Review Article

Trojan微粒可用于眼科药物输送

卷 27, 期 4, 2020

页: [570 - 582] 页: 13

弟呕挨: 10.2174/0929867326666190905150331

价格: $65

摘要

在二十一世纪,药物治疗眼疾仍然是一项技术挑战。尽管有重要的活性分子库可用于治疗眼病,从经典化合物到生物技术产品,但目前,尚无理想的递送系统能够发挥其全部治疗潜力。为了克服一些最重要的局限性而提出的眼内给药系统(IODDS)中,微系统和纳米系统引起了高度关注。虽然微系统能够在玻璃体内注射后提供长期释放,但纳米系统可以保护活性化合物免受外部环境的影响(减少其清除率)并将其引导至目标组织。近年来,一些研究人员探索了在“纳米微粒中的微粒(NiMs)”系统或“特洛伊木马系统”中组合微米和纳米系统的可能性。这个绝妙的主意不能免除技术问题,尤其是在IODDS的情况下,仍然是部分尚未解决的想法。本综述的目的是展示有关用于药物输送的木马微粒的设计,制备和表征的最新技术,并指出其作为IODDS的潜力和局限性,这是当前制药技术面临的最重要挑战之一。

关键词: 木马系统,纳米微粒(MiMs),眼科药物输送,后段,玻璃体内注射,眼内药物输送系统(IODDS)。

[1]
Kim, Y.C.; Chiang, B.; Wu, X.; Prausnitz, M.R. Ocular delivery of macromolecules. J. Control. Release, 2014, 190, 172-181.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.043] [PMID: 24998941]
[2]
Herrero-Vanrell, R.; Vicario de la Torre, M.; Andrés-Guerrero, V.; Barbosa-Alfaro, D.; Molina-Martínez, I.T.; Bravo-Osuna, I. Nano and microtechnologies for ophthalmic administration: an overview. J. Drug Deliv. Sci. Technol., 2013, 23(2), 75-102.
[http://dx.doi.org/10.1016/S1773-2247(13)50016-5]
[3]
Zhou, A.X.; Messenger, W.B.; Sargent, S.; Ambati, B.K. Safety of undiluted intracameral moxifloxacin without postoperative topical antibiotics in cataract surgery. Int. Ophthalmol., 2016, 36(4), 493-498.
[http://dx.doi.org/10.1007/s10792-015-0151-x] [PMID: 26577588]
[4]
Yao, J.; Tucker, B.A.; Zhang, X.; Checa-Casalengua, P.; Herrero-Vanrell, R.; Young, M.J. Robust cell integration from co-transplantation of biodegradable MMP2-PLGA microspheres with retinal progenitor cells. Biomaterials, 2011, 32(4), 1041-1050.
[http://dx.doi.org/10.1016/j.biomaterials.2010.09.063] [PMID: 21030072]
[5]
Del Amo, E.M.; Rimpelä, A.K.; Heikkinen, E.; Kari, O.K.; Ramsay, E.; Lajunen, T.; Schmitt, M.; Pelkonen, L.; Bhattacharya, M.; Richardson, D.; Subrizi, A.; Turunen, T.; Reinisalo, M.; Itkonen, J.; Toropainen, E.; Casteleijn, M.; Kidron, H.; Antopolsky, M.; Vellonen, K.S.; Ruponen, M.; Urtti, A. Pharmacokinetic aspects of retinal drug delivery. Prog. Retin. Eye Res., 2017, 57, 134-185.
[http://dx.doi.org/10.1016/j.preteyeres.2016.12.001] [PMID: 28028001]
[6]
Herrero-Vanrell, R.; Bravo-Osuna, I.; Andrés-Guerrero, V.; Vicario-de-la-Torre, M.; Molina-Martínez, I.T. The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies. Prog. Retin. Eye Res., 2014, 42, 27-43.
[http://dx.doi.org/10.1016/j.preteyeres.2014.04.002] [PMID: 24819336]
[7]
Bravo-Osuna, I.; Andrés-Guerrero, V.; Pastoriza Abal, P.; Molina-Martínez, I.T.; Herrero-Vanrell, R. Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv. Transl. Res., 2016, 6(6), 686-707.
[http://dx.doi.org/10.1007/s13346-016-0336-5] [PMID: 27766598]
[8]
Bravo-Osuna, I.; Andrés-Guerrero, V.; Arranz-Romera, A.; Esteban-Pérez, S.; Molina-Martínez, I.T.; Herrero-Vanrell, R. Microspheres as intraocular therapeutic tools in chronic diseases of the optic nerve and retina. Adv. Drug Deliv. Rev., 2018, 126, 127-144.
[http://dx.doi.org/10.1016/j.addr.2018.01.007] [PMID: 29339146]
[9]
Cardillo, J.A.; Souza-Filho, A.A.; Oliveira, A.G. Intravitreal bioerudivel sustained-release triamcinolone microspheres system (RETAAC). Preliminary report of its potential usefulness for the treatment of diabetic macular edema. Arch. Soc. Esp. Oftalmol., 2006, 81(12), 675-677, 679-681.
[PMID: 17199160]
[10]
Checa-Casalengua, P.; Jiang, C.; Bravo-Osuna, I.; Tucker, B.A.; Molina-Martínez, I.T.; Young, M.J.; Herrero-Vanrell, R. Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J. Control. Release, 2011, 156(1), 92-100.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.023] [PMID: 21704662]
[11]
García-Caballero, C.; Prieto-Calvo, E.; Checa-Casalengua, P.; García-Martín, E.; Polo-Llorens, V.; García-Feijoo, J.; Molina-Martínez, I.T.; Bravo-Osuna, I.; Herrero-Vanrell, R. Six month delivery of GDNF from PLGA/vitamin E biodegradable microspheres after intravitreal injection in rabbits. Eur. J. Pharm. Sci., 2017, 103, 19-26.
[http://dx.doi.org/10.1016/j.ejps.2017.02.037] [PMID: 28259830]
[12]
Yoshida, T.; Gong, J.; Xu, Z.; Wei, Y.; Duh, E.J. Inhibition of pathological retinal angiogenesis by the integrin αvβ3 antagonist tetraiodothyroacetic acid (tetrac). Exp. Eye Res., 2012, 94(1), 41-48.
[http://dx.doi.org/10.1016/j.exer.2011.11.003] [PMID: 22123068]
[13]
Park, K.; Chen, Y.; Hu, Y.; Mayo, A.S.; Kompella, U.B.; Longeras, R.; Ma, J.X. Nanoparticle-mediated expression of an angiogenic inhibitor ameliorates ischemia-induced retinal neovascularization and diabetes-induced retinal vascular leakage. Diabetes, 2009, 58(8), 1902-1913.
[http://dx.doi.org/10.2337/db08-1327] [PMID: 19491211]
[14]
Crooke, S.T. Vitravene-another piece in the mosaic. Antisense Nucleic Acid Drug Dev., 1998, 8(4), vii-viii.
[http://dx.doi.org/10.1089/oli.1.1998.8.vii] [PMID: 9743463]
[15]
Rayburn, E.R.; Zhang, R. Antisense, RNAi, and gene silencing strategies for therapy: mission possible or impossible? Drug Discov. Today, 2008, 13(11-12), 513-521.
[http://dx.doi.org/10.1016/j.drudis.2008.03.014] [PMID: 18549978]
[16]
Marano, R.J.; Toth, I.; Wimmer, N.; Brankov, M.; Rakoczy, P.E. Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity. Gene Ther., 2005, 12(21), 1544-1550.
[http://dx.doi.org/10.1038/sj.gt.3302579] [PMID: 16034458]
[17]
Bhavsar, M.D.; Amiji, M.M. Gastrointestinal distribution and in vivo gene transfection studies with nanoparticles-in-microsphere oral system (NiMOS). J. Control. Release, 2007, 119(3), 339-348.
[http://dx.doi.org/10.1016/j.jconrel.2007.03.006] [PMID: 17475358]
[18]
Bhavsar, M.D.; Amiji, M.M. Oral IL-10 gene delivery in a microsphere-based formulation for local transfection and therapeutic efficacy in inflammatory bowel disease. Gene Ther., 2008, 15(17), 1200-1209.
[http://dx.doi.org/10.1038/gt.2008.67] [PMID: 18418416]
[19]
Bhavsar, M.D.; Tiwari, S.B.; Amiji, M.M. Formulation optimization for the nanoparticles-in-microsphere hybrid oral delivery system using factorial design. J. Control. Release, 2006, 110(2), 422-430.
[http://dx.doi.org/10.1016/j.jconrel.2005.11.001] [PMID: 16338017]
[20]
Kriegel, C.; Amiji, M.M. Dual TNF-α/Cyclin D1 gene silencing with an oral polymeric microparticle system as a novel strategy for the treatment of inflammatory bowel disease. Clin. Transl. Gastroenterol, 2011, 2(3), 2e2.
[http://dx.doi.org/10.1038/ctg.2011.1] [PMID: 23237848]
[21]
Lee, Y.S.; Johnson, P.J.; Robbins, P.T.; Bridson, R.H. Production of nanoparticles-in-microparticles by a double emulsion method: a comprehensive study. Eur. J. Pharm. Biopharm., 2013, 83(2), 168-173.
[http://dx.doi.org/10.1016/j.ejpb.2012.10.016] [PMID: 23153669]
[22]
Chen, Z.; Liu, D.; Wang, J.; Wu, L.; Li, W.; Chen, J.; Cai, B.C.; Cheng, H. Development of nanoparticles-in-microparticles system for improved local retention after intra-articular injection. Drug Deliv., 2014, 21(5), 342-350.
[http://dx.doi.org/10.3109/10717544.2013.848495] [PMID: 24215110]
[23]
Farris, E.; Brown, D.M.; Ramer-Tait, A.E.; Pannier, A.K. Chitosan-zein nano-in-microparticles capable of mediating in vivo transgene expression following oral delivery. J. Control. Release, 2017, 249, 150-161.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.035] [PMID: 28153762]
[24]
Khan, I.U.; Serra, C.A.; Anton, N.; Er-Rafik, M.; Blanck, C.; Schmutz, M.; Kraus, I.; Messaddeq, N.; Sutter, C.; Anton, H.; Klymchenko, A.S.; Vandamme, T.F. Microfluidic conceived trojan microcarriers for oral delivery of nanoparticles. Int. J. Pharm., 2015, 493(1-2), 7-15.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.028] [PMID: 26116014]
[25]
Guo, X.; Xia, T.; Wang, H.; Chen, F.; Cheng, R.; Luo, X.; Li, X. Electrosprayed microparticles with loaded pDNA-calcium phosphate nanoparticles to promote the regeneration of mature blood vessels. Pharm. Res., 2014, 31(4), 874-886.
[http://dx.doi.org/10.1007/s11095-013-1209-y] [PMID: 24065597]
[26]
Elbaz, N.M.; Khalil, I.A.; Abd-Rabou, A.A.; El-Sherbiny, I.M. Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. Int. J. Biol. Macromol., 2016, 92, 254-269.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.024] [PMID: 27397719]
[27]
Ozeki, T.; Akiyama, Y.; Takahashi, N.; Tagami, T.; Tanaka, T.; Fujii, M.; Okada, H. Development of a novel and customizable two-solution mixing type spray nozzle for one-step preparation of nanoparticle-containing microparticles. Biol. Pharm. Bull., 2012, 35(11), 1926-1931.
[http://dx.doi.org/10.1248/bpb.b12-00273] [PMID: 23123464]
[28]
Deng, Y.; Mathaes, R.; Winter, G.; Engert, J. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection. Eur. J. Pharm. Sci., 2014, 63, 154-166.
[http://dx.doi.org/10.1016/j.ejps.2014.07.004] [PMID: 25042055]
[29]
Tewes, F.; Ehrhardt, C.; Healy, A.M. Superparamagnetic iron oxide nanoparticles (SPIONs)-loaded Trojan microparticles for targeted aerosol delivery to the lung. Eur. J. Pharm. Biopharm., 2014, 86(1), 98-104.
[http://dx.doi.org/10.1016/j.ejpb.2013.09.004] [PMID: 24055690]
[30]
Bakhtiary, Z.; Barar, J.; Aghanejad, A.; Saei, A.A.; Nemati, E.; Ezzati Nazhad Dolatabadi, J.; Omidi, Y. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev. Ind. Pharm., 2017, 43(8), 1244-1253.
[http://dx.doi.org/10.1080/03639045.2017.1310223] [PMID: 28323493]
[31]
Schulze, J.; Kuhn, S.; Hendrikx, S.; Schulz-Siegmund, M.; Polte, T.; Aigner, A. Spray-dried nanoparticle-in-microparticle delivery systems (NiMDS) for gene delivery, comprising polyethylenimine (PEI)-based nanoparticles in a poly(vinyl alcohol) matrix. Small, 2018, 14(12)e1701810
[32]
Pinkerton, N.M.; Zhang, S.W.; Youngblood, R.L.; Gao, D.; Li, S.; Benson, B.R.; Anthony, J.; Stone, H.A.; Sinko, P.J.; Prud’homme, R.K. Gelation chemistries for the encapsulation of nanoparticles in composite gel microparticles for lung imaging and drug delivery. Biomacromolecules, 2014, 15(1), 252-261.
[http://dx.doi.org/10.1021/bm4015232] [PMID: 24410445]
[33]
Garrait, G.; Beyssac, E.; Subirade, M. Development of a novel drug delivery system: chitosan nanoparticles entrapped in alginate microparticles. J. Microencapsul., 2014, 31(4), 363-372.
[http://dx.doi.org/10.3109/02652048.2013.858792] [PMID: 24697173]
[34]
Gómez-Gaete, C.; Fattal, E.; Silva, L.; Besnard, M.; Tsapis, N. Dexamethasone acetate encapsulation into Trojan particles. J. Control. Release, 2008, 128(1), 41-49.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.008] [PMID: 18374442]
[35]
Algvere, P.; Bill, A. Drainage of microspheres and RBCs from the vitreous of aphakic and phakic eyes. Archives of ophthalmology,, 1979, 97(7), 1333-1336.
[http://dx.doi.org/10.1001/archopht.1979.01020020075018] [PMID: 454274]
[36]
Martens, T.F.; Vercauteren, D.; Forier, K.; Deschout, H.; Remaut, K.; Paesen, R.; Ameloot, M.; Engbersen, J.F.; Demeester, J.; De Smedt, S.C.; Braeckmans, K. Measuring the intravitreal mobility of nanomedicines with single-particle tracking microscopy. Nanomedicine (Lond.), 2013, 8(12), 1955-1968.
[http://dx.doi.org/10.2217/nnm.12.202] [PMID: 23438206]
[37]
Koo, H.; Moon, H.; Han, H.; Na, J.H.; Huh, M.S.; Park, J.H.; Woo, S.J.; Park, K.H.; Kwon, I.C.; Kim, K.; Kim, H. The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials, 2012, 33(12), 3485-3493.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.030] [PMID: 22322197]
[38]
Prow, T.W. Toxicity of nanomaterials to the eye. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2(4), 317-333.
[http://dx.doi.org/10.1002/wnan.65] [PMID: 20077524]
[39]
Amrite, A.C.; Kompella, U.B. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J. Pharm. Pharmacol., 2005, 57(12), 1555-1563.
[http://dx.doi.org/10.1211/jpp.57.12.0005] [PMID: 16354399]
[40]
Sherif, Z.; Pleyer, U. Corticosteroids in ophthalmology: past-present-future. Ophthalmologica, 2002, 216(5), 305-315.
[http://dx.doi.org/10.1159/000066189] [PMID: 12424394]
[41]
Yandrapu, S.K.; Upadhyay, A.K.; Petrash, J.M.; Kompella, U.B. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab. Mol. Pharm., 2013, 10(12), 4676-4686.
[http://dx.doi.org/10.1021/mp400487f] [PMID: 24131101]
[42]
Elsaid, N.; Jackson, T.L.; Elsaid, Z.; Alqathama, A.; Somavarapu, S. PLGA Microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab. Mol. Pharm., 2016, 13(9), 2923-2940.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00335] [PMID: 27286558]
[43]
Messina, M.; Dua, H.S. Early results on the use of chitosan-N-acetylcysteine (Lacrimera(R)) in the management of dry eye disease of varied etiology. Int. Ophthalmol., 2019, 39(3), 693-696.
[http://dx.doi.org/10.1007/s10792-018-0843-0] [PMID: 29549486]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy