Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Targeting Ceramide Metabolism in Hepatocellular Carcinoma: New Points for Therapeutic Intervention

Author(s): Petra Grbčić, Elitza Petkova Markova Car and Mirela Sedić*

Volume 27, Issue 39, 2020

Page: [6611 - 6627] Pages: 17

DOI: 10.2174/0929867326666190911115722

Price: $65

Abstract

Background: Hepatocellular Carcinoma (HCC) is one of the greatest global health burdens because of its uncontrolled cell growth and proliferation, aggressive nature as well as inherited chemoresistance. In spite of different treatment options currently available for HCC, the 5-year relative survival rates for HCC patients with regional and distant stages of the disease are still low, which highlights the urgent need for novel therapeutic strategies for HCC. Recent findings strongly suggest that specific lipid species, such as sphingolipids, play a prominent role in tumorigenesis.

Objective: We will give an overview of recent literature findings on the role of ceramide metabolism in the pathogenesis and treatment of HCC.

Results: HCC is characterised by dysregulation of ceramide metabolism, which could be ascribed to altered activity and expression of ceramide synthases 2, 4 and 6, and acid and alkaline ceramidases 2 and 3, as well as to deregulation of Sphingosine kinases (SphK) 1 and 2 and sphingosine-1- phosphate receptors, in particular, S1PR1. Among them, SphK2 has emerged as a clinically relevant drug target in HCC whose inhibition by ABC294640 is currently being investigated in a clinical trial in patients with advanced HCC. Another promising strategy includes restoration of ceramide levels in HCC tissues, whereby nanoliposomal ceramides, in particular C6-ceramide, has emerged as an effective therapeutic agent against HCC whose safety and recommended dosing is currently being clinically investigated.

Conclusion: Development of novel drugs specifically targeting ceramide metabolism could provide an enhanced therapeutic response and improved survival outcome in HCC patients.

Keywords: Hepatocellular carcinoma, ceramide, sphingosine-1-phosphate, sphingosine kinases, chemoresistance, sorafenib, 5-fluorouracil.

[1]
Levy, I.; Sherman, M. Liver cancer study group of the University of Toronto. Staging of hepatocellular carcinoma: assessment of the CLIP, Okuda, and Child-Pugh staging systems in a cohort of 257 patients in Toronto. Gut, 2002, 50(6), 881-885.
[http://dx.doi.org/10.1136/gut.50.6.881] [PMID: 12010894]
[2]
Sanyal, A.J.; Yoon, S.K.; Lencioni, R. The etiology of hepatocellular carcinoma and consequences for treatment. Oncologist, 2010, 15(Suppl. 4), 14-22.
[http://dx.doi.org/10.1634/theoncologist.2010-S4-14] [PMID: 21115577]
[3]
Zamor, P.J.; deLemos, A.S.; Russo, M.W. Viral hepatitis and hepatocellular carcinoma: etiology and management. J. Gastrointest. Oncol., 2017, 8(2), 229-242.
[http://dx.doi.org/10.21037/jgo.2017.03.14] [PMID: 28480063]
[4]
Farazi, P.A.; DePinho, R.A. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat. Rev. Cancer, 2006, 6(9), 674-687.
[http://dx.doi.org/10.1038/nrc1934] [PMID: 16929323]
[5]
Thorgeirsson, S.S.; Grisham, J.W. Molecular pathogenesis of human hepatocellular carcinoma. Nat. Genet., 2002, 31(4), 339-346.
[http://dx.doi.org/10.1038/ng0802-339] [PMID: 12149612]
[6]
Joung, J-G.; Ha, S.Y.; Bae, J.S.; Nam, J-Y.; Gwak, G-Y.; Lee, H-O.; Son, D-S.; Park, C-K.; Park, W-Y. Nonlinear tumor evolution from dysplastic nodules to hepatocellular carcinoma. Oncotarget, 2017, 8(2), 2076-2082.
[http://dx.doi.org/10.18632/oncotarget.10502] [PMID: 27409339]
[7]
Dhanasekaran, R.; Bandoh, S.; Roberts, L.R. Molecular pathogenesis of hepatocellular carcinoma and im-pact of therapeutic advances. F1000 Res., 2016, 5, F1000.
[http://dx.doi.org/10.12688/f1000research.6946.1] [PMID: 27239288]
[8]
Ang, C.S-P.; Sun, M.Y.; Huitzil-Melendez, D.F.; Chou, J.F-L.; Capanu, M.; Jarnagin, W.; Fong, Y.; Dematteo, R.P.; D’Angelica, M.; Allen, P.; Chen, C.T.; O’Reilly, E.M.; Weiser, M.R.; Abou-Alfa, G.K. c-MET and HGF mRNA expression in hepatocellular carcinoma: correlation with clinicopathological features and survival. Anticancer Res., 2013, 33(8), 3241-3245.
[PMID: 23898085]
[9]
Kaposi-Novak, P.; Lee, J-S.; Gòmez-Quiroz, L.; Coulouarn, C.; Factor, V.M.; Thorgeirsson, S.S. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J. Clin. Invest., 2006, 116(6), 1582-1595.
[http://dx.doi.org/10.1172/JCI27236] [PMID: 16710476]
[10]
Whittaker, S.; Marais, R.; Zhu, A.X. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene, 2010, 29(36), 4989-5005.
[http://dx.doi.org/10.1038/onc.2010.236] [PMID: 20639898]
[11]
Pinter, M.; Trauner, M.; Peck-Radosavljevic, M.; Sieghart, W. Cancer and liver cirrhosis: implications on prognosis and management. ESMO Open, 2016, 1(2)e000042
[http://dx.doi.org/10.1136/esmoopen-2016-000042] [PMID: 27843598]
[12]
Raza, A.; Sood, G.K. Hepatocellular carcinoma review: current treatment, and evidence-based medicine. World J. Gastroenterol., 2014, 20(15), 4115-4127.
[http://dx.doi.org/10.3748/wjg.v20.i15.4115] [PMID: 24764650]
[13]
Balogh, J.; Victor, D., III; Asham, E.H.; Burroughs, S.G.; Boktour, M.; Saharia, A.; Li, X.; Ghobrial, R.M.; Monsour, H.P. Jr. Hepatocellular carcinoma: a review. J. Hepatocell. Carcinoma, 2016, 3, 41-53.
[http://dx.doi.org/10.2147/JHC.S61146] [PMID: 27785449]
[14]
Farmer, D.G.; Rosove, M.H.; Shaked, A.; Busuttil, R.W. Current treatment modalities for hepatocellular carcinoma. Ann. Surg., 1994, 219(3), 236-247.
[http://dx.doi.org/10.1097/00000658-199403000-00003] [PMID: 8147605]
[15]
Zhu, A.X. Systemic therapy of advanced hepatocellular carcinoma: how hopeful should we be? Oncologist, 2006, 11(7), 790-800.
[http://dx.doi.org/10.1634/theoncologist.11-7-790] [PMID: 16880238]
[16]
El-Serag, H.B.; Margaret, M.; Alkek, A.B. Current status of Sorafenib use for treatment of hepatocellular carcinoma. Gastroenterol. Hepatol. (N. Y.), 2017, 13(10), 623-625.
[PMID: 29230141]
[17]
Deng, G-L.; Zeng, S.; Shen, H. Chemotherapy and target therapy for hepatocellular carcinoma: New advances and challenges. World J. Hepatol., 2015, 7(5), 787-798.
[http://dx.doi.org/10.4254/wjh.v7.i5.787] [PMID: 25914779]
[18]
Le Grazie, M.; Biagini, M.R.; Tarocchi, M.; Polvani, S.; Galli, A. Chemotherapy for hepatocellular carcinoma: The present and the future. World J. Hepatol., 2017, 9(21), 907-920.
[http://dx.doi.org/10.4254/wjh.v9.i21.907] [PMID: 28824742]
[19]
Rinninella, E.; Cerrito, L.; Spinelli, I.; Cintoni, M.; Mele, M.C.; Pompili, M.; Gasbarrini, A. Chemotherapy for hepatocellular carcinoma: current evidence and future perspectives. J. Clin. Transl. Hepatol., 2017, 5(3), 235-248.
[http://dx.doi.org/10.14218/JCTH.2017.00002] [PMID: 28936405]
[20]
Sho, T.; Nakanishi, M.; Morikawa, K.; Ohara, M.; Kawagishi, N.; Izumi, T.; Umemura, M.; Ito, J.; Nakai, M.; Suda, G.; Ogawa, K.; Chuma, M.; Meguro, T.; Nakamura, M.; Nagasaka, A.; Horimoto, H.; Yamamoto, Y.; Sakamoto, N. A Phase I study of combination therapy with sorafenib and 5-fluorouracil in patients with advanced hepatocellular carcinoma. Drugs R D., 2017, 17(3), 381-388.
[http://dx.doi.org/10.1007/s40268-017-0187-7] [PMID: 28573606]
[21]
Gault, C.R.; Obeid, L.M.; Hannun, Y.A. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol., 2010, 688, 1-23.
[http://dx.doi.org/10.1007/978-1-4419-6741-1_1] [PMID: 20919643]
[22]
Futerman, A.H.; Hannun, Y.A. The complex life of simple sphingolipids. EMBO Rep., 2004, 5(8), 777-782.
[http://dx.doi.org/10.1038/sj.embor.7400208] [PMID: 15289826]
[23]
Pralhada Rao, R.; Vaidyanathan, N.; Rengasamy, M.; Mammen Oommen, A.; Somaiya, N.; Jagannath, M.R. Sphingolipid metabolic pathway: an overview of major roles played in human diseases. J. Lipids, 2013, 2013178910
[http://dx.doi.org/10.1155/2013/178910] [PMID: 23984075]
[24]
Hannun, Y.A.; Obeid, L.M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol., 2008, 9(2), 139-150.
[http://dx.doi.org/10.1038/nrm2329] [PMID: 18216770]
[25]
Bartke, N.; Hannun, Y.A. Bioactive sphingolipids: metabolism and function. J. Lipid Res., 2009, 50(Suppl.), S91-S96.
[http://dx.doi.org/10.1194/jlr.R800080-JLR200] [PMID: 19017611]
[26]
Nikolova-Karakashian, M.N.; Reid, M.B. Sphingolipid metabolism, oxidant signaling, and contractile function of skeletal muscle. Antioxid. Redox Signal., 2011, 15(9), 2501-2517.
[http://dx.doi.org/10.1089/ars.2011.3940] [PMID: 21453197]
[27]
Kitatani, K.; Idkowiak-Baldys, J.; Hannun, Y.A. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell. Signal., 2008, 20(6), 1010-1018.
[http://dx.doi.org/10.1016/j.cellsig.2007.12.006] [PMID: 18191382]
[28]
Ogretmen, B. Sphingolipid metabolism in cancer signalling and therapy. Nat. Rev. Cancer, 2018, 18(1), 33-50.
[http://dx.doi.org/10.1038/nrc.2017.96] [PMID: 29147025]
[29]
Hannun, Y.A.; Obeid, L.M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol., 2018, 19(3), 175-191.
[http://dx.doi.org/10.1038/nrm.2017.107] [PMID: 29165427]
[30]
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[31]
Lujambio, A.; Lowe, S.W. The microcosmos of cancer. Nature, 2012, 482(7385), 347-355.
[http://dx.doi.org/10.1038/nature10888] [PMID: 22337054]
[32]
Gramantieri, L.; Fornari, F.; Callegari, E.; Sabbioni, S.; Lanza, G.; Croce, C.M.; Bolondi, L.; Negrini, M. MicroRNA involvement in hepatocellular carcinoma. J. Cell. Mol. Med., 2008, 12(6A), 2189-2204.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00533.x] [PMID: 19120703]
[33]
Giordano, S.; Columbano, A. MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology, 2013, 57(2), 840-847.
[http://dx.doi.org/10.1002/hep.26095] [PMID: 23081718]
[34]
Sun, J.; Lu, H.; Wang, X.; Jin, H. MicroRNAs in hepatocellular carcinoma: regulation, function, and clinical implications. ScientificWorldJournal, 2013, 2013924206
[http://dx.doi.org/10.1155/2013/924206] [PMID: 23431261]
[35]
Tsuchiya, N.; Sawada, Y.; Endo, I.; Saito, K.; Uemura, Y.; Nakatsura, T. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J. Gastroenterol., 2015, 21(37), 10573-10583.
[http://dx.doi.org/10.3748/wjg.v21.i37.10573] [PMID: 26457017]
[36]
Kosaka, N.; Iguchi, H.; Yoshioka, Y.; Takeshita, F.; Matsuki, Y.; Ochiya, T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem., 2010, 285(23), 17442-17452.
[http://dx.doi.org/10.1074/jbc.M110.107821] [PMID: 20353945]
[37]
Stiuso, P.; Potenza, N.; Lombardi, A.; Ferrandino, I.; Monaco, A.; Zappavigna, S.; Vanacore, D.; Mosca, N.; Castiello, F.; Porto, S.; Addeo, R.; Prete, S.D.; De Vita, F.; Russo, A.; Caraglia, M. MicroRNA-423-5p promotes autophagy in cancer cells and is increased in serum from hepatocarcinoma patients treated with Sorafenib. Mol. Ther. Nucleic Acids, 2015, 4e233
[http://dx.doi.org/10.1038/mtna.2015.8] [PMID: 25782064]
[38]
Lu, Z.; Zhang, W.; Gao, S.; Jiang, Q.; Xiao, Z.; Ye, L.; Zhang, X. MiR-506 suppresses liver cancer angiogenesis through targeting sphingosine kinase 1 (SPHK1) mRNA. Biochem. Biophys. Res. Commun., 2015, 468(1-2), 8-13.
[http://dx.doi.org/10.1016/j.bbrc.2015.11.008] [PMID: 26549227]
[39]
Chai, Z-T.; Kong, J.; Zhu, X-D.; Zhang, Y-Y.; Lu, L.; Zhou, J-M.; Wang, L-R.; Zhang, K-Z.; Zhang, Q-B.; Ao, J-Y.; Wang, M.; Wu, W.Z.; Wang, L.; Tang, Z.Y.; Sun, H.C. MicroRNA-26a inhibits angiogenesis by down-regulating VEGFA through the PIK3C2α/Akt/HIF-1α pathway in hepatocellular carcinoma. PLoS One, 2013, 8(10)e77957
[http://dx.doi.org/10.1371/journal.pone.0077957] [PMID: 24194905]
[40]
Xiao, G.; Wang, Q.; Li, B.; Wu, X.; Liao, H.; Ren, Y.; Ai, N. MicroRNA-338-3p suppresses proliferation of human liver cancer cells by targeting SphK2. Oncol. Res., 2018, 26(8), 1183-1189.
[http://dx.doi.org/10.3727/096504018X15151495109394] [PMID: 29321083]
[41]
Zhou, P.; Huang, G.; Zhao, Y.; Zhong, D.; Xu, Z.; Zeng, Y.; Zhang, Y.; Li, S.; He, F. MicroRNA-363-mediated downregulation of S1PR1 suppresses the proliferation of hepatocellular carcinoma cells. Cell. Signal., 2014, 26(6), 1347-1354.
[http://dx.doi.org/10.1016/j.cellsig.2014.02.020] [PMID: 24631531]
[42]
Zhang, S-L.; Liu, L. microRNA-148a inhibits hepatocellular carcinoma cell invasion by targeting sphingosine-1-phosphate receptor 1. Exp. Ther. Med., 2015, 9(2), 579-584.
[http://dx.doi.org/10.3892/etm.2014.2137] [PMID: 25574238]
[43]
Heo, M.J.; Kim, Y.M.; Koo, J.H.; Yang, Y.M.; An, J.; Lee, S-K.; Lee, S.J.; Kim, K.M.; Park, J-W.; Kim, S.G. microRNA-148a dysregulation discriminates poor prognosis of hepatocellular carcinoma in association with USP4 overexpression. Oncotarget, 2014, 5(9), 2792-2806.
[http://dx.doi.org/10.18632/oncotarget.1920] [PMID: 24798342]
[44]
Ajdarkosh, H.; Dadpay, M.; Yahaghi, E.; Pirzaman, E.R.; Fayyaz, A.F.; Darian, E.K.; Mokarizadeh, A. Decrease expression and clinicopathological significance of miR-148a with poor survival in hepatocellular carcinoma tissues. Diagn. Pathol., 2015, 10, 135.
[http://dx.doi.org/10.1186/s13000-015-0371-4] [PMID: 26248880]
[45]
Sweeney, E.A.; Sakakura, C.; Shirahama, T.; Masamune, A.; Ohta, H.; Hakomori, S.; Igarashi, Y. Sphingosine and its methylated derivative N,N-dimethylsphingosine (DMS) induce apoptosis in a variety of human cancer cell lines. Int. J. Cancer, 1996, 66(3), 358-366.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19960503)66:3<358:AID-IJC16>3.0.CO;2-7] [PMID: 8621258]
[46]
Hung, W.C.; Chang, H.C.; Chuang, L.Y. Activation of caspase-3-like proteases in apoptosis induced by sphingosine and other long-chain bases in Hep3B hepatoma cells. Biochem. J., 1999, 338(Pt 1), 161-166.
[http://dx.doi.org/10.1042/bj3380161] [PMID: 9931312]
[47]
Chang, H-C.; Hsu, C.; Hsu, H-K.; Yang, R-C. Functional role of caspases in sphingosine-induced apoptosis in human hepatoma cells. IUBMB Life, 2003, 55(7), 403-407.
[http://dx.doi.org/10.1080/15216540310001594184] [PMID: 14584591]
[48]
Chang, H-C.; Tsai, L-H.; Chuang, L-Y.; Hung, W-C. Role of AKT kinase in sphingosine-induced apoptosis in human hepatoma cells. J. Cell. Physiol., 2001, 188(2), 188-193.
[http://dx.doi.org/10.1002/jcp.1108] [PMID: 11424085]
[49]
Hossain, Z.; Sugawara, T.; Hirata, T. Sphingoid bases from sea cucumber induce apoptosis in human hepatoma HepG2 cells through p-AKT and DR5. Oncol. Rep., 2013, 29(3), 1201-1207.
[http://dx.doi.org/10.3892/or.2013.2223] [PMID: 23291741]
[50]
Hung, W-C.; Chuang, L-Y. Induction of apoptosis by sphingosine-1-phosphate in human hepatoma cells is associated with enhanced expression of bax gene product. Biochem. Biophys. Res. Commun., 1996, 229(1), 11-15.
[http://dx.doi.org/10.1006/bbrc.1996.1750] [PMID: 8954076]
[51]
Dakroub, Z.; Kreydiyyeh, S.I. Sphingosine-1-phosphate is a mediator of TNF-α action on the Na+/K+ ATPase in HepG2 cells. J. Cell. Biochem., 2012, 113(6), 2077-2085.
[http://dx.doi.org/10.1002/jcb.24079] [PMID: 22271589]
[52]
Al-Alam, N.; Kreydiyyeh, S. Mediators of the inhibitory effect of sphingosine-1-phosphate on hepatic Na+/K+ ATPase. FASEB J., 2015, 29(1), 974-15.
[http://dx.doi.org/10.1096/fasebj.29.1_supplement.974.15]
[53]
Hung, J-H.; Lu, Y-S.; Wang, Y-C.; Ma, Y-H.; Wang, D-S.; Kulp, S.K.; Muthusamy, N.; Byrd, J.C.; Cheng, A-L.; Chen, C-S. FTY720 induces apoptosis in hepatocellular carcinoma cells through activation of protein kinase C delta signaling. Cancer Res., 2008, 68(4), 1204-1212.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2621] [PMID: 18281497]
[54]
Bao, M.; Chen, Z.; Xu, Y.; Zhao, Y.; Zha, R.; Huang, S.; Liu, L.; Chen, T.; Li, J.; Tu, H.; He, X. Sphingosine kinase 1 promotes tumour cell migration and invasion via the S1P/EDG1 axis in hepatocellular carcinoma. Liver Int., 2012, 32(2), 331-338.
[http://dx.doi.org/10.1111/j.1478-3231.2011.02666.x] [PMID: 22098666]
[55]
Lee, T.K.; Man, K.; Ho, J.W.; Wang, X.H.; Poon, R.T.P.; Xu, Y.; Ng, K.T.; Chu, A.C.; Sun, C.K.; Ng, I.O.; Sun, H.C.; Tang, Z.Y.; Xu, R.; Fan, S.T. FTY720: a promising agent for treatment of metastatic hepatocellular carcinoma. Clin. Cancer Res., 2005, 11(23), 8458-8466.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0447] [PMID: 16322309]
[56]
Ushitora, Y.; Tashiro, H.; Ogawa, T.; Tanimoto, Y.; Kuroda, S.; Kobayashi, T.; Miyata, Y.; Itamoto, T.; Asahara, T.; Ohdan, H. Suppression of hepatocellular carcinoma recurrence after rat liver transplantation by FTY720, a sphingosine-1-phosphate analog. Transplantation, 2009, 88(8), 980-986.
[http://dx.doi.org/10.1097/TP.0b013e3181b9ca69] [PMID: 19855243]
[57]
Ahmed, D.; de Verdier, P.J.; Ryk, C.; Lunqe, O.; Stål, P.; Flygare, J. FTY720 (Fingolimod) sensitizes hepatocellular carcinoma cells to sorafenib-mediated cytotoxicity. Pharmacol. Res. Perspect., 2015, 3(5)e00171
[http://dx.doi.org/10.1002/prp2.171] [PMID: 26516583]
[58]
Zhai, B.; Hu, F.; Jiang, X.; Xu, J.; Zhao, D.; Liu, B.; Pan, S.; Dong, X.; Tan, G.; Wei, Z.; Qiao, H.; Jiang, H.; Sun, X. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol. Cancer Ther., 2014, 13(6), 1589-1598.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-1043] [PMID: 24705351]
[59]
Wang, F.; Wu, Z. Sphingosine kinase 1 overexpression is associated with poor prognosis and oxaliplatin resistance in hepatocellular carcinoma. Exp. Ther. Med., 2018, 15(6), 5371-5376.
[http://dx.doi.org/10.3892/etm.2018.6086] [PMID: 29844803]
[60]
Chen, J.; Qi, Y.; Zhao, Y.; Kaczorowski, D.; Couttas, T.A.; Coleman, P.R.; Don, A.S.; Bertolino, P.; Gamble, J.R.; Vadas, M.A.; Xia, P.; McCaughan, G.W. Deletion of sphingosine kinase 1 inhibits liver tumorigenesis in diethylnitrosamine-treated mice. Oncotarget, 2018, 9(21), 15635-15649.
[http://dx.doi.org/10.18632/oncotarget.24583] [PMID: 29643998]
[61]
Mu, Z.; Wang, H.; Zhang, J.; Li, Q.; Wang, L.; Guo, X. KAI1/CD82 suppresses hepatocyte growth factor-induced migration of hepatoma cells via upregulation of Sprouty2. Sci. China C Life Sci., 2008, 51(7), 648-654.
[http://dx.doi.org/10.1007/s11427-008-0086-1] [PMID: 18622748]
[62]
Zhang, C.; He, H.; Zhang, H.; Yu, D.; Zhao, W.; Chen, Y.; Shao, R. The blockage of Ras/ERK pathway augments the sensitivity of SphK1 inhibitor SKI II in human hepatoma HepG2 cells. Biochem. Biophys. Res. Commun., 2013, 434(1), 35-41.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.070] [PMID: 23545258]
[63]
Liu, H.; Zhang, C-X.; Ma, Y.; He, H-W.; Wang, J-P.; Shao, R-G. SphK1 inhibitor SKI II inhibits the proliferation of human hepatoma HepG2 cells via the Wnt5A/β-catenin signaling pathway. Life Sci., 2016, 151, 23-29.
[http://dx.doi.org/10.1016/j.lfs.2016.02.098] [PMID: 26944438]
[64]
Grbčić, P.; Tomljanović, I.; Klobučar, M.; Kraljević Pavelić, S.; Lučin, K.; Sedić, M. Dual sphingosine kinase inhibitor SKI-II enhances sensitivity to 5-fluorouracil in hepatocellular carcinoma cells via suppression of osteopontin and FAK/IGF-1R signalling. Biochem. Biophys. Res. Commun., 2017, 487(4), 782-788.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.100] [PMID: 28433634]
[65]
Beljanski, V.; Lewis, C.S.; Smith, C.D. Antitumor activity of sphingosine kinase 2 inhibitor ABC294640 and sorafenib in hepatocellular carcinoma xenografts. Cancer Biol. Ther., 2011, 11(5), 524-534.
[http://dx.doi.org/10.4161/cbt.11.5.14677] [PMID: 21258214]
[66]
Krautbauer, S.; Meier, E.M.; Rein-Fischboeck, L.; Pohl, R.; Weiss, T.S.; Sigruener, A.; Aslanidis, C.; Liebisch, G.; Buechler, C. Ceramide and polyunsaturated phospholipids are strongly reduced in human hepatocellular carcinoma. Biochim. Biophys. Acta, 2016, 1861(11), 1767-1774.
[http://dx.doi.org/10.1016/j.bbalip.2016.08.014] [PMID: 27570113]
[67]
Li, Z.; Guan, M.; Lin, Y.; Cui, X.; Zhang, Y.; Zhao, Z.; Zhu, J. Aberrant lipid metabolism in hepatocellular carcinoma revealed by liver lipidomics. Int. J. Mol. Sci., 2017, 18(12)E2550
[http://dx.doi.org/10.3390/ijms18122550] [PMID: 29182572]
[68]
Zhu, X.F.; Zhang, X.S.; Li, Z.M.; Yao, Y.Q.; Xie, B.F.; Liu, Z.C.; Zeng, Y.X. Apoptosis induced by ceramide in hepatocellular carcinoma Bel7402 cells. Acta Pharmacol. Sin., 2000, 21(3), 225-228.
[PMID: 11324420]
[69]
Gentil, B.; Grimot, F.; Riva, C. Commitment to apoptosis by ceramides depends on mitochondrial respiratory function, cytochrome c release and caspase-3 activation in Hep-G2 cells. Mol. Cell. Biochem., 2003, 254(1-2), 203-210.
[http://dx.doi.org/10.1023/A:1027359832177] [PMID: 14674699]
[70]
Kankesan, J.; Thiessen, J.J.; Ling, V.; Rao, P.M.; Rajalakshmi, S.; Sarma, D.S.R. Induction of ceramide and P21 (WAF-1) associated with PSC 833-mediated growth arrest of HepG2 human hepatocellular carcinoma cells. Cancer Res., 2004, 64(Suppl. 7), 1224-1225.
[71]
Zhang, G.; Park, M.A.; Mitchell, C.; Hamed, H.; Rahmani, M.; Martin, A.P.; Curiel, D.T.; Yacoub, A.; Graf, M.; Lee, R.; Roberts, J.D.; Fisher, P.B.; Grant, S.; Dent, P. Vorinostat and sorafenib synergistically kill tumor cells via FLIP suppression and CD95 activation. Clin. Cancer Res., 2008, 14(17), 5385-5399.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0469] [PMID: 18765530]
[72]
Park, M.A.; Zhang, G.; Martin, A.P.; Hamed, H.; Mitchell, C.; Hylemon, P.B.; Graf, M.; Rahmani, M.; Ryan, K.; Liu, X.; Spiegel, S.; Norris, J.; Fisher, P.B.; Grant, S.; Dent, P. Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol. Ther., 2008, 7(10), 1648-1662.
[http://dx.doi.org/10.4161/cbt.7.10.6623] [PMID: 18787411]
[73]
Liu, M.; Gu, P.; Guo, W.; Fan, X. C6 ceramide sensitizes the anti-hepatocellular carcinoma (HCC) activity by AZD-8055, a novel mTORC1/2 dual inhibitor. Tumour Biol., 2016, 37(8), 11039-11048.
[http://dx.doi.org/10.1007/s13277-015-4598-1] [PMID: 26897748]
[74]
Watters, R.J.; Kester, M.; Tran, M.A.; Loughran, T.P. Jr.; Liu, X. Development and use of ceramide nanoliposomes in cancer. Methods Enzymol., 2012, 508, 89-108.
[http://dx.doi.org/10.1016/B978-0-12-391860-4.00005-7] [PMID: 22449922]
[75]
Tagaram, H.R.S.; Divittore, N.A.; Barth, B.M.; Kaiser, J.M.; Avella, D.; Kimchi, E.T.; Jiang, Y.; Isom, H.C.; Kester, M.; Staveley-O’Carroll, K.F. Nanoliposomal ceramide prevents in vivo growth of hepatocellular carcinoma. Gut, 2011, 60(5), 695-701.
[http://dx.doi.org/10.1136/gut.2010.216671] [PMID: 21193455]
[76]
Li, G.; Liu, D.; Kimchi, E.T.; Kaifi, J.T.; Qi, X.; Manjunath, Y.; Liu, X.; Deering, T.; Avella, D.M.; Fox, T.; Rockey, D.C.; Schell, T.D.; Kester, M.; Staveley-O’Carroll, K.F. Nanoliposome C6-ceramide increases the anti-tumor immune response and slows growth of liver tumors in mice. Gastroenterology, 2018, 154(4), 1024-1036.e9.
[http://dx.doi.org/10.1053/j.gastro.2017.10.050] [PMID: 29408569]
[77]
Lv, H.; Zhang, Z.; Wu, X.; Wang, Y.; Li, C.; Gong, W.; Gui, L.; Wang, X. Preclinical evaluation of liposomal C8 ceramide as a potent anti-hepatocellular carcinoma agent. PLoS One, 2016, 11(1)e0145195
[http://dx.doi.org/10.1371/journal.pone.0145195] [PMID: 26727592]
[78]
Adiseshaiah, P.P.; Clogston, J.D.; McLeland, C.B.; Rodriguez, J.; Potter, T.M.; Neun, B.W.; Skoczen, S.L.; Shanmugavelandy, S.S.; Kester, M.; Stern, S.T.; McNeil, S.E. Synergistic combination therapy with nanoliposomal C6-ceramide and vinblastine is associated with autophagy dysfunction in hepatocarcinoma and colorectal cancer models. Cancer Lett., 2013, 337(2), 254-265.
[http://dx.doi.org/10.1016/j.canlet.2013.04.034] [PMID: 23664889]
[79]
Yin, X.; Xiao, Y.; Han, L.; Zhang, B.; Wang, T.; Su, Z.; Zhang, N. Ceramide-fabricated co-loaded liposomes for the synergistic treatment of hepatocellular carcinoma. AAPS PharmSciTech, 2018, 19(5), 2133-2143.
[http://dx.doi.org/10.1208/s12249-018-1005-4] [PMID: 29714002]
[80]
Roh, J-L.; Park, J.Y.; Kim, E.H.; Jang, H.J. Targeting acid ceramidase sensitises head and neck cancer to cisplatin. Eur. J. Cancer, 2016, 52, 163-172.
[http://dx.doi.org/10.1016/j.ejca.2015.10.056] [PMID: 26687835]
[81]
Realini, N.; Palese, F.; Pizzirani, D.; Pontis, S.; Basit, A.; Bach, A.; Ganesan, A.; Piomelli, D. Acid ceramidase in melanoma: expression, localization and effects of pharmacological inhibition. J. Biol. Chem., 2016, 291(5), 2422-2434.
[http://dx.doi.org/10.1074/jbc.M115.666909 ] [PMID: 26553872]
[82]
Ruckhäberle, E.; Holtrich, U.; Engels, K.; Hanker, L.; Gätje, R.; Metzler, D.; Karn, T.; Kaufmann, M.; Rody, A. Acid ceramidase 1 expression correlates with a better prognosis in ER-positive breast cancer. Climacteric, 2009, 12(6), 502-513.
[http://dx.doi.org/10.3109/13697130902939913] [PMID: 19905902]
[83]
Gouazé-Andersson, V.; Flowers, M.; Karimi, R.; Fabriás, G.; Delgado, A.; Casas, J.; Cabot, M.C. Inhibition of acid ceramidase by a 2-substituted aminoethanol amide synergistically sensitizes prostate cancer cells to N-(4-hydroxyphenyl) retinamide. Prostate, 2011, 71(10), 1064-1073.
[http://dx.doi.org/10.1002/pros.21321] [PMID: 21557271]
[84]
Mahdy, A.E.; Cheng, J.C.; Li, J.; Elojeimy, S.; Meacham, W.D.; Turner, L.S.; Bai, A.; Gault, C.R.; McPherson, A.S.; Garcia, N.; Beckham, T.H.; Saad, A.; Bielawska, A.; Bielawski, J.; Hannun, Y.A.; Keane, T.E.; Taha, M.I.; Hammouda, H.M.; Norris, J.S.; Liu, X. Acid ceramidase upregulation in prostate cancer cells confers resistance to radiation: AC inhibition, a potential radiosensitizer. Mol. Ther., 2009, 17(3), 430-438.
[http://dx.doi.org/10.1038/mt.2008.281] [PMID: 19107118]
[85]
Morales, A.; París, R.; Villanueva, A.; Llacuna, L.; García-Ruiz, C.; Fernández-Checa, J.C. Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo. Oncogene, 2007, 26(6), 905-916.
[http://dx.doi.org/10.1038/sj.onc.1209834] [PMID: 16862171]
[86]
Yin, Y.; Xu, M.; Gao, J.; Li, M. Alkaline ceramidase 3 promotes growth of hepatocellular carcinoma cells via regulating S1P/S1PR2/PI3K/AKT signaling. Pathol. Res. Pract., 2018, 214(9), 1381-1387.
[http://dx.doi.org/10.1016/j.prp.2018.07.029] [PMID: 30097213]
[87]
Xu, R.; Jin, J.; Hu, W.; Sun, W.; Bielawski, J.; Szulc, Z.; Taha, T.; Obeid, L.M.; Mao, C. Golgi alkaline ceramidase regulates cell proliferation and survival by controlling levels of sphingosine and S1P. FASEB J., 2006, 20(11), 1813-1825.
[http://dx.doi.org/10.1096/fj.05-5689com] [PMID: 16940153]
[88]
Park, J-W.; Park, W-J.; Futerman, A.H. Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim. Biophys. Acta, 2014, 1841(5), 671-681.
[http://dx.doi.org/10.1016/j.bbalip.2013.08.019] [PMID: 24021978]
[89]
Pewzner-Jung, Y.; Brenner, O.; Braun, S.; Laviad, E.L.; Ben-Dor, S.; Feldmesser, E.; Horn-Saban, S.; Amann-Zalcenstein, D.; Raanan, C.; Berkutzki, T.; Erez-Roman, R.; Ben-David, O.; Levy, M.; Holzman, D.; Park, H.; Nyska, A.; Merrill, A.H. Jr.; Futerman, A.H. A critical role for ceramide synthase 2 in liver homeostasis: II. Insights into molecular changes leading to hepatopathy. J. Biol. Chem., 2010, 285(14), 10911-10923.
[http://dx.doi.org/10.1074/jbc.M109.077610] [PMID: 20110366]
[90]
Imgrund, S.; Hartmann, D.; Farwanah, H.; Eckhardt, M.; Sandhoff, R.; Degen, J.; Gieselmann, V.; Sandhoff, K.; Willecke, K. Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J. Biol. Chem., 2009, 284(48), 33549-33560.
[http://dx.doi.org/10.1074/jbc.M109.031971] [PMID: 19801672]
[91]
Fekry, B.; Esmaeilniakooshkghazi, A.; Krupenko, S.A.; Krupenko, N.I. Ceramide synthase 6 is a novel target of methotrexate mediating its antiproliferative effect in a p53-dependent manner. PLoS One, 2016, 11(1)e0146618
[http://dx.doi.org/10.1371/journal.pone.0146618] [PMID: 26783755]
[92]
Walker, T.; Mitchell, C.; Park, M.A.; Yacoub, A.; Graf, M.; Rahmani, M.; Houghton, P.J.; Voelkel-Johnson, C.; Grant, S.; Dent, P. Sorafenib and vorinostat kill colon cancer cells by CD95-dependent and -independent mechanisms. Mol. Pharmacol., 2009, 76(2), 342-355.
[http://dx.doi.org/10.1124/mol.109.056523] [PMID: 19483104]
[93]
Chen, J.; Li, X.; Ma, D.; Liu, T.; Tian, P.; Wu, C. Ceramide synthase-4 orchestrates the cell proliferation and tumor growth of liver cancer in vitro and in vivo through the nuclear factor-κB signaling pathway. Oncol. Lett., 2017, 14(2), 1477-1483.
[http://dx.doi.org/10.3892/ol.2017.6365] [PMID: 28789368]
[94]
Senkal, C.E.; Ponnusamy, S.; Bielawski, J.; Hannun, Y.A.; Ogretmen, B. Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways. FASEB J., 2010, 24(1), 296-308.
[http://dx.doi.org/10.1096/fj.09-135087] [PMID: 19723703]
[95]
Liu, Y-Y.; Hill, R.A.; Li, Y-T. Ceramide glycosylation catalyzed by glucosylceramide synthase and cancer drug resistance. Adv. Cancer Res., 2013, 117, 59-89.
[http://dx.doi.org/10.1016/B978-0-12-394274-6.00003-0] [PMID: 23290777]
[96]
Jennemann, R.; Federico, G.; Mathow, D.; Rabionet, M.; Rampoldi, F.; Popovic, Z.V.; Volz, M.; Hielscher, T.; Sandhoff, R.; Gröne, H-J. Inhibition of hepatocellular carcinoma growth by blockade of glycosphingolipid synthesis. Oncotarget, 2017, 8(65), 109201-109216.
[http://dx.doi.org/10.18632/oncotarget.22648] [PMID: 29312601]
[97]
di Bartolomeo, S.; Spinedi, A. Differential chemosensitizing effect of two glucosylceramide synthase inhibitors in hepatoma cells. Biochem. Biophys. Res. Commun., 2001, 288(1), 269-274.
[http://dx.doi.org/10.1006/bbrc.2001.5748] [PMID: 11594784]
[98]
Stefanovic, M.; Tutusaus, A.; Martinez-Nieto, G.A.; Bárcena, C.; de Gregorio, E.; Moutinho, C.; Barbero-Camps, E.; Villanueva, A.; Colell, A.; Marí, M.; García-Ruiz, C.; Fernandez-Checa, J.C.; Morales, A. Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget, 2016, 7(7), 8253-8267.
[http://dx.doi.org/10.18632/oncotarget.6982] [PMID: 26811497]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy