Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Green and Facile Synthesis of Pyrimidine Derivatives Using Choline Chloride-urea Mixture as a Deep Eutectic Solvent or Cerium (IV) Ammonium Nitrate

Author(s): Mohamed S. Behalo*, Abdelmotaal Abdelmajeid, Aly A. Aly, Kaouser A. Hebash and Enas A. Mohamed

Volume 23, Issue 16, 2019

Page: [1771 - 1777] Pages: 7

DOI: 10.2174/1385272823666190916144235

Price: $65

Abstract

An efficient and facile synthesis of substituted pyrimidine derivatives through Biginelli type reaction was achieved in high yields via one-pot reaction of aromatic aldehydes, active methylene compounds and urea or thiourea in the presence of choline chloride- urea mixture as a deep eutectic solvent or cerium (IV) ammonium nitrate (CAN) as a catalyst at different conditions. The reaction was carried out using different ratio of CAN in different solvents to determine the optimum conditions. In addition, 2-mercapto-6-oxo- 4-(thiophen-2-yl)-1,6-dihydropyrimidine-5-carbonitrile was employed in the synthesis of pyrimidinylhydrazide and its corresponding hydrazone. The structural formula of all derivatives was confirmed and characterized by their elemental analyses and spectral data (IR, MS, 1H NMR, 13C NMR).

Keywords: Pyrimidine, deep eutectic solvent, cerium (IV) ammonium nitrate, hydrazine, catalyst, active methylene, hydrogen.

Graphical Abstract

[1]
Shahcheragh, S.M.; Habibi, A.; Khosravi, S. Straightforward Synthesis of Novel Substituted 1,3,4-Thiadiazole Derivatives in Deep Eutectic Solvent. Tetrahedron Lett., 2017, 58, 855-859.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.057]
[2]
Taylor, K.M.; Taylor, Z.E.; Handy, S.T. Rapid synthesis of aurones under mild conditions using a combination of microwaves and deep eutectic solvents. Tetrahedron Lett., 2017, 58, 240-241.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.015]
[3]
Wang, J.; Liu, Y.; Zhou, Z.; Fu, Y.; Chang, J. Epoxidation of Soybean Oil Catalyzed by Deep Eutectic Solvents Based on the Choline Chloride-Carboxylic Acid Bifunctional Catalytic System. Ind. Eng. Chem. Res., 2017, 56(29), 8224-8234.
[http://dx.doi.org/10.1021/acs.iecr.7b01677]
[4]
Messa, F.; Perrone, S.; Capua, M.; Tolomeo, F.; Troisi, L.; Capriati, V.; Salomone, A. Towards a sustainable synthesis of amides: chemoselective palladium-catalysed aminocarbonylation of aryl iodides in deep eutectic solvents. Chem. Commun. (Camb.), 2018, 54(58), 8100-8103.
[http://dx.doi.org/10.1039/C8CC03858A] [PMID: 29972156]
[5]
Perrone, S.; Capua, M.; Messa, F.; Salomone, A.; Troisi, L. Green synthesis of 2-pyrazinones in deep eutectic solvents: From α-chloro oximes to peptidomimetic scaffolds. Tetrahedron, 2017, 73, 6193-6198.
[http://dx.doi.org/10.1016/j.tet.2017.09.013]
[6]
Vitale, P.; Abbinante, V.M.; Perna, F.M.; Salomone, A.; Cardellicchio, C. Unveiling the hidden performance of whole cells in the asymmetric bioreduction of aryl-containing ketones in aquoes deep eutectic solvents. Adv. Synth. Catal., 2017, 359, 1049-1057.
[http://dx.doi.org/10.1002/adsc.201601064]
[7]
Lanfang, H.; Juan, L.; Dan, L.; Qiang, C. Urea decomposition: Efficient synthesis of pyrroles using the deep eutectic solvent choline chloride/urea. Tetrahedron Lett., 2018, 59, 1698-1701.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.043]
[8]
Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc., 2004, 126(29), 9142-9147.
[http://dx.doi.org/10.1021/ja048266j] [PMID: 15264850]
[9]
Abbott, A.P.; Harris, R.C.; Ryder, K.S.; Agostino, C.D.; Gladden, L.F.; Mantle, M.D. Glycerol eutectics as sustainable solvent systems. Green Chem., 2011, 13, 82-90.
[http://dx.doi.org/10.1039/C0GC00395F]
[10]
Mancuso, R.; Maner, A.; Cicco, L.; Perna, F.M.; Capriati, V.; Gabriele, B. Synthesis of thiophenes in a deep eutectic solvent: heterocyclodehydration and iodocyclization of 1-mercapto-3-yn-2-ols in a choline chloride/glycerol medium. Tetrahedron, 2016, 72(29), 4239-4244.
[http://dx.doi.org/10.1016/j.tet.2016.05.062]
[11]
Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents – Solvents for the 21st Century. ACS Sustain. Chem.& Eng., 2014, 2(5), 1063-1071.
[http://dx.doi.org/10.1021/sc500096j]
[12]
Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev., 2014, 114(21), 11060-11082.
[http://dx.doi.org/10.1021/cr300162p] [PMID: 25300631]
[13]
Phadtare, S.B.; Shankarling, G.S. Halogenation reactions in biodegradable solvent: Efficient bromination of substituted 1-aminoanthra-9,10-quinone in deep eutectic solvent (choline chloride: urea). Green Chem., 2010, 12, 458-462.
[http://dx.doi.org/10.1039/b923589b]
[14]
Francisco, M.; van den Bruinhorst, A.; Kroon, M.C. Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew. Chem. Int. Ed. Engl., 2013, 52(11), 3074-3085.
[http://dx.doi.org/10.1002/anie.201207548] [PMID: 23401138]
[15]
Capua, M.; Perrone, S.; Perna, F.M.; Vitale, P.; Troisi, L.; Salomone, A.; Capriati, V. An expeditious and greener synthesis of 2-aminoimidazoles in deep eutectic solvents. Molecules, 2016, 21(7), 924-935.
[http://dx.doi.org/10.3390/molecules21070924] [PMID: 27438810]
[16]
Nikishin, G.I.; Kapustina, N.I.; Sokova, L.L.; Bityukov, O.V.; Terent’ev, A.O. One-pot oxidative bromination – Esterification of aldehydes to 2-bromoesters using cerium (IV)ammoniumnitrate and lithium bromide. Tetrahedron Lett., 2017, 58(4), 352-354.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.036]
[17]
Behalo, M.S. An efficient one-pot catalyzed synthesis of 2,5-disubstituted-1,3,4-oxadiazoles and evaluation of their antimicrobial activities. RSC Advances, 2016, 6, 103132-103136.
[http://dx.doi.org/10.1039/C6RA22663A]
[18]
Coles, S.J.; Fieldhouse, S.J.; Klooster, W.T.; Platt, A.W.G. Cerium(III)and cerium(IV) nitrate complexes of trialkylphosphine oxides. Polyhedron, 2019, 161, 346-351.
[http://dx.doi.org/10.1016/j.poly.2019.01.031]
[19]
Sridharan, V.; Menéndez, J.C. Cerium(IV) ammonium nitrate as a catalyst in organic synthesis. Chem. Rev., 2010, 110(6), 3805-3849.
[http://dx.doi.org/10.1021/cr100004p] [PMID: 20359233]
[20]
Abdelghani, E.; Said, S.A.; Assy, M.G.; Abdel Hamid, A.M. Synthesis and antimicrobial evaluation of some new pyrimidines and condensed pyrimidines. Arab. J. Chem., 2017, 10, 2926-2933.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.025]
[21]
Prabhakar, V.; Babu, K.S.; Ravindranath, L.K.; Latha, J. Design, Synthesis, Characterization and Biological Activity of Novel Thieno[2,3-d]pyrimidineDerivatives. Indian J. Adv. Chem. Sci., 2017, 5(1), 30-42.
[22]
Jafar, N.N.A.; Mahdi, I.M.A.; Hadwan, M.H.; Alameri, A.A. The Antifungal Effect of some 4-Chloro-6-Methoxy-N,N-Dimethylpyrimidin-2-Amine Derivatives Containing a Heterocyclic Compound on the Important types of Fungi. J. Young Pharm., 2017, 9(4), 463-467.
[http://dx.doi.org/10.5530/jyp.2017.9.91]
[23]
Singh, S.; Ahmad, D.S.; Alam, D.S. Synthesis of Substituted Pyrimidine Derivatives and Its Antibacterial Activity. Eur. J. Pharm. Med. Res., 2017, 4(8), 486-499.
[24]
Fandakli, S.; Kahriman, N.; Yucel, T.B.; Karaoglu, S.A.; Yayli, N. Biological evaluation and synthesis of new pyrimidine-2(1H)-ol/-thiol derivatives derived from chalcones using the solid phase microwave method. Turk. J. Chem., 2018, 42, 520-535.
[http://dx.doi.org/10.3906/kim-1711-9]
[25]
Venkatesh, T.; Bodke, Y.D.; Nagaraj, K.; Ravi, K.S. One-Pot Synthesis of Novel Substituted Phenyl-1,5-dihydro-2H-benzo[4,5]thiazolo[3,2-a]pyrimido[4,5-d]pyrimidine Derivatives as Potent Antimicrobial Agents. Med. Chem., 2018, 8(1), 1-7.
[26]
Kumar, P.; Kumar, A. pinto,J.S.;Bhashini,A.G. Synthesis and Biological Evaluation of Pyrimidine Derivatives Via Pyrrolyl Chalcones. Research J. Pharm. and Tech., 2017, 10(5), 1392-1394.
[http://dx.doi.org/10.5958/0974-360X.2017.00248.7]
[27]
Squarcialupi, L.; Betti, M.; Catarzi, D.; Varano, F.; Falsini, M.; Ravani, A.; Pasquini, S.; Vincenzi, F.; Salmaso, V.; Sturlese, M.; Varani, K.; Moro, S.; Colotta, V. The role of 5-arylalkylamino- and 5-piperazino- moieties on the 7-aminopyrazolo[4,3-d]pyrimidine core in affecting adenosine A1 and A2A receptor affinity and selectivity profiles. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 248-263.
[http://dx.doi.org/10.1080/14756366.2016.1247060] [PMID: 28114825]
[28]
Naguib, B.H.; El-Nassan, H.B.; Abdelghany, T.M. Synthesis of new pyridothienopyrimidinone derivatives as Pim-1 inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 457-467.
[http://dx.doi.org/10.1080/14756366.2016.1261130] [PMID: 28097906]
[29]
Gurdere, M.B.; Erdogan, K.A.M.O.; Yaglioglu, A.S.; Budak, Y.; Ceylan, M. Synthesis and in vitro anticancer evaluation of 1,4-phenylene-bis-pyrimidine-2-amine derivatives. Turk. J. Chem., 2017, 41, 263-271.
[http://dx.doi.org/10.3906/kim-1603-112]
[30]
Al-Adiwish, W.M.; Shtewi, F.A.; Ashrif, M.M.; Ibrahim, D.M. Synthesis, Biological Activity and Cytotoxicity of New Fused Pyrazolo[1,5-a]pyrimidine from 5-Aminopyrazole Incorporated with p-Chloroaniline. Am. J. Heterocycl. Chem., 2017, 3(6), 86-94.
[http://dx.doi.org/10.11648/j.ajhc.20170306.15]
[31]
Abdelmajeid, A.; Amine, M.S.; Hassan, R.A. Fatty Acids in Heterocyclic Synthesis: Part XIX Synthesis of Some Isoxazole, Pyrazole, Pyrimidine and Pyridine and Their Surface, Anticancer and Antioxidant Activities. Am. J. Heterocycl. Chem., 2018, 4(2), 30-41.
[http://dx.doi.org/10.11648/j.ajhc.20180402.11]
[32]
Maher, M.; Kassab, A.E.; Zaher, A.F.; Mahmoud, Z. Novel pyrazolo[3,4-d]pyrimidines: design, synthesis, anticancer activity, dual EGFR/ErbB2 receptor tyrosine kinases inhibitory activity, effects on cell cycle profile and caspase-3-mediated apoptosis. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 532-546.
[http://dx.doi.org/10.1080/14756366.2018.1564046] [PMID: 30688116]
[33]
Yousif, M.N.M.; El-Sayed, W.A.; Abbas, H.S.; Awad, H.M.; Yousif, N.M. Anticancer Activity of New Substituted Pyrimidines, Their Thioglycosides and Thiazolopyrimidine Derivatives J. Appl. Pharm Sci, 2017, 7(11), 021- 032.
[34]
Behalo, M.S.; El-karim, I.G.; Rafaat, R. Synthesis of Novel Phthalazine Derivatives as Potential Anticancer and Antioxidant Agents Based on 1-Chloro-4- (4-phenoxyphenyl)phthalazine. J. Heterocycl. Chem., 2017, 54(6), 3591-3599.
[http://dx.doi.org/10.1002/jhet.2985]
[35]
Kotb, E.R.; Morsy, E.M.H.; Anwar, M.M.; Mohi El-Deen, E.M.; Awad, H.M. New Pyrimidine Derivatives: Synthesis, Antitumor and Antioxidant Evaluation. Int. J. Pharmacy & Techn., 2015, 7, 8061-8085.
[36]
Kachroo, M.; Panda, R.; Yadav, Y. Synthesis and biological activities of some new pyrimidine derivatives from chalcones. Pharma Chem., 2014, 6(2), 352-359.
[37]
Abd El-Salam, O.I.; Zaki, M.E.A.; Said, M.M.; Abdulla, M. Synthesis, Structural Characterization of Some Pyrazolo [3,4-d] pyrimidine Derivatives as Anti-inflammatory Agents. Egypt. J. Chem., 2012, 55, 529-547.
[http://dx.doi.org/10.21608/ejchem.2012.1172]
[38]
Bahashwan, S.A. Pharmacological activities of some triazinopyrazolothieno pyrimidine derivatives. Acta Pharm., 2017, 67(3), 407-414.
[http://dx.doi.org/10.1515/acph-2017-0022] [PMID: 28858840]
[39]
DeGoey, D.A.; Betebenner, D.A.; Grampovnik, D.J.; Liu, D.; Pratt, J.K.; Tufano, M.D.; He, W.; Krishnan, P.; Pilot-Matias, T.J.; Marsh, K.C.; Molla, A.; Kempf, D.J.; Maring, C.J. Discovery of pyrido[2,3-d]pyrimidine-based inhibitors of HCV NS5A. Bioorg. Med. Chem. Lett., 2013, 23(12), 3627-3630.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.009] [PMID: 23642966]
[40]
Behalo, M.S. Synthesis of some novel thiazolo[3,2-a]pyrimidine and pyrimido[2,1-b][1,3]thiazine derivatives and their antimicrobial evaluation. J. Heterocycl. Chem., 2018, 55, 1391-1397.
[http://dx.doi.org/10.1002/jhet.3174]
[41]
Behalo, M.S. Facile synthesis of novel amino acids derivatives as potential antibacterial agents using sustainable materials. J. Chin. Chem. Soc. (Taipei), 2017, 64, 1181-1189.
[http://dx.doi.org/10.1002/jccs.201700054]
[42]
Behalo, M.S.; Mele, G. Synthesis and evaluation of pyrido[2,3-d]pyrimidine and 1,8-naphthyridine derivatives as potential antitumor agents. J. Heterocycl. Chem., 2017, 54(1), 295-300.
[http://dx.doi.org/10.1002/jhet.2581]
[43]
Behalo, M.S.; El-Karim, I.G.; Issac, Y.A.; Farag, M.A. Synthesis of novel pyridazine derivatives as a potential antimicrobial agents. J. Sulfur Chem., 2014, 35(6), 661-673.
[http://dx.doi.org/10.1080/17415993.2014.950661]
[44]
Behalo, M.S.; Amine, M.S.; Fouda, I.M. Regioselective synthesis, antitumor and antioxidant activities of some 1,2,4-triazole derivatives based on 4-phenyl-5-(quinolin-8-yloxy)methyl-4H-1,2,4-triazole-3-thiol. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(4), 410-417.
[http://dx.doi.org/10.1080/10426507.2016.1247087]
[45]
Behalo, M.S.; Bloise, E.; Carbone, L.; Del Sole, R.; Lomonaco, D.; Mazzetto, S.E.; Mele, G.; Mergola, L. Cardanol-based green nanovesicles with antioxidant and cytotoxic activities. J. Exp. Nanosci., 2016, 11(16), 1274-1284.
[http://dx.doi.org/10.1080/17458080.2016.1212407]
[46]
Salem, M.A.; Behalo, M.S.; Elrazaz, E. Green synthesis and 3D pharmacophore study of pyrimidine and glucoside derivatives with in vitro potential anticancer and antioxidant activities. Med. Chem. Res., 2019, 28, 1223-1234.
[http://dx.doi.org/10.1007/s00044-019-02367-9]
[47]
El-Hashash, M.A.; El-Badry, Y.A. J. Chem. Pharm. Res., 2012, 4(5), 2354-2361.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy