Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Involvement of Upregulated P53-Induced Death Domain Protein in Retinal Ganglion Cells Apoptosis After Optic Nerve Crush

Author(s): Mingyuan Zhang, Lifei Chen, Fan Xu*, Li Jiang, Wenya Yan, Bibhav Kunwar, Fen Tang, Ke Yang, Chaolan Shen, Hui Huang, Jian Lv, Chen Qin, Xiaonian Wu, Siming Zeng, Min Li, Shan Zhong* and Qi Chen*

Volume 20, Issue 1, 2020

Page: [51 - 59] Pages: 9

DOI: 10.2174/1566524019666190918160032

Price: $65

Abstract

Purpose: Retinal ganglion cells (RGCs) apoptosis is a common characteristic of optic neuropathies. p53-induced protein with a death domain (PIDD) is a well-known regulator of genotoxic stress-induced apoptosis, which is constitutively cleaved into three main fragments: PIDD-N, PIDD-C and PIDD-CC. Thus, we aim to determine the physiological relevance of PIDD in RGCs apoptosis in an optic nerve crush (ONC) model.

Methods: All animals were evenly randomized into four groups: sham-control group, con-siRNA group, ONC group, and PIDD-siRNA group (ONC +PIDD-siRNA). Expressions of PIDD, caspase-2, Brn3a and tBid in ONC model were analyzed by Western blot and immunofluorescence. Mean densities of RGCs/mm2 were calculated with Fluoro-Gold (FG). Moreover, we tested the effect of PIDD-siRNA on ONC-induced RGCs apoptosis using TUNEL staining.

Results: The level of full-length PIDD was weakly present and showed no significant differences at any time points. PIDD-CC and PIDD-C were significantly up-regulated in the retina at 3 days after ONC. Meanwhile, the expression of PIDD was significantly increased in Brn3a (a marker of RGCs) positive cells, indicating that the localization of PIDD appeared to be confined to RGCs. Furthermore, inhibition of PIDD prevented RGCs apoptosis by inhibiting caspase-2 and tBid activation.

Conclusion: Taken together, PIDD may play a crucial role in RGCs apoptosis after ONC, and this process may be relevant to caspase-2 and tBid.

Keywords: PIDD, caspase-2, retinal ganglion cells, apoptosis, optic nerve crush, RGCs.

[1]
Jang SY. Traumatic Optic Neuropathy. Korean J Neurotrauma 2018; 14(1): 1-5.
[http://dx.doi.org/10.13004/kjnt.2018.14.1.1] [PMID: 29774191]
[2]
Xu Y, Lu X, Hu Y, et al. Melatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1α-VEGF pathway in oxygen-induced retinopathy mice. J Pineal Res 2018; 64(4)e12473
[http://dx.doi.org/10.1111/jpi.12473] [PMID: 29411894]
[3]
Xu Y, Yang B, Hu Y, et al. Secretion of down syndrome critical region 1 isoform 4 in ischemic retinal ganglion cells displays anti-angiogenic properties via NFATc1-dependent pathway. Mol Neurobiol 2017; 54(8): 6556-71.
[http://dx.doi.org/10.1007/s12035-016-0092-z] [PMID: 27734335]
[4]
Huang R, Lan Q, Chen L, et al. CD200Fc attenuates retinal glial responses and RGCs apoptosis after optic nerve crush by modulating CD200/CD200R1 interaction. J Mol Neurosci 2018; 64(2): 200-10.
[http://dx.doi.org/10.1007/s12031-017-1020-z] [PMID: 29280053]
[5]
Huang Y, Xu Y, Cheng Q, et al. The expression changes of myelin and lymphocyte protein (MAL) following optic nerve crush in adult rats retinal ganglion cells. J Mol Neurosci 2014; 54(4): 614-21.
[http://dx.doi.org/10.1007/s12031-014-0332-5] [PMID: 24878628]
[6]
Vidal-Sanz M, Galindo-Romero C, Valiente-Soriano FJ, et al. Shared and differential retinal responses against optic nerve injury and ocular hypertension. Front Neurosci 2017; 11: 235.
[http://dx.doi.org/10.3389/fnins.2017.00235] [PMID: 28491019]
[7]
Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ 2018; 25(1): 104-13.
[http://dx.doi.org/10.1038/cdd.2017.169] [PMID: 29149101]
[8]
Xie L, Cheng L, Xu G, Zhang J, Ji X, Song E. The novel cyclophilin D inhibitor compound 19 protects retinal pigment epithelium cells and retinal ganglion cells from UV radiation. Biochem Biophys Res Commun 2017; 487(4): 807-12.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.128] [PMID: 28450114]
[9]
Gong L, Liu F, Xiong Z, et al. Heterochromatin protects retinal pigment epithelium cells from oxidative damage by silencing p53 target genes. Proc Natl Acad Sci USA 2018; 115(17): E3987-95.
[http://dx.doi.org/10.1073/pnas.1715237115] [PMID: 29622681]
[10]
Wu Y, Xu F, Huang H, et al. Up-regulation of SKIP relates to retinal ganglion cells apoptosis after optic nerve crush in vivo. J Mol Histol 2014; 45(6): 715-21.
[http://dx.doi.org/10.1007/s10735-014-9589-9] [PMID: 25074585]
[11]
Fujita K, Nishiguchi KM, Yokoyama Y, et al. In vivo cellular imaging of various stress/response pathways using AAV following axonal injury in mice. Sci Rep 2015; 5: 18141.
[http://dx.doi.org/10.1038/srep18141] [PMID: 26670005]
[12]
Lin Y, Ma W, Benchimol S. Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nat Genet 2000; 26(1): 122-7.
[http://dx.doi.org/10.1038/79102] [PMID: 10973264]
[13]
Miles MA, Kitevska-Ilioski T, Hawkins CJ. Old and Novel Functions of Caspase-2. Int Rev Cell Mol Biol 2017; 332: 155-212.
[http://dx.doi.org/10.1016/bs.ircmb.2016.12.002] [PMID: 28526132]
[14]
Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 2004; 304(5672): 843-6.
[http://dx.doi.org/10.1126/science.1095432] [PMID: 15073321]
[15]
Zhong H, Cui L, Xu F, et al. Up-regulation of Wip1 involves in neuroinflammation of retinal astrocytes after optic nerve crush via NF-κB signaling pathway. Inflamm Res 2016; 65(9): 709-15.
[http://dx.doi.org/10.1007/s00011-016-0952-z] [PMID: 27207279]
[16]
Wang Y, Liu C, Wang J, Zhang Y, Chen L. Iodine-131 induces apoptosis in human cardiac muscle cells through the p53/Bax/caspase-3 and PIDD/caspase-2/tBID/cytochrome c/caspase-3 signaling pathway. Oncol Rep 2017; 38(3): 1579-86.
[http://dx.doi.org/10.3892/or.2017.5813] [PMID: 28714021]
[17]
Manzl C, Peintner L, Krumschnabel G, et al. PIDDosome-independent tumor suppression by Caspase-2. Cell Death Differ 2012; 19(10): 1722-32.
[http://dx.doi.org/10.1038/cdd.2012.54] [PMID: 22595758]
[18]
Doozandeh A, Yazdani S. Neuroprotection in Glaucoma. J Ophthalmic Vis Res 2016; 11(2): 209-20.
[http://dx.doi.org/10.4103/2008-322X.183923] [PMID: 27413504]
[19]
Lin H, Li R, Liu Z, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial. EClinicalMedicine 2019; 9: 52-9.
[http://dx.doi.org/10.1016/j.eclinm.2019.03.001] [PMID: 31143882]
[20]
Sladky V, Schuler F, Fava LL, Villunger A. The resurrection of the PIDDosome - emerging roles in the DNA-damage response and centrosome surveillance. J Cell Sci 2017; 130(22): 3779-87.
[http://dx.doi.org/10.1242/jcs.203448] [PMID: 29142064]
[21]
Tinel A, Eckert MJ, Logette E, et al. Regulation of PIDD auto-proteolysis and activity by the molecular chaperone Hsp90. Cell Death Differ 2011; 18(3): 506-15.
[http://dx.doi.org/10.1038/cdd.2010.124] [PMID: 20966961]
[22]
Bock FJ, Peintner L, Tanzer M, Manzl C, Villunger A. P53-induced protein with a death domain (PIDD): master of puppets? Oncogene 2012; 31(45): 4733-9.
[http://dx.doi.org/10.1038/onc.2011.639] [PMID: 22266869]
[23]
Logette E, Schuepbach-Mallepell S, Eckert MJ, et al. PIDD orchestrates translesion DNA synthesis in response to UV irradiation. Cell Death Differ 2011; 18(6): 1036-45.
[http://dx.doi.org/10.1038/cdd.2011.19] [PMID: 21415862]
[24]
Heath EM, Chan SM, Minden MD, Murphy T, Shlush LI, Schimmer AD. Biological and clinical consequences of NPM1 mutations in AML. Leukemia 2017; 31(4): 798-807.
[http://dx.doi.org/10.1038/leu.2017.30] [PMID: 28111462]
[25]
Tinel A, Janssens S, Lippens S, et al. Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-kappaB pathway. EMBO J 2007; 26(1): 197-208.
[http://dx.doi.org/10.1038/sj.emboj.7601473] [PMID: 17159900]
[26]
Stefanis L, Troy CM, Qi H, Shelanski ML, Greene LA. Caspase-2 (Nedd-2) processing and death of trophic factor-deprived PC12 cells and sympathetic neurons occur independently of caspase-3 (CPP32)-like activity. J Neurosci 1998; 18(22): 9204-15.
[http://dx.doi.org/10.1523/JNEUROSCI.18-22-09204.1998] [PMID: 9801360]
[27]
Troy CM, Stefanis L, Greene LA, Shelanski ML. Nedd2 is required for apoptosis after trophic factor withdrawal, but not superoxide dismutase (SOD1) downregulation, in sympathetic neurons and PC12 cells. J Neurosci 1997; 17(6): 1911-8.
[http://dx.doi.org/10.1523/JNEUROSCI.17-06-01911.1997] [PMID: 9045720]
[28]
Troy CM, Rabacchi SA, Friedman WJ, Frappier TF, Brown K, Shelanski ML. Caspase-2 mediates neuronal cell death induced by beta-amyloid. J Neurosci 2000; 20(4): 1386-92.
[http://dx.doi.org/10.1523/JNEUROSCI.20-04-01386.2000] [PMID: 10662829]
[29]
Henshall DC, Skradski SL, Bonislawski DP, Lan JQ, Simon RP. Caspase-2 activation is redundant during seizure-induced neuronal death. J Neurochem 2001; 77(3): 886-95.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00291.x] [PMID: 11331417]
[30]
Kolson DL, Sabnekar P, Baybis M, Crino PB. Gene expression in TUNEL-positive neurons in human immunodeficiency virus-infected brain. J Neurovirol 2004; 10(Suppl. 1): 102-7.
[http://dx.doi.org/10.1080/jnv.10.s1.102.107] [PMID: 14982747]
[31]
Lassus P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 2002; 297(5585): 1352-4.
[http://dx.doi.org/10.1126/science.1074721] [PMID: 12193789]
[32]
Paroni G, Henderson C, Schneider C, Brancolini C. Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. J Biol Chem 2001; 276(24): 21907-15.
[http://dx.doi.org/10.1074/jbc.M011565200] [PMID: 11399776]
[33]
Ahmed Z, Kalinski H, Berry M, et al. Ocular neuroprotection by siRNA targeting caspase-2 Cell Death Dis 2011; 2e173
[http://dx.doi.org/10.1038/cddis.2011.54] [PMID: 21677688]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy