increased Fc gamma receptor expression. J Immunol 1990; 144(10): 3920-7.
[PMID: 2139675]
[56]
Wu Y, Suzuki-Inoue K, Satoh K, et al. Role of Fc receptor γ-chain in platelet glycoprotein Ib-mediated signaling. Blood 2001; 97(12): 3836-45.
[http://dx.doi.org/10.1182/blood.V97.12.3836] [PMID: 11389024]
[57]
Arman M, Krauel K, Tilley DO, et al. Amplification of bacteria-induced platelet activation is triggered by FcγRIIA, integrin αIIbβ3, and platelet factor 4. Blood 2014; 123(20): 3166-74.
[http://dx.doi.org/10.1182/blood-2013-11-540526] [PMID: 24642751]
[58]
Tilley DO, Arman M, Smolenski A, et al. Glycoprotein Ibα and FcγRIIa play key roles in platelet activation by the colonizing bacterium, Streptococcus oralis. J Thromb Haemost 2013; 11(5): 941-50.
[http://dx.doi.org/10.1111/jth.12175] [PMID: 23413961]
[59]
Fitzgerald JR, Loughman A, Keane F, et al. Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcgammaRIIa receptor. Mol Microbiol 2006; 59(1): 212-30.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04922.x] [PMID: 16359330]
[60]
Byrne MF, Kerrigan SW, Corcoran PA, et al. Helicobacter pylori binds von Willebrand factor and interacts with GPIb to induce platelet aggregation. Gastroenterology 2003; 124(7): 1846-54.
[http://dx.doi.org/10.1016/S0016-5085(03)00397-4] [PMID: 12806618]
[61]
Kerrigan SW, Clarke N, Loughman A, Meade G, Foster TJ, Cox D. Molecular basis for Staphylococcus aureus-mediated platelet aggregate formation under arterial shear in vitro. Arterioscler Thromb Vasc Biol 2008; 28(2): 335-40.
[http://dx.doi.org/10.1161/ATVBAHA.107.152058] [PMID: 18063809]
[62]
Loughman A, Fitzgerald JR, Brennan MP, et al. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol Microbiol 2005; 57(3): 804-18.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04731.x] [PMID: 16045623]
[63]
Naito M, Sakai E, Shi Y, et al. Porphyromonas gingivalis-induced platelet aggregation in plasma depends on Hgp44 adhesin but not Rgp proteinase. Mol Microbiol 2006; 59(1): 152-67.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04942.x] [PMID: 16359325]
[64]
López JA. The platelet glycoprotein Ib-IX complex. Blood Coagul Fibrinolysis 1994; 5(1): 97-119.
[http://dx.doi.org/10.1097/00001721-199402000-00013] [PMID: 8180344]
[65]
Li R, Emsley J. The organizing principle of the platelet glycoprotein Ib-IX-V complex. J Thromb Haemost 2013; 11(4): 605-14.
[http://dx.doi.org/10.1111/jth.12144] [PMID: 23336709]
[66]
Kerrigan SW, Douglas I, Wray A, et al. A role for glycoprotein Ib in Streptococcus sanguis-induced platelet aggregation. Blood 2002; 100(2): 509-16.
[http://dx.doi.org/10.1182/blood.V100.2.509] [PMID: 12091342]
[67]
Kerrigan SW, Jakubovics NS, Keane C, et al. Role of Streptococcus gordonii surface proteins SspA/SspB and Hsa in platelet function. Infect Immun 2007; 75(12): 5740-7.
[http://dx.doi.org/10.1128/IAI.00909-07] [PMID: 17893126]
[68]
Bensing BA, López JA, Sullam PM. The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibalpha. Infect Immun 2004; 72(11): 6528-37.
[http://dx.doi.org/10.1128/IAI.72.11.6528-6537.2004] [PMID: 15501784]
[69]
Takamatsu D, Bensing BA, Cheng H, et al. Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein Ibalpha. Mol Microbiol 2005; 58(2): 380-92.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04830.x] [PMID: 16194227]
[70]
Pyburn TM, Bensing BA, Xiong YQ, et al. A Structural model for binding of the serine-rich repeat adhesin GspB to host carbohydrate receptors. PLoS Pathog 2011; 7(7)e1002112
[http://dx.doi.org/10.1371/journal.ppat.1002112]
[71]
Siboo IR, Chambers HF, Sullam PM. Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets. Infect Immun 2005; 73(4): 2273-80.
[http://dx.doi.org/10.1128/IAI.73.4.2273-2280.2005] [PMID: 15784571]
[72]
O’Seaghdha M, van Schooten CJ, Kerrigan SW, et al. Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions. FEBS J 2006; 273(21): 4831-41.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05482.x] [PMID: 16999823]
[73]
Corcoran PA, Atherton JC, Kerrigan SW, et al. The effect of different strains of Helicobacter pylori on platelet aggregation. Can J Gastroenterol 2007; 21(6): 367-70.
[http://dx.doi.org/10.1155/2007/490852] [PMID: 17571170]
[74]
Fujimura K, Phillips DR. Calcium cation regulation of glycoprotein IIb-IIIa complex formation in platelet plasma membranes. J Biol Chem 1983; 258(17): 10247-52.
[PMID: 6224787]
[75]
Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE. Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood 1996; 88(3): 907-14.
[PMID: 8704248]
[76]
Trikha M, Timar J, Lundy SK, et al. Human prostate carcinoma cells express functional alphaIIb(beta)3 integrin. Cancer Res 1996; 56(21): 5071-8.
[PMID: 8895766]
[77]
Bledzka K, Smyth SS, Plow EF. Integrin αIIbβ3: from discovery to efficacious therapeutic target. Circ Res 2013; 112(8): 1189-200.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.300570] [PMID: 23580774]
[78]
Arciola CR, Campoccia D, Gamberini S, Donati ME, Montanaro L. Presence of fibrinogen-binding adhesin gene in Staphylococcus epidermidis isolates from central venous catheters-associated and orthopaedic implant-associated infections. Biomaterials 2004; 25(19): 4825-9.
[http://dx.doi.org/10.1016/j.biomaterials.2003.11.056] [PMID: 15120529]
[79]
Brennan MP, Loughman A, Devocelle M, et al. Elucidating the role of Staphylococcus epidermidis serine-aspartate repeat protein G in platelet activation. J Thromb Haemost 2009; 7(8): 1364-72.
[http://dx.doi.org/10.1111/j.1538-7836.2009.03495.x] [PMID: 19486275]
[80]
Miajlovic H, Zapotoczna M, Geoghegan JA, Kerrigan SW, Speziale P, Foster TJ. Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureus with the GPIIb/IIIa receptor on platelets. Microbiology 2010; 156(Pt 3): 920-8.
[http://dx.doi.org/10.1099/mic.0.036673-0] [PMID: 20007649]
[81]
Petersen HJ, Keane C, Jenkinson HF, et al. Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPIIbIIIa. Infect Immun 2010; 78(1): 413-22.
[http://dx.doi.org/10.1128/IAI.00664-09] [PMID: 19884334]
[82]
Walsh EJ, Miajlovic H, Gorkun OV, Foster TJ. Identification of the Staphylococcus aureus MSCRAMM clumping factor B (ClfB) binding site in the alphaC-domain of human fibrinogen. Microbiology 2008; 154(Pt 2): 550-8.
[http://dx.doi.org/10.1099/mic.0.2007/010868-0] [PMID: 18227259]
[83]
McDevitt D, Nanavaty T, House-Pompeo K, et al. Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen. Eur J Biochem 1997; 247(1): 416-24.
[http://dx.doi.org/10.1111/j.1432-1033.1997.00416.x] [PMID: 9249055]
[84]
Wann ER, Gurusiddappa S, Höök M. The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 2000; 275(18): 13863-71.
[http://dx.doi.org/10.1074/jbc.275.18.13863] [PMID: 10788510]
[85]
Davis SL, Gurusiddappa S, McCrea KW, Perkins S, Höök M. SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the Bbeta chain. J Biol Chem 2001; 276(30): 27799-805.
[http://dx.doi.org/10.1074/jbc.M103873200] [PMID: 11371571]
[86]
Hartford O, O’Brien L, Schofield K, Wells J, Foster TJ. The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. Microbiology 2001; 147(Pt 9): 2545-52.
[http://dx.doi.org/10.1099/00221287-147-9-2545] [PMID: 11535794]
[87]
Cunningham MW. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 2000; 13(3): 470-511.
[http://dx.doi.org/10.1128/CMR.13.3.470] [PMID: 10885988]
[88]
Carlsson F, Sandin C, Lindahl G. Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway. Mol Microbiol 2005; 56(1): 28-39.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04527.x] [PMID: 15773976]
[89]
Shannon O, Hertzén E, Norrby-Teglund A, Mörgelin M, Sjöbring U, Björck L. Severe streptococcal infection is associated with M protein-induced platelet activation and thrombus formation. Mol Microbiol 2007; 65(5): 1147-57.
[http://dx.doi.org/10.1111/j.1365-2958.2007.05841.x] [PMID: 17662041]
[90]
Pietrocola G, Schubert A, Visai L, et al. FbsA, a fibrinogen-binding protein from Streptococcus agalactiae, mediates platelet aggregation. Blood 2005; 105(3): 1052-9.
[http://dx.doi.org/10.1182/blood-2004-06-2149] [PMID: 15383464]
[91]
Botos I, Segal DM, Davies DR. The structural biology of Toll-like receptors. Structure 2011; 19(4): 447-59.
[http://dx.doi.org/10.1016/j.str.2011.02.004] [PMID: 21481769]
[92]
Cognasse F, Nguyen KA, Damien P, et al. The inflammatory role of platelets via their TLRs and siglec receptors. Front Immunol 2015; 6(Mar): 83.
[http://dx.doi.org/10.3389/fimmu.2015.00083] [PMID: 25784910]
[93]
Berthet J, Damien P, Hamzeh-Cognasse H, Pozzetto B, Garraud O, Cognasse F. Toll-like receptor 4 signal transduction in platelets: novel pathways. Br J Haematol 2010; 151(1): 89-92.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08292.x] [PMID: 20618335]
[94]
Miller SI, Ernst RK, Bader MW. LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 2005; 3(1): 36-46.
[http://dx.doi.org/10.1038/nrmicro1068] [PMID: 15608698]
[95]
Andonegui G, Kerfoot SM, McNagny K, Ebbert KVJ, Patel KD, Kubes P. Platelets express functional Toll-like receptor-4. Blood 2005; 106(7): 2417-23.
[http://dx.doi.org/10.1182/blood-2005-03-0916] [PMID: 15961512]
[96]
Nocella C, Carnevale R, Bartimoccia S, et al. Lipopolysaccharide as trigger of platelet aggregation via eicosanoid over-production. Thromb Haemost 2017; 117(8): 1558-70.
[http://dx.doi.org/10.1160/TH16-11-0857] [PMID: 28492699]
[97]
Zhang G, Han J, Welch EJ, et al. LPS stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway1. Platelets 2009; 182(12): 7997-8004.
[PMID: 19494325]
[98]
Zähringer U, Lindner B, Inamura S, Heine H, Alexander C. TLR2 - promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology 2008; 213(3-4): 205-24.
[http://dx.doi.org/10.1016/j.imbio.2008.02.005] [PMID: 18406368]
[99]
Gautam JK. Ashish, Comeau LD, Krueger JK, Smith MF Jr. Structural and functional evidence for the role of the TLR2 DD loop in TLR1/TLR2 heterodimerization and signaling. J Biol Chem 2006; 281(40): 30132-42.
[http://dx.doi.org/10.1074/jbc.M602057200] [PMID: 16893894]
[100]
Keane C, Tilley D, Cunningham A, et al. Invasive Streptococcus pneumoniae trigger platelet activation via Toll-like receptor 2. J Thromb Haemost 2010; 8(12): 2757-65.
[http://dx.doi.org/10.1111/j.1538-7836.2010.04093.x] [PMID: 20946179]
[101]
Liu X, Liu H, Luo X, et al. Strains of group B Streptococci from septic patients induce platelet activation via Toll-like Receptor 2. Clin Exp Pharmacol Physiol 2017; 44(3): 335-43.
[http://dx.doi.org/10.1111/1440-1681.12707] [PMID: 27885699]
[102]
Blair P, Rex S, Vitseva O, et al. Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res 2009; 104(3): 346-54.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.185785] [PMID: 19106411]
[103]
Panigrahi S, Ma Y, Hong L, et al. Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyperreactivity and thrombosis. Circ Res 2013; 112(1): 103-12.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.274241] [PMID: 23071157]
[104]
Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408(6813): 740-5.
[http://dx.doi.org/10.1038/35047123] [PMID: 11130078]
[105]
Dwivedi DJ, Toltl LJ, Swystun LL, et al. Prognostic utility and characterization of cell-free DNA in patients with severe sepsis. Crit Care 2012; 16(4): R151.
[http://dx.doi.org/10.1186/cc11466] [PMID: 22889177]
[106]
Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8(9): 623-33.
[http://dx.doi.org/10.1038/nrmicro2415] [PMID: 20676145]
[107]
Bhagirath VC, Dwivedi DJ, Liaw PC. Comparison of the proinflammatory and procoagulant properties of nuclear, mitochondrial, and bacterial DNA. Shock 2015; 44(3): 265-71.
[http://dx.doi.org/10.1097/SHK.0000000000000397] [PMID: 25944792]
[108]
Plummer C, Wu H, Kerrigan SW, Meade G, Cox D, Ian Douglas CW. A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb. Br J Haematol 2005; 129(1): 101-9.
[http://dx.doi.org/10.1111/j.1365-2141.2005.05421.x] [PMID: 15801962]
[109]
Keane C, Petersen H, Reynolds K, et al. Mechanism of outside-in alphaIIbbeta3-mediated activation of human platelets by the colonizing bacterium, Streptococcus gordonii. Arterioscler Thromb Vasc Biol 2010; 30(12): 2408-15.
[http://dx.doi.org/10.1161/ATVBAHA.110.216515] [PMID: 21071690]
[110]
Keane C, Petersen HJ, Tilley D, et al. Multiple sites on Streptococcus gordonii surface protein PadA bind to platelet GPIIbIIIa. Thromb Haemost 2013; 110(6): 1278-87.
[PMID: 24136582]
[111]
McDevitt D, Francois P, Vaudaux P, Foster TJ. Identification of the ligand-binding domain of the surface-located fibrinogen receptor (clumping factor) of Staphylococcus aureus. Mol Microbiol 1995; 16(5): 895-907.
[http://dx.doi.org/10.1111/j.1365-2958.1995.tb02316.x] [PMID: 7476187]
[112]
Schubert A, Zakikhany K, Schreiner M, et al. A fibrinogen receptor from group B Streptococcus interacts with fibrinogen by repetitive units with novel ligand binding sites. Mol Microbiol 2002; 46(2): 557-69.
[http://dx.doi.org/10.1046/j.1365-2958.2002.03177.x] [PMID: 12406229]
[113]
Seo HS, Xiong YQ, Mitchell J, Seepersaud R, Bayer AS, Sullam PM. Bacteriophage lysin mediates the binding of Streptococcus mitis to human platelets through interaction with fibrinogen. PLoS Pathog 2010; 6(8)e1001047
[http://dx.doi.org/10.1371/journal.ppat.1001047]
[114]
Pampolina C, McNicol A. Streptococcus sanguis-induced platelet activation involves two waves of tyrosine phosphorylation mediated by FcgammaRIIA and alphaIIbbeta3. Thromb Haemost 2005; 93(5): 932-9.
[http://dx.doi.org/10.1160/TH04-08-0482] [PMID: 15886812]
[115]
Miajlovic H, Loughman A, Brennan M, Cox D, Foster TJ. Both complement- and fibrinogen-dependent mechanisms contribute to platelet aggregation mediated by Staphylococcus aureus clumping factor B. Infect Immun 2007; 75(7): 3335-43.
[http://dx.doi.org/10.1128/IAI.01993-06] [PMID: 17438032]
[116]
Ståhl AL, Svensson M, Mörgelin M, et al. Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets through TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome. Blood 2006; 108(1): 167-76.
[http://dx.doi.org/10.1182/blood-2005-08-3219] [PMID: 16514062]
[117]
Scott T, Owens MD. Thrombocytes respond to lipopolysaccharide through Toll-like receptor-4, and MAP kinase and NF-kappaB pathways leading to expression of interleukin-6 and cyclooxygenase-2 with production of prostaglandin E2. Mol Immunol 2008; 45(4): 1001-8.
[http://dx.doi.org/10.1016/j.molimm.2007.07.035] [PMID: 17825413]
[118]
Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13(4): 463-9.
[http://dx.doi.org/10.1038/nm1565] [PMID: 17384648]
[119]
Shebuski RJ, Kilgore KS. Role of inflammatory mediators in thrombogenesis. J Pharmacol Exp Ther 2002; 300(3): 729-35.
[http://dx.doi.org/10.1124/jpet.300.3.729] [PMID: 11861775]
[120]
Levi M. The Coagulation System in SepsisHandbook of Sepsis. Cham: Springer International Publishing 2018; pp. 45-59.
[http://dx.doi.org/10.1007/978-3-319-73506-1_4]
[121]
Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000; 407(6801): 258-64.
[http://dx.doi.org/10.1038/35025229] [PMID: 11001069]
[122]
Esmon CT. New mechanisms for vascular control of inflammation mediated by natural anticoagulant proteins. J Exp Med 2002; 196(5): 561-4.
[http://dx.doi.org/10.1084/jem.20021088] [PMID: 12208872]
[123]
Yuksel M, Okajima K, Uchiba M, Horiuchi S, Okabe H. Activated protein C inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production by inhibiting activation of both nuclear factor-kappa B and activator protein-1 in human monocytes. Thromb Haemost 2002; 88(2): 267-73.
[http://dx.doi.org/10.1055/s-0037-1613197] [PMID: 12195699]
[124]
Murakami K, Okajima K, Uchiba M, et al. Activated protein C attenuates endotoxin-induced pulmonary vascular injury by inhibiting activated leukocytes in rats. Blood 1996; 87(2): 642-7.
[PMID: 8555486]
[125]
McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 2012; 12(3): 324-33.
[http://dx.doi.org/10.1016/j.chom.2012.06.011] [PMID: 22980329]
[126]
Massberg S, Grahl L, von Bruehl M-L, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16(8): 887-96.
[http://dx.doi.org/10.1038/nm.2184] [PMID: 20676107]
[127]
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303(5663): 1532-5.
[http://dx.doi.org/10.1126/science.1092385] [PMID: 15001782]
[128]
Borregaard N. Neutrophils, from marrow to microbes. Immunity 2010; 33(5): 657-70.
[http://dx.doi.org/10.1016/j.immuni.2010.11.011] [PMID: 21094463]
[129]
Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol 2012; 30(1): 459-89.
[http://dx.doi.org/10.1146/annurev-immunol-020711-074942] [PMID: 22224774]
[130]
Martinod K, Demers M, Fuchs TA, et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci USA 2013; 110(21): 8674-9.
[http://dx.doi.org/10.1073/pnas.1301059110] [PMID: 23650392]
[131]
Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 2010; 107(36): 15880-5.
[http://dx.doi.org/10.1073/pnas.1005743107] [PMID: 20798043]
[132]
Semeraro F, Ammollo CT, Morrissey JH, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 2011; 118(7): 1952-61.
[http://dx.doi.org/10.1182/blood-2011-03-343061] [PMID: 21673343]
[133]
Jenne CN, Wong CHY, Petri B, Kubes P. The use of spinning-disk confocal microscopy for the intravital analysis of platelet dynamics in response to systemic and local inflammation. PLoS One. 2011; 6: p. (9): e25109.
[http://dx.doi.org/10.1371/journal.pone.0025109]
[134]
Etulain J, Martinod K, Wong SL, Cifuni SM, Schattner M, Wagner DD. P-selectin promotes neutrophil extracellular trap formation in mice. Blood 2015; 126(2): 242-6.
[http://dx.doi.org/10.1182/blood-2015-01-624023] [PMID: 25979951]
[135]
Kraemer BF, Campbell RA, Schwertz H, et al. Novel anti-bacterial activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog 2011; 7(11): 7.
[136]
Ishikura H, Nishida T, Murai A, et al. New diagnostic strategy for sepsis-induced disseminated intravascular coagulation: a prospective single-center observational study. Crit Care 2014; 18(1): R19.
[http://dx.doi.org/10.1186/cc13700] [PMID: 24443891]
[137]
Gorkun OV, Veklich YI, Weisel JW, Lord ST. The conversion of fibrinogen to fibrin: recombinant fibrinogen typifies plasma fibrinogen. Blood 1997; 89(12): 4407-14.
[PMID: 9192765]
[138]
Kattula S, Byrnes JR, Wolberg AS. Fibrinogen and fibrin in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol 2017; 37(3): e13-21.
[http://dx.doi.org/10.1161/ATVBAHA.117.308564] [PMID: 28228446]
[139]
Molino M, Bainton DF, Hoxie JA, Coughlin SR, Brass LF. Thrombin receptors on human platelets. Initial localization and subsequent redistribution during platelet activation. J Biol Chem 1997; 272(9): 6011-7.
[http://dx.doi.org/10.1074/jbc.272.9.6011] [PMID: 9038223]
[140]
Allen KS, Sawheny E, Kinasewitz GT. Anticoagulant modulation of inflammation in severe sepsis. World J Crit Care Med 2015; 4(2): 105-15.
[http://dx.doi.org/10.5492/wjccm.v4.i2.105] [PMID: 25938026]
[141]
Opal SM, Kessler CM, Roemisch J, Knaub S. Antithrombin, heparin, and heparan sulfate. Crit Care Med 2002; 30(5)(Suppl.): S325-31.
[http://dx.doi.org/10.1097/00003246-200205001-00024] [PMID: 12004255]
[142]
Lee JC, Salonen DC, Inman RD. Unilateral hemochromatosis arthropathy on a neurogenic basis. J Rheumatol 1997; 24(12): 2476-8.
[PMID: 9415662]
[143]
Fan B, Crews BC, Turko IV, Choay J, Zettlmeissl G, Gettins P. Heterogeneity of recombinant human antithrombin III expressed in baby hamster kidney cells. Effect of glycosylation differences on heparin binding and structure. J Biol Chem 1993; 268(23): 17588-96.
[PMID: 8349638]
[144]
Keene JL, Matzuk MM, Otani T, et al. Expression of biologically active human follitropin in Chinese hamster ovary cells. J Biol Chem 1989; 264(9): 4769-75.
[PMID: 2494176]
[145]
Mochizuki S, Hamato N, Hirose M, et al. Expression and characterization of recombinant human antithrombin III in Pichia pastoris. Protein Expr Purif 2001; 23(1): 55-65.
[http://dx.doi.org/10.1006/prep.2001.1479] [PMID: 11570846]
[146]
Kowal-Vern A, Orkin BA. Antithrombin in the treatment of burn trauma. World J Crit Care Med 2016; 5(1): 17-26.
[http://dx.doi.org/10.5492/wjccm.v5.i1.17] [PMID: 26855890]
[147]
Tagami T, Matsui H, Horiguchi H, Fushimi K, Yasunaga H. Antithrombin and mortality in severe pneumonia patients with sepsis-associated disseminated intravascular coagulation: an observational nationwide study. J Thromb Haemost 2014; 12(9): 1470-9.
[http://dx.doi.org/10.1111/jth.12643] [PMID: 24943516]
[148]
Vane JR, Botting RM. The mechanism of action of aspirin. Thromb Res 2003; 110(5-6): 255-8.
[http://dx.doi.org/10.1016/S0049-3848(03)00379-7] [PMID: 14592543]
[149]
Ouyang Y, Wang Y, Liu B, Ma X, Ding R. Effects of antiplatelet therapy on the mortality rate of patients with sepsis: a meta-analysis. J Crit Care 2019; 50: 162-8.
[http://dx.doi.org/10.1016/j.jcrc.2018.12.004] [PMID: 30551047]
[150]
Fontayne A, Meiring M, Lamprecht S, et al. The humanized anti-glycoprotein Ib monoclonal antibody h6B4-Fab is a potent and safe antithrombotic in a high shear arterial thrombosis model in baboons. Thromb Haemost 2008; 100(4): 670-7.
[http://dx.doi.org/10.1160/TH08-02-0073] [PMID: 18841291]
[151]
Yang J, Ji S, Dong N, Zhao Y, Ruan C. Engineering and characterization of a chimeric anti-platelet glycoprotein Ibalpha monoclonal antibody and preparation of its Fab fragment. Hybridoma (Larchmt) 2010; 29(2): 125-32.
[http://dx.doi.org/10.1089/hyb.2009.0068] [PMID: 20443704]
[152]
Hennan JK, Swillo RE, Morgan GA, et al. Pharmacologic inhibition of platelet vWF-GPIb α interaction prevents coronary artery thrombosis. Thromb Haemost 2006; 95(3): 469-75.
[http://dx.doi.org/10.1160/TH05-09-0640] [PMID: 16525575]
[153]
Yin H, Stojanovic-Terpo A, Xu W, et al. Role for platelet glycoprotein Ib-IX and effects of its inhibition in endotoxemia-induced thrombosis, thrombocytopenia, and mortality. Arterioscler Thromb Vasc Biol 2013; 33(11): 2529-37.
[http://dx.doi.org/10.1161/ATVBAHA.113.302339] [PMID: 24051142]
[154]
Jung SM, Moroi M. Platelet Glycoprotein VI Multichain Immune Recognition Receptor Signaling. New York, NY: Springer New York 2003; pp. 53-63.
[155]
Ungerer M, Rosport K, Bültmann A, et al. Novel antiplatelet drug revacept (Dimeric Glycoprotein VI-Fc) specifically and efficiently inhibited collagen-induced platelet aggregation without affecting general hemostasis in humans. Circulation 2011; 123(17): 1891-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.980623] [PMID: 21502572]
[156]
Massberg S, Konrad I, Bültmann A, et al. Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo. FASEB J 2004; 18(2): 397-9.
[http://dx.doi.org/10.1096/fj.03-0464fje] [PMID: 14656994]
[157]
Schulz C, Penz S, Hoffmann C, et al. Platelet GPVI binds to collagenous structures in the core region of human atheromatous plaque and is critical for atheroprogression in vivo. Basic Res Cardiol 2008; 103(4): 356-67.
[http://dx.doi.org/10.1007/s00395-008-0722-3] [PMID: 18431526]
[158]
Zafar MU, Ibáñez B, Choi BG, et al. A new oral antiplatelet agent with potent antithrombotic properties: comparison of DZ-697b with clopidogrel a randomised phase I study. Thromb Haemost 2010; 103(1): 205-12.
[http://dx.doi.org/10.1160/TH09-06-0378] [PMID: 20062928]
[159]
Wijeyeratne YD, Heptinstall S. Anti-platelet therapy: ADP receptor antagonists. Br J Clin Pharmacol 2011; 72(4): 647-57.
[http://dx.doi.org/10.1111/j.1365-2125.2011.03999.x] [PMID: 21518389]
[160]
Liverani E. Lung injury during LPS-induced inflammation occurs independently of the receptor P2Y1. Purinergic Signal 2017; 13(1): 119-25.
[http://dx.doi.org/10.1007/s11302-016-9543-2] [PMID: 27815804]
[161]
Liverani E, Rico MC, Yaratha L, Tsygankov AY, Kilpatrick LE, Kunapuli SP. LPS-induced systemic inflammation is more severe in P2Y12 null mice. J Leukoc Biol 2014; 95(2): 313-23.
[http://dx.doi.org/10.1189/jlb.1012518] [PMID: 24142066]
[162]
Liverani E, Rico MC, Tsygankov AY, Kilpatrick LE, Kunapuli SP. P2Y12 receptor modulates sepsis-induced inflammation. Arterioscler Thromb Vasc Biol 2016; 36(5): 961-71.
[http://dx.doi.org/10.1161/ATVBAHA.116.307401] [PMID: 27055904]
[163]
Giannarelli C, Zafar MU, Badimon JJ. Prostanoid and TP-receptors in atherothrombosis: is there a role for their antagonism? Thromb Haemost 2010; 104(5): 949-54.
[http://dx.doi.org/10.1160/TH10-03-0195] [PMID: 20886180]
[164]
Maalej N, Osman HE, Shanmuganayagam D, Shebuski RJ, Folts JD. Antithrombotic properties of the thromboxane A2/prostaglandin H2 receptor antagonist S18886 on prevention of platelet-dependent cyclic flow reductions in dogs. J Cardiovasc Pharmacol 2005; 45(5): 389-95.
[http://dx.doi.org/10.1097/01.fjc.0000157439.49612.83] [PMID: 15821433]
[165]
Vilahur G, Casaní L, Badimon L. A thromboxane A2/prostaglandin H2 receptor antagonist (S18886) shows high antithrombotic efficacy in an experimental model of stent-induced thrombosis. Thromb Haemost 2007; 98(3): 662-9.
[http://dx.doi.org/10.1160/TH07-04-0272] [PMID: 17849057]
[166]
Matsuno H, Uematsu T, Niwa M, et al. Pharmacokinetic and pharmacodynamic properties of a new thromboxane receptor antagonist (Z-335) after single and multiple oral administrations to healthy volunteers. J Clin Pharmacol 2002; 42(7): 782-90.
[http://dx.doi.org/10.1177/009127002401102722] [PMID: 12092745]
[167]
Boffa J-J, Just A, Coffman TM, Arendshorst WJ. Thromboxane receptor mediates renal vasoconstriction and contributes to acute renal failure in endotoxemic mice. J Am Soc Nephrol 2004; 15(9): 2358-65.
[http://dx.doi.org/10.1097/01.ASN.0000136300.72480.86] [PMID: 15339984]
[168]
Morrow DA, Scirica BM, Fox KAA, et al. Evaluation of a novel antiplatelet agent for secondary prevention in patients with a history of atherosclerotic disease: design and rationale for the thrombin-receptor antagonist in secondary prevention of atherothrombotic ischemic events (TRA 2 degrees P)-TIMI 50 trial. Am Heart J 2009; 158(3): 335-41.e3.
[http://dx.doi.org/10.1016/j.ahj.2009.06.027] [PMID: 19699854]
[169]
Atopaxar GJ. Drugs Future 2012; 37(2): 89.
[http://dx.doi.org/10.1358/dof.2012.037.02.1766250]
[170]
Kogushi M, Matsuoka T, Kawata T, et al. The novel and orally active thrombin receptor antagonist E5555 (Atopaxar) inhibits arterial thrombosis without affecting bleeding time in guinea pigs. Eur J Pharmacol 2011; 657(1-3): 131-7.
[http://dx.doi.org/10.1016/j.ejphar.2011.01.058] [PMID: 21300059]
[171]
Chintala M, Shimizu K, Ogawa M, Yamaguchi H, Doi M, Jensen P. Basic and translational research on proteinase-activated receptors: antagonism of the proteinase-activated receptor 1 for thrombin, a novel approach to antiplatelet therapy for atherothrombotic disease. J Pharmacol Sci 2008; 108(4): 433-8.
[http://dx.doi.org/10.1254/jphs.08R06FM] [PMID: 19098390]
[172]
Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol 2012; 189(6): 2689-95.
[http://dx.doi.org/10.4049/jimmunol.1201719] [PMID: 22956760]
[173]
Kolaczkowska E, Jenne CN, Surewaard BGJ, et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun 2015; 6(1): 6673.
[http://dx.doi.org/10.1038/ncomms7673] [PMID: 25809117]
[174]
Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost 2011; 9(9): 1795-803.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04422.x] [PMID: 21711444]
[175]
Xu J, Zhang X, Pelayo R, et al. Extracellular histones are major mediators of death in sepsis. Nat Med 2009; 15(11): 1318-21.
[http://dx.doi.org/10.1038/nm.2053] [PMID: 19855397]
[176]
Sun W, Li F-S, Zhang Y-H, Wang X-P, Wang C-R. Association of susceptibility to septic shock with platelet endothelial cell adhesion molecule-1 gene Leu125Val polymorphism and serum sPECAM-1 levels in sepsis patients. Int J Clin Exp Med 2015; 8(11): 20490-8.
[PMID: 26884965]
[177]
Shanker J, Gasparyan AY, Kitas GD, Kakkar VV. Platelet function and antiplatelet therapy in cardiovascular disease: implications of genetic polymorphisms. Curr Vasc Pharmacol 2011; 9(4): 479-89.
[http://dx.doi.org/10.2174/157016111796197224] [PMID: 21314637]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy