Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

N-Acetyl Cysteine Attenuates the Sarcopenia and Muscle Apoptosis Induced by Chronic Liver Disease

Author(s): Johanna Abrigo, Tabita Marín, Francisco Aguirre, Franco Tacchi, Cristian Vilos, Felipe Simon, Marco Arrese, Daniel Cabrera and Claudio Cabello-Verrugio*

Volume 20, Issue 1, 2020

Page: [60 - 71] Pages: 12

DOI: 10.2174/1566524019666190917124636

Price: $65

Abstract

Background: Sarcopenia is characterized by the loss of muscle mass and strength (muscle atrophy) because of aging or chronic diseases, such as chronic liver disease (CLD). Different mechanisms are involved in skeletal muscle atrophy, including decreased muscle fibre diameter and myosin heavy chain levels and increased ubiquitin–proteasome pathway activity, oxidative stress and myonuclear apoptosis. We recently found that all these mechanisms, except myonuclear apoptosis, which was not evaluated in the previous study, were involved in muscle atrophy associated with hepatotoxin 5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced CLD.

Objective: In the present study, we evaluated the involvement of myonuclear apoptosis in CLD-associated sarcopenia and the effect of N-acetyl cysteine (NAC) treatment on muscle strength and apoptosis, using a DDC-supplemented diet-fed mouse model.

Methods: Four-month-old male C57BL6 mice were fed with a standard or DDCsupplemented diet for six weeks in the absence or presence of NAC treatment.

Results: Our results showed that NAC attenuated the decrease in muscle fibre diameter and muscle strength associated with CLD-induced muscle wasting in gastrocnemius (GA) muscle of DDC-supplemented diet-fed mice. In addition, in GA muscle of the mice fed with DDC-supplemented diet-induced CLD showed increased myonuclear apoptosis compared with the GA muscle of the control diet-fed mice, as evidenced by increased apoptotic nuclei number, caspase-8 and caspase-9 expression, enzymatic activity of caspase-3 and BAX/BCL-2 ratio. NAC treatment inhibited all the mechanisms associated with myonuclear apoptosis in the GA muscle.

Conclusion: To our knowledge, this is the first study which reports the redox regulation of muscle strength and myonuclear apoptosis in CLD-induced sarcopenia.

Keywords: Sarcopenia, chronic liver disease, hepatotoxin, UPP oxidative stress, apoptosis.

[1]
Dasarathy S. Cause and management of muscle wasting in chronic liver disease. Curr Opin Gastroenterol 2016; 32(3): 159-65.
[http://dx.doi.org/10.1097/MOG.0000000000000261] [PMID: 26974417]
[2]
Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol 2016; 65(6): 1232-44.
[http://dx.doi.org/10.1016/j.jhep.2016.07.040] [PMID: 27515775]
[3]
Hayashi F, Kaibori M, Sakaguchi T, et al. Loss of skeletal muscle mass in patients with chronic liver disease is related to decrease in bone mineral density and exercise tolerance. Hepatol Res 2018; 48(5): 345-54.
[http://dx.doi.org/10.1111/hepr.13000] [PMID: 29115721]
[4]
Carey EJ, Lai JC, Wang CW, et al. Fitness, Life Enhancement, and Exercise in Liver Transplantation Consortium. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transpl 2017; 23(5): 625-33.
[http://dx.doi.org/10.1002/lt.24750] [PMID: 28240805]
[5]
Wang CW, Feng S, Covinsky KE, et al. A comparison of muscle function, mass, and quality in liver transplant candidates: results from the functional assessment in liver transplantation study. Transplantation 2016; 100(8): 1692-8.
[http://dx.doi.org/10.1097/TP.0000000000001232] [PMID: 27314169]
[6]
Li J, Zhang K, Chen H, et al. A novel coating of type IV collagen and hyaluronic acid on stent material-titanium for promoting smooth muscle cell contractile phenotype. Mater Sci Eng C 2014; 38: 235-43.
[http://dx.doi.org/10.1016/j.msec.2014.02.008] [PMID: 24656374]
[7]
Reiser PJ. Current understanding of conventional and novel co-expression patterns of mammalian sarcomeric myosin heavy chains and light chains. Arch Biochem Biophys 2019; 662: 129-33.
[http://dx.doi.org/10.1016/j.abb.2018.12.009] [PMID: 30528779]
[8]
Campos F, Abrigo J, Aguirre F, et al. Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin-proteasome system and oxidative stress. Pflugers Arch 2018; 470(10): 1503-19.
[http://dx.doi.org/10.1007/s00424-018-2167-3] [PMID: 29926227]
[9]
Ábrigo J, Elorza AA, Riedel CA, et al. Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia. Oxid Med Cell Longev 2018.20182063179
[http://dx.doi.org/10.1155/2018/2063179] [PMID: 29785242]
[10]
Abrigo J, Rivera JC, Simon F, Cabrera D, Cabello-Verrugio C. Transforming growth factor type beta (TGF-β) requires reactive oxygen species to induce skeletal muscle atrophy. Cell Signal 2016; 28(5): 366-76.
[http://dx.doi.org/10.1016/j.cellsig.2016.01.010] [PMID: 26825874]
[11]
Andrianjafiniony T, Dupré-Aucouturier S, Letexier D, Couchoux H, Desplanches D. Oxidative stress, apoptosis, and proteolysis in skeletal muscle repair after unloading. Am J Physiol Cell Physiol 2010; 299(2): C307-15.
[http://dx.doi.org/10.1152/ajpcell.00069.2010] [PMID: 20505039]
[12]
Bilodeau PA, Coyne ES, Wing SS. The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. Am J Physiol Cell Physiol 2016; 311(3): C392-403.
[http://dx.doi.org/10.1152/ajpcell.00125.2016] [PMID: 27510905]
[13]
Campbell TL, Quadrilatero J. Data on skeletal muscle apoptosis, autophagy, and morphology in mice treated with doxorubicin. Data Brief 2016; 7: 786-93.
[http://dx.doi.org/10.1016/j.dib.2016.03.009] [PMID: 27077080]
[14]
Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35(4): 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[15]
Marzetti E, Privitera G, Simili V, et al. Multiple pathways to the same end: mechanisms of myonuclear apoptosis in sarcopenia of aging. ScientificWorldJournal 2010; 10: 340-9.
[http://dx.doi.org/10.1100/tsw.2010.27] [PMID: 20191247]
[16]
Meneses C, Morales MG, Abrigo J, Simon F, Brandan E, Cabello-Verrugio C. The angiotensin-(1-7)/Mas axis reduces myonuclear apoptosis during recovery from angiotensin II-induced skeletal muscle atrophy in mice. Pflugers Arch 2015; 467(9): 1975-84.
[http://dx.doi.org/10.1007/s00424-014-1617-9] [PMID: 25292283]
[17]
Sudo M, Kano Y. Myofiber apoptosis occurs in the inflammation and regeneration phase following eccentric contractions in rats. J Physiol Sci 2009; 59(6): 405-12.
[http://dx.doi.org/10.1007/s12576-009-0049-3] [PMID: 19636670]
[18]
Briston T, Roberts M, Lewis S, et al. Mitochondrial permeability transition pore: sensitivity to opening and mechanistic dependence on substrate availability. Sci Rep 2017; 7(1): 10492.
[http://dx.doi.org/10.1038/s41598-017-10673-8] [PMID: 28874733]
[19]
Loreto C, La Rocca G, Anzalone R, et al. The role of intrinsic pathway in apoptosis activation and progression in Peyronie’s disease. BioMed Res Int 2014.2014616149
[http://dx.doi.org/10.1155/2014/616149] [PMID: 25197653]
[20]
Nair P, Lu M, Petersen S, Ashkenazi A. Apoptosis initiation through the cell-extrinsic pathway. Methods Enzymol 2014; 544: 99-128.
[http://dx.doi.org/10.1016/B978-0-12-417158-9.00005-4] [PMID: 24974288]
[21]
Ichiishi E, Li XK, Iorio EL. Oxidative Stress and Diseases: Clinical Trials and Approaches. Oxid Med Cell Longev 2016.20163458276
[http://dx.doi.org/10.1155/2016/3458276] [PMID: 27833701]
[22]
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018; 13: 757-72.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[23]
Serra AJ, Prokić MD, Vasconsuelo A, Pinto JR. Oxidative Stress in Muscle Diseases: Current and Future Therapy. Oxid Med Cell Longev 2018.20186439138
[http://dx.doi.org/10.1155/2018/6439138] [PMID: 29854088]
[24]
Tan SN, Sim SP, Khoo AS. Potential role of oxidative stress-induced apoptosis in mediating chromosomal rearrangements in nasopharyngeal carcinoma. Cell Biosci 2016; 6: 35.
[http://dx.doi.org/10.1186/s13578-016-0103-9] [PMID: 27231526]
[25]
Assaly R. de Tassigny Ad, Paradis S, Jacquin S, Berdeaux A, Morin D. Oxidative stress, mitochondrial permeability transition pore opening and cell death during hypoxia-reoxygenation in adult cardiomyocytes. Eur J Pharmacol 2012; 675(1-3): 6-14.
[http://dx.doi.org/10.1016/j.ejphar.2011.11.036] [PMID: 22173126]
[26]
Kowaltowski AJ, Castilho RF, Vercesi AE. Mitochondrial permeability transition and oxidative stress. FEBS Lett 2001; 495(1-2): 12-5.
[http://dx.doi.org/10.1016/S0014-5793(01)02316-X] [PMID: 11322939]
[27]
Kwong JQ, Molkentin JD. Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab 2015; 21(2): 206-14.
[http://dx.doi.org/10.1016/j.cmet.2014.12.001] [PMID: 25651175]
[28]
Whitehead NP, Pham C, Gervasio OL, Allen DG. N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice. J Physiol 2008; 586(7): 2003-14.
[http://dx.doi.org/10.1113/jphysiol.2007.148338] [PMID: 18258657]
[29]
Roseguini BT, Silva LM, Polotow TG, Barros MP, Souccar C, Han SW. Effects of N-acetylcysteine on skeletal muscle structure and function in a mouse model of peripheral arterial insufficiency. J Vasc Surg 2015; 61(3): 777-86.
[http://dx.doi.org/10.1016/j.jvs.2013.10.098] [PMID: 24388697]
[30]
Choi MH, Ow JR, Yang ND, Taneja R. Oxidative stress-mediated skeletal muscle degeneration: molecules, mechanisms, and therapies. Oxid Med Cell Longev 2016.20166842568
[http://dx.doi.org/10.1155/2016/6842568] [PMID: 26798425]
[31]
Fickert P, Stöger U, Fuchsbichler A, et al. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol 2007; 171(2): 525-36.
[http://dx.doi.org/10.2353/ajpath.2007.061133] [PMID: 17600122]
[32]
Márquez-Miranda V, Abrigo J, Rivera JC, et al. The complex of PAMAM-OH dendrimer with Angiotensin (1-7) prevented the disuse-induced skeletal muscle atrophy in mice. Int J Nanomedicine 2017; 12: 1985-99.
[http://dx.doi.org/10.2147/IJN.S125521] [PMID: 28331320]
[33]
Morales MG, Abrigo J, Acuña MJ, et al. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas. Dis Model Mech 2016; 9(4): 441-9.
[http://dx.doi.org/10.1242/dmm.023390] [PMID: 26851244]
[34]
Cisternas F, Morales MG, Meneses C, et al. Angiotensin-(1-7) decreases skeletal muscle atrophy induced by angiotensin II through a Mas receptor-dependent mechanism. Clin Sci (Lond) 2015; 128(5): 307-19.
[http://dx.doi.org/10.1042/CS20140215] [PMID: 25222828]
[35]
Abrigo J, Rivera JC, Aravena J, et al. High fat diet-induced skeletal muscle wasting is decreased by mesenchymal stem cells administration: implications on oxidative stress, ubiquitin proteasome pathway activation, and myonuclear apoptosis. Oxid Med Cell Longev 2016.20169047821
[http://dx.doi.org/10.1155/2016/9047821] [PMID: 27579157]
[36]
Hao Y, Jackson JR, Wang Y, Edens N, Pereira SL, Alway SE. β-Hydroxy-β-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats. Am J Physiol Regul Integr Comp Physiol 2011; 301(3): R701-15.
[http://dx.doi.org/10.1152/ajpregu.00840.2010] [PMID: 21697520]
[37]
Allen DL, Linderman JK, Roy RR, et al. Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. Am J Physiol 1997; 273(2 Pt 1): C579-87.
[http://dx.doi.org/10.1152/ajpcell.1997.273.2.C579] [PMID: 9277355]
[38]
Dirks AJ, Leeuwenburgh C. The role of apoptosis in age-related skeletal muscle atrophy. Sports Med 2005; 35(6): 473-83.
[http://dx.doi.org/10.2165/00007256-200535060-00002] [PMID: 15974633]
[39]
Marzetti E, Calvani R, Bernabei R, Leeuwenburgh C. Apoptosis in skeletal myocytes: a potential target for interventions against sarcopenia and physical frailty - a mini-review. Gerontology 2012; 58(2): 99-106.
[http://dx.doi.org/10.1159/000330064] [PMID: 21952604]
[40]
Marzetti E, Lawler JM, Hiona A, Manini T, Seo AY, Leeuwenburgh C. Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle. Free Radic Biol Med 2008; 44(2): 160-8.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.05.028] [PMID: 18191752]
[41]
Marzetti E, Wohlgemuth SE, Lees HA, Chung HY, Giovannini S, Leeuwenburgh C. Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle. Mech Ageing Dev 2008; 129(9): 542-9.
[http://dx.doi.org/10.1016/j.mad.2008.05.005] [PMID: 18579179]
[42]
Li LF, Liu YY, Chen NH, et al. Attenuation of ventilation-induced diaphragm dysfunction through toll-like receptor 4 and nuclear factor-κB in a murine endotoxemia model. Lab Invest 2018; 98(9): 1170-83.
[http://dx.doi.org/10.1038/s41374-018-0081-0] [PMID: 29925937]
[43]
McClung JM, Kavazis AN, DeRuisseau KC, et al. Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation-induced atrophy. Am J Respir Crit Care Med 2007; 175(2): 150-9.
[http://dx.doi.org/10.1164/rccm.200601-142OC] [PMID: 17082496]
[44]
Simic G, Seso-Simic D, Lucassen PJ, et al. Ultrastructural analysis and TUNEL demonstrate motor neuron apoptosis in Werdnig-Hoffmann disease. J Neuropathol Exp Neurol 2000; 59(5): 398-407.
[http://dx.doi.org/10.1093/jnen/59.5.398] [PMID: 10888370]
[45]
Fidziańska A. Suicide muscle cell programme-apoptosis. Ultrastructural study. Folia Neuropathol 2002; 40(1): 27-32.
[PMID: 12121036]
[46]
Min K, Lawan A, Bennett AM. Loss of MKP-5 promotes myofiber survival by activating STAT3/Bcl-2 signaling during regenerative myogenesis. Skelet Muscle 2017; 7(1): 21.
[http://dx.doi.org/10.1186/s13395-017-0137-7] [PMID: 29047406]
[47]
Toshikuni N, Arisawa T, Tsutsumi M. Nutrition and exercise in the management of liver cirrhosis. World J Gastroenterol 2014; 20(23): 7286-97.
[http://dx.doi.org/10.3748/wjg.v20.i23.7286] [PMID: 24966599]
[48]
Pisano G, Lombardi R, Fracanzani AL. Vascular damage in patients with nonalcoholic fatty liver disease: possible role of iron and ferritin. Int J Mol Sci 2016; 17(5)E675
[http://dx.doi.org/10.3390/ijms17050675] [PMID: 27164079]
[49]
Brito-Azevedo A, Perez RM, Maranhão PA, et al. Organ dysfunction in cirrhosis: a mechanism involving the microcirculation. Eur J Gastroenterol Hepatol 2019; 31(5): 618-25.
[http://dx.doi.org/10.1097/MEG.0000000000001366] [PMID: 30920976]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy