Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Naturally Occurring Organic Acid-catalyzed Facile Diastereoselective Synthesis of Biologically Active (E)-3-(arylimino)indolin-2-one Derivatives in Water at Room Temperature

Author(s): Gurpreet Kaur, Arvind Singh, Kiran Bala, Mamta Devi, Anjana Kumari, Sapna Devi, Rekha Devi, Vivek Kumar Gupta and Bubun Banerjee*

Volume 23, Issue 16, 2019

Page: [1778 - 1788] Pages: 11

DOI: 10.2174/1385272822666190924182538

Price: $65

Abstract

A simple, straightforward and efficient method has been developed for the synthesis of (E)-3-(arylimino)indolin-2-one derivatives and (E)-2-((4-methoxyphenyl)imino)- acenaphthylen-1(2H)-one. The synthesis of these biologically-significant scaffolds was achieved from the reactions of various substituted anilines and isatins or acenaphthaquinone, respectively, using commercially available, environmentally benign and naturally occurring organic acids such as mandelic acid or itaconic acid as catalyst in aqueous medium at room temperature. Mild reaction conditions, energy efficiency, good to excellent yields, environmentally benign conditions, easy isolation of products, no need of column chromatographic separation and the reusability of reaction media are some of the significant features of the present protocol.

Keywords: Aqueous medium, isatin based schiff base, itaconic acid, mandelic acid, organic acids as catalyst, room temperature reaction, sustainable synthesis.

« Previous
Graphical Abstract

[1]
Yoshikawa, M.; Murakami, T.; Kishi, A.; Sakurama, T.; Matsuda, H.; Nomura, M.; Matsuda, H.; Kubo, M. Novel indole S,O-bisdesmoside, calanthoside, the precursor glycoside of tryptanthrin, indirubin, and isatin, with increasing skin blood flow promoting effects, from two Calanthe species (Orchidaceae). Chem. Pharm. Bull. (Tokyo), 1998, 46(5), 886-888.
[http://dx.doi.org/10.1248/cpb.46.886] [PMID: 9621425]
[2]
Chen, G.; Hao, X.J. Recent studies on the bioactivities of isatin. Nat. Prod. Res. Dev., 2010, 22, 356-360.
[3]
Chen, G.; Hao, X.J.; Sun, Q.Y.; Ding, J. Rapid eco-friendly synthesis and bioactivities of 3-nitromethylene-1,3-dihydro-indol-2-one analogues. Chem. Pap., 2010, 64, 673-377.
[http://dx.doi.org/10.2478/s11696-010-0047-1]
[4]
Chen, G.; He, H.P.; Ding, J.; Hao, X.J. Synthesis and antitumor activity evaluation of regioselective spiro [pyrrolidine-2, 3′-oxindole] compounds. Heterocycl. Commun., 2009, 15, 355-361.
[http://dx.doi.org/10.1515/HC.2009.15.5.355]
[5]
Chen, G.; Yang, J.; Gao, S.; He, H.; Li, S.; Di, Y.; Chang, Y.; Lu, Y.; Hao, X. Spiro[pyrrolidine-2,3′-oxindole] derivatives synthesized by novel regionselective 1,3-dipolar cycloadditions. Mol. Divers., 2012, 16(1), 151-156.
[http://dx.doi.org/10.1007/s11030-011-9342-1] [PMID: 22134725]
[6]
Chen, G.; Zhang, J.; Tang, Y.; Hao, X.J.; Mu, S.Z. Micheal addition between isatin and acrylate derivatives. Lett. Org. Chem., 2011, 8, 614-617.
[http://dx.doi.org/10.2174/157017811799304269]
[7]
Da Silva, J.F.M.; Garden, S.J.; da Pinto, A. The chemistry of isatins: A review from 1975 to 1999. J. Braz. Chem. Soc., 2001, 12, 273-324.
[http://dx.doi.org/10.1590/S0103-50532001000300002]
[8]
Chen, G.; Ning, Y.; Zhao, W.; Zhang, Y.; Zhang, Y.; Hao, X.; Wang, Y.; Mu, S. Synthesis, neuro-protection and anti-cancer activities of simple isatin Mannich and Schiff bases. Lett. Drug Des. Discov., 2016, 13, 395-400.
[http://dx.doi.org/10.2174/1570180812666150907203342]
[9]
Khan, K.M.; Mughal, U.R.; Ambreen, N.; Rama, N.H.; Naz, F.; Perveen, S.; Choudhary, M.I. Schiff bases of isatin: inhibitory potential towards acetylcholinesterase and butyrylcholinesterase. Lett. Drug Des. Discov., 2010, 7, 716-720.
[http://dx.doi.org/10.2174/1570180811007010716]
[10]
Chen, G.; Meng, M.; Zhang, Y.; Hao, X.; Wang, Y.; Mu, S. Synthesis, cytoprotective and anti-tumor activities of isatin Schiff bases. Lett. Drug Des. Discov., 2015, 12, 802-805.
[http://dx.doi.org/10.2174/1570180812666150514234029]
[11]
Khan, K.M.; Mughal, U.R.; Ambreen, N.; Khan, A.; Perveen, S.; Choudhary, M.I. Schiff bases of istain: antiglycation activity. Lett. Drug Des. Discov., 2009, 6, 358-362.
[http://dx.doi.org/10.2174/1570180810906050358]
[12]
Khan, K.M.; Mughal, U.R. Samreen; Perveen, S.; Choudhary, M.I. Schiff bases of istain: potential anti-leishmanial agents. Lett. Drug Des. Discov., 2008, 5, 243-249.
[http://dx.doi.org/10.2174/157018008784619915]
[13]
Gangarapu, K.; Manda, S.; Thota, S.; Yerra, R.; Karki, S.S.; Balzarini, J.; De Clercq, E.; Tokuda, H. Microwave assisted synthesis, characterization of some new isatin and thiophene derivatives as cytotoxic and chemopreventive agents. Lett. Drug Des. Discov., 2012, 9, 934-941.
[http://dx.doi.org/10.2174/1570180811209050934]
[14]
Varma, R.S.; Khan, I.A. Potential biologically active agents. X. Synthesis of 3-arylimino-2-indolinones, and their 1-methyl- and 1-morpholino/piperidinomethyl derivatives as excystment and cysticidal agents against Schizopyrenus russelli. Pol. J. Pharmacol. Pharm., 1977, 29(5), 549-554.
[PMID: 593970]
[15]
Varma, R.S.; Khan, I.A. Synthesis of 3-arylimino-2-indolinones as excystment and cysticidal agents against Schizopyrenus russelli. Indian J. Med. Res., 1978, 67, 315-320.
[PMID: 680889]
[16]
Lian, Z-M.; Sun, J.; Zhu, H-L. Design, synthesis and antibacterial activity of isatin derivatives as FtsZ Inhibitors. J. Mol. Struct., 2016, 1117, 8-16.
[http://dx.doi.org/10.1016/j.molstruc.2016.03.036]
[17]
Kiran, G.; Sarangapani, M.; Gouthami, T.; Reddy, A.R.N. Synthesis, characterization, and antimicrobial and antioxidant activities of novel bis-isatin carbohydrazone derivatives. Toxicol. Environ. Chem., 2013, 95, 367-378.
[http://dx.doi.org/10.1080/02772248.2013.777605]
[18]
de Fátima, Â.; Pereira, C.P.; Olímpio, C.R.S.D.G.; de Freitas Oliveira, B.G.; Franco, L.L.; da Silva, P.H.C. Schiff bases and their metal complexes as urease inhibitors - A brief review. J. Adv. Res., 2018, 13, 113-126.
[http://dx.doi.org/10.1016/j.jare.2018.03.007] [PMID: 30094086]
[19]
Pandeya, S.N.; Raja, A.S.; Stables, J.P. Synthesis of isatin semicarbazones as novel anticonvulsants--role of hydrogen bonding. J. Pharm. Pharm. Sci., 2002, 5(3), 266-271.
[PMID: 12553895]
[20]
Pandeya, S.N.; Raja, A.S.; Stables, J.P. Synthesis and antimicrobial evaluation of some 4-or 6-chloroisatin derivatives. Indian J. Chem., 2006, 45B, 494-499.
[http://dx.doi.org/10.1002/chin.200623110]
[21]
Khan, M.; Khan, K.M.; Rahim, F. Samreen; Perveen, S.; Karim, A.; Imtiazuddin; Choudhary, M.I. Synthesis leishmanicidal activities of bis-Schiff bases of isatins. J. Chem. Soc. Pak., 2015, 37, 520-526.
[22]
Khan, K.M.; Khan, M.; Ali, M.; Taha, M.; Rasheed, S.; Perveen, S.; Choudhary, M.I. Synthesis of bis-Schiff bases of isatins and their antiglycation activity. Bioorg. Med. Chem., 2009, 17(22), 7795-7801.
[http://dx.doi.org/10.1016/j.bmc.2009.09.028] [PMID: 19837595]
[23]
Khan, K.M.; Khan, M.; Ali, M.; Qadir, M.I.; Perveen, S.; Karim, A.; Choudhary, M.I. Superoxide respiratory burst inhibitory activity of bis-Schiff bases of isatins. J. Chem. Soc. Pak., 2013, 35, 987-993.
[24]
Rehman, Atta-ur; Choudhary, M.I.; Rahman, Atta-ur; Ijaz, A.S.; Amtul, Z. New isatin derivatives and their antimicrobial activity. J. Chem. Soc. Pak., 1997, 19, 230-236.
[25]
Jarrahpour, A.; Khalili, D.; De Clercq, E.; Salmi, C.; Brunel, J.M. Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules, 2007, 12(8), 1720-1730.
[http://dx.doi.org/10.3390/12081720] [PMID: 17960083]
[26]
Prakash, C.R.; Raja, S. Synthesis, characterization and in vitro antimicrobial activity of some novel 5-substituted Schiff and Mannich base of isatin derivatives. J. Saudi Chem. Soc., 2013, 17, 337-344.
[http://dx.doi.org/10.1016/j.jscs.2011.10.022]
[27]
Gudipati, R.; Anreddy, R.N.R.; Manda, S. Synthesis, characterization and anticancer activity of certain 3-4-(5-mercapto-1,3,4-oxadiazole-2-yl)phenyliminoindolin-2-one derivatives. Saudi Pharm. J., 2011, 19, 153-158.
[http://dx.doi.org/10.1016/j.jsps.2011.03.002] [PMID: 23960753]
[28]
Patel, A.; Bari, S.; Talele, G.; Patel, J.; Sarangapani, M. Synthesis and antimicrobial activity of some new isatin derivatives. Iran. J. Pharm. Res., 2006, 4, 249-254.
[29]
Jupally, V.R.; Eggadi, V.; Sheshagiri, S.B.B.; Kulandaivelu, U. Synthesis and evaluation of neuropharmacological profile of isatin-3-[N2-(2-benzalaminothiazol-4-yl)] hydrazones. Egypt. Pharm. J., 2015, 14, 130-138.
[http://dx.doi.org/10.4103/1687-4315.161287]
[30]
Kiran, G.; Maneshwar, T.; Rajeshwar, Y.; Sarangapani, M. Microwave-assisted synthesis, characterization, antimicrobial and antioxidant activity of some new isatin derivatives. J. Chem., 2013, 2013192039
[http://dx.doi.org/10.1155/2013/192039]
[31]
Meenakshi, K.; Gopal, N.; Sarangapani, M. Synthesis, characterization and antimicrobial activity of some novel Schiff and Mannich bases of isatin. Int. J. Pharm. Pharm. Sci., 2014, 6, 318-312.
[32]
Chinnasamy, R.P.; Sundararajan, R.; Govindaraj, S. Synthesis, characterization, and analgesic activity of novel schiff base of isatin derivatives. J. Adv. Pharm. Technol. Res., 2010, 1(3), 342-347.
[http://dx.doi.org/10.4103/0110-5558.72428] [PMID: 22247869]
[33]
Aboul-Fadl, T.; Abdel-Aziz, H.A.; Abdel-Hamid, M.K.; Elsaman, T.; Thanassi, J.; Pucci, M.J. Schiff bases of indoline-2,3-dione: potential novel inhibitors of Mycobacterium tuberculosis (Mtb) DNA gyrase. Molecules, 2011, 16(9), 7864-7879.
[http://dx.doi.org/10.3390/molecules16097864] [PMID: 22143547]
[34]
Pirrung, M.C.; Pansare, S.V.; Sarma, K.D.; Keith, K.A.; Kern, E.R. Combinatorial optimization of isatin-β-thiosemicarbazones as anti-poxvirus agents. J. Med. Chem., 2005, 48(8), 3045-3050.
[http://dx.doi.org/10.1021/jm049147h] [PMID: 15828843]
[35]
Chen, G.; Su, H-J.; Zhang, M.; Huo, F.; Zhang, J.; Hao, X-J.; Zhao, J-R. New bactericide derived from Isatin for treating oilfield reinjection water. Chem. Cent. J., 2012, 6(1), 90.
[http://dx.doi.org/10.1186/1752-153X-6-90] [PMID: 22929650]
[36]
Sridhar, S.K.; Pandeya, S.N.; Stables, J.P.; Ramesh, A. Anticonvulsant activity of hydrazones, Schiff and Mannich bases of isatin derivatives. Eur. J. Pharm. Sci., 2002, 16(3), 129-132.
[http://dx.doi.org/10.1016/S0928-0987(02)00077-5] [PMID: 12128166]
[37]
Sridhar, S.K.; Ramesh, A. Synthesis and pharmacological activities of hydrazones, Schiff and Mannich bases of isatin derivatives. Biol. Pharm. Bull., 2001, 24(10), 1149-1152.
[http://dx.doi.org/10.1248/bpb.24.1149] [PMID: 11642321]
[38]
Konkel, M.J.; Lagu, B.; Boteju, L.W.; Jimenez, H.; Noble, S.; Walker, M.W.; Chandrasena, G.; Blackburn, T.P.; Nikam, S.S.; Wright, J.L.; Kornberg, B.E.; Gregory, T.; Pugsley, T.A.; Akunne, H.; Zoski, K.; Wise, L.D. 3-arylimino-2-indolones are potent and selective galanin GAL3 receptor antagonists. J. Med. Chem., 2006, 49(13), 3757-3758.
[http://dx.doi.org/10.1021/jm060001n] [PMID: 16789730]
[39]
González, A.; Quirante, J.; Nieto, J.; Almeida, M.R.; Saraiva, M.J.; Planas, A.; Arsequell, G.; Valencia, G. Isatin derivatives, a novel class of transthyretin fibrillogenesis inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(17), 5270-5273.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.004] [PMID: 19651509]
[40]
Šekularac, G.M.; Nikolić, J.B.; Petrović, P.; Bugarski, B.; Đurović, B.; Drmanić, S.Ž. Synthesis, antimicrobial and antioxidative activity of some new isatin derivatives. J. Serb. Chem. Soc., 2014, 79, 1347-1354.
[http://dx.doi.org/10.2298/JSC140709084S]
[41]
Sridhar, S.K.; Saravanan, M.; Ramesh, A. Synthesis and antibacterial screening of hydrazones, Schiff and Mannich bases of isatin derivatives. Eur. J. Med. Chem., 2001, 36(7-8), 615-625.
[http://dx.doi.org/10.1016/S0223-5234(01)01255-7] [PMID: 11600231]
[42]
Mathur, G.; Sharma, P.K.; Nain, S. A review on isatin metal complexes derived from Schiff bases. Curr. Bioact. Compd., 2018, 14, 211-216.
[http://dx.doi.org/10.2174/1573407213666170221154354]
[43]
Bacchi, A.; Carcelli, M.; Pelagatti, P.; Pelizzi, G.; Rodriguez-Arguelles, M.C.; Rogolino, D.; Solinas, C.; Zani, F. Antimicrobial and mutagenic properties of organotin(IV) complexes with isatin and N-alkylisatin bisthiocarbonohydrazones. J. Inorg. Biochem., 2005, 99(2), 397-408.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.10.008] [PMID: 15621271]
[44]
Singh, H.L.; Singh, J.B.; Sachedva, H. Synthesis, spectroscopic and antimicrobial studies of lead (II) complexes of Schiff bases derived from amino acids and isatins. Spectrosc. Lett., 2013, 46, 286-296.
[http://dx.doi.org/10.1080/00387010.2012.700545]
[45]
Takeuchi, T.; Bottcher, A.; Quezada, C.M.; Simon, M.I.; Meade, T.J.; Gray, H.B. Selective inhibition of human α-thrombin by cobalt(iii) Schiff base complexes. J. Am. Chem. Soc., 1998, 120, 8555-8556.
[http://dx.doi.org/10.1021/ja981191x]
[46]
Cerchiaro, G.; Aquilano, K.; Filomeni, G.; Rotilio, G.; Ciriolo, M.R.; Ferreira, A.M. Isatin-Schiff base copper(II) complexes and their influence on cellular viability. J. Inorg. Biochem., 2005, 99(7), 1433-1440.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.03.013] [PMID: 15878622]
[47]
Patil, S.A.; Manjunatha, M.; Kulkarni, A.D.; Badami, P.S. Synthesis, characterization, fluorescence and biological studies of Mn(II), Fe(III) and Zn(II) complexes of Schiff bases derived from Isatin and 3-substituted-4-amino-5-mercapto-1,2,4-triazoles. Complex Met., 2014, 1, 128-137.
[http://dx.doi.org/10.1080/2164232X.2014.884939]
[48]
Brkić, D.R.; Božić, A.R.; Nikolić, V.D.; Marinković, A.D.; Elshaflu, H.; Nikolić, J.B.; Drmanić, S.Ž. Solvatochromism of isatin based Schiff bases: LSER and LFER study. J. Serb. Chem. Soc., 2016, 81, 979-997.
[http://dx.doi.org/10.2298/JSC160119049B]
[49]
Arya, K.; Rawat, D.S.; Dandia, A.; Sasai, H. Brønsted acidic ionic liquids: Green, efficient and reusable catalyst for synthesis of fluorinated spiro [indole-thiazinones/thiazolidinones] as antihistamic agents. J. Fluor. Chem., 2012, 137, 117-122.
[http://dx.doi.org/10.1016/j.jfluchem.2012.03.003]
[50]
Preetam, A.; Nath, M. Ambient temperature synthesis of spiro[indoline-3,2′-thiazolidinones] by a DBSA-catalyzed sequential reaction in water. Tetrahedron Lett., 2016, 57, 1502-1506.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.079]
[51]
Arya, K.; Rawat, D.S.; Sasai, H. Zeolite supported Brønsted-acid ionic liquids: An eco approach for synthesis of spiro[indole-pyrido[3,2-e]thiazine] in water under ultrasonication. Green Chem., 2012, 14, 1956-1963.
[http://dx.doi.org/10.1039/c2gc35168d]
[52]
Reddy, B.V.S.; Karthik, G.; Rajasekaran, T.; Antony, A.; Sridhar, B. Rh2(OAc)4 catalyzed substrate selective [4+2]/[2+2] cycloaddition of acylketenes: A highly chemo- and regioselective synthesis of spiro(oxindolyl)oxazinones and β-lactams. Tetrahedron Lett., 2012, 53, 2396-2401.
[http://dx.doi.org/10.1016/j.tetlet.2012.02.106]
[53]
Sacchetti, A.; Silvani, A.; Gatti, F.G.; Lesma, G.; Pilati, T.; Trucchi, B. Addition of TMSCN to chiral ketimines derived from isatin. Synthesis of an oxindole-based peptidomimetic and a bioactive spirohydantoin. Org. Biomol. Chem., 2011, 9(15), 5515-5522.
[http://dx.doi.org/10.1039/c1ob05532a] [PMID: 21687843]
[54]
Han, Y.; Wu, Q.; Sun, J.; Yan, C-G. Synthesis of the functionalized spiro[indoline-3,5′-pyrroline]-2,2′-diones via three-component reactions of arylamines, acetylenedicarboxylates and isatins. Tetrahedron, 2012, 68, 8539-8544.
[http://dx.doi.org/10.1016/j.tet.2012.08.030]
[55]
Modi, V.P.; Jani, D.H.; Patel, H.S. Synthesis and antimicrobial evaluation of spiro compound containing 1,2,4-triazole and isatin. Orbital Elec. J. Chem., 2011, 3, 68-79.
[56]
Wang, Y-M.; Zhang, H-H.; Li, C.; Fan, T.; Shi, F. Catalytic asymmetric chemoselective 1,3-dipolar cycloadditions of an azomethine ylide with isatin-derived imines: diastereo- and enantioselective construction of a spiro[imidazolidine-2,3′-oxindole] framework. Chem. Commun. (Camb.), 2016, 52(9), 1804-1807.
[http://dx.doi.org/10.1039/C5CC07924A] [PMID: 26530257]
[57]
Rajopadhye, M.; Popp, F.D. Synthesis and antileukemic activity of spiro[indoline-3,2′-thiazolidine]-2,4′-diones. J. Heterocycl. Chem., 1987, 24, 1637-1642.
[http://dx.doi.org/10.1002/jhet.5570240627]
[58]
Chohan, Z.H.; Pervez, H.; Rauf, A.; Khan, K.M.; Supuran, C.T. Isatin-derived antibacterial and antifungal compounds and their transition metal complexes. J. Enzyme Inhib. Med. Chem., 2004, 19(5), 417-423.
[http://dx.doi.org/10.1080/14756360410001710383] [PMID: 15648656]
[59]
Bajroliya, S.; Kalwania, G.S.; Choudhary, S.; Chomal, S. Synthesis, characterization and antimicrobial activities of 1,2,4-triazole/isatin Schiff bases and their Mn(II), Co(II) complexes. Orient. J. Chem., 2014, 30, 1601-1608.
[http://dx.doi.org/10.13005/ojc/300419]
[60]
Kallmayer, H.J. [Substituted isatin phenylimines (author’s transl) Arch. Pharm. (Weinheim), 1975, 308(10), 742-748.
[http://dx.doi.org/10.1002/ardp.19753081005] [PMID: 1200789]
[61]
Panda, S.S.; Jain, S.C. “On water” synthesis of spiro-indoles via Schiff bases. Monatsh. Chem., 2012, 143, 1187-1194.
[http://dx.doi.org/10.1007/s00706-011-0697-x]
[62]
Brahmachari, G.; Banerjee, B. Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4H-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustain. Chem.& Eng., 2014, 2, 411-422.
[http://dx.doi.org/10.1021/sc400312n]
[63]
Brahmachari, G.; Banerjee, B. Facile and one-pot access of 3,3-bis(indol-3-yl)indolin-2-ones and 2,2-bis(indol-3-yl)acenaphthylen-1(2H)-one derivatives via an eco-friendly pseudo-multicomponent reaction at room temperature using sulfamic acid as an organo-catalyst. ACS Sustain. Chem.& Eng., 2014, 2, 2802-2812.
[http://dx.doi.org/10.1021/sc500575h]
[64]
Banerjee, B.; Brahmachari, G. Room temperature metal-free synthesis of aryl/heteroaryl-substituted bis(6-aminouracil-5-yl)methanes using sulfamic acid (NH2SO3H) as an efficient and eco-friendly organo-catalyst. Curr. Organocatal., 2016, 3, 125-132.
[http://dx.doi.org/10.2174/2213337202666150812231130]
[65]
Brahmachari, G.; Banerjee, B. Sulfamic acid-catalyzed carbon-carbon and carbon-heteroatom bond forming reactions: An overview. Curr. Organocatal., 2016, 3, 93-124.
[http://dx.doi.org/10.2174/2213337202666150812230830]
[66]
Kaur, G.; Thakur, S.; Kaundal, P.; Chandel, K.; Banerjee, B. p-Dodecylbenzenesulfonic acid: An efficient brønsted acid-surfactant-combined catalyst to carry out diverse organic transformations in aqueous medium. Chem. Select, 2018, 3, 12918-12936.
[http://dx.doi.org/10.1002/slct.201802824]
[67]
Brahmachari, G.; Banerjee, B. Facile and chemically sustainable one-pot synthesis of a wide array of fused O- and N-heterocycles catalyzed by trisodium citrate dihydrate under ambient conditions. Asian J. Org. Chem., 2016, 5, 271-286.
[http://dx.doi.org/10.1002/ajoc.201500465]
[68]
Banerjee, B. Recent developments on organo-bicyclo-bases catalyzed multicomponent synthesis of biologically relevant heterocycles. Curr. Org. Chem., 2018, 22, 208-233.
[http://dx.doi.org/10.2174/1385272821666170703123129]
[69]
Kaur, G.; Bala, K.; Devi, S.; Banerjee, B. Camphorsulfonic acid (CSA): An efficient organocatalyst for the synthesis or derivatization of heterocycles with biologically promising activities. Curr. Green Chem., 2018, 5, 150-167.
[http://dx.doi.org/10.2174/2213346105666181001113413]
[70]
Quadri, S.A.I.; Das, T.C.; Malik, M.S.; Seddigi, Z.S.; Farooqui, M. Itaconic acid as an environmentally benign catalyst in efficient and scalable synthesis of 3,4-dihydropyrimidin-2(1H)-ones. ChemistrySelect, 2016, 1, 4602-4606.
[http://dx.doi.org/10.1002/slct.201600983]
[71]
Kasar, S.B.; Thopate, S.R. Synthesis of bis(indolyl)methanes using naturally occurring, biodegradable itaconic acid as a green and reusable catalyst. Curr. Org. Synth., 2018, 15, 110-115.
[http://dx.doi.org/10.2174/1570179414666170621080701]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy