Abstract
Pancreatic cancer is a highly malignant tumor with a 5-year survival rate of less than 6%, and incidence increasing year by year globally. Pancreatic cancer has a poor prognosis and a high recurrence rate, almost the same as the death rate. However, the available effective prevention and treatment measures for pancreatic cancer are still limited. The genome variation is one of the main reasons for the development of pancreatic cancer. In recent years, with the development of gene sequencing technology, in-depth research on pancreatic cancer gene mutation presents that a growing number of genetic mutations are confirmed to be in a close relationship with invasion and metastasis of pancreatic cancer. Among them, KRAS mutation is a special one. Therefore, it is particularly important to understand the mechanism of the KRAS mutation in the occurrence and development of pancreatic cancer, and to explore the method of its transformation into clinical tumor molecular targeted treatment sites, to further improve the therapeutic effect on pancreatic cancer. Therefore, to better design chemical drugs, this review based on the biological functions of KRAS, summarized the types of KRAS mutations and their relationship with pancreatic cancer and included the downstream signaling pathway Raf-MEK-ERK, PI3K-AKT, RalGDS-Ral of KRAS and the current medicinal treatment methods for KRAS mutations. Moreover, drug screening and clinical treatment for KRAS mutated cell and animal models of pancreatic cancer are also reviewed along with the prospect of targeted medicinal chemistry therapy for precision treatment of pancreatic cancer in the future.
Keywords: Pancreatic cancer, Drug screening, KRAS mutations, Chemistry drugs, Precision treatment, Malignant tumor.
Graphical Abstract
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0155] [PMID: 24840647]
[http://dx.doi.org/10.3322/canjclin.55.6.352] [PMID: 16282280]
(b) O’Reilly, E.M.; Abou-Alfa, G.K.; Shamseddine, A.; Skouri, H.; Tawil, A.; Eloubeidi, M.A.; Lowery, M.; Kharfan-Dabaja, M.; Kaprealian, T.; Temraz, S.; Sibai, H.; Farran, H.; Shah, M.A. Gastrointestinal cancer educational case series: management of metastatic adenocarcinoma of unknown primary origin in a Ph+ ALL survivor. J. Gastrointest. Cancer, 2011, 42(3), 165-170.
[PMID: 21128012]
[http://dx.doi.org/10.1038/nature14169] [PMID: 25719666]
(b) Yachida, S.; White, C.M.; Naito, Y.; Zhong, Y.; Brosnan, J.A.; Macgregor-Das, A.M.; Morgan, R.A.; Saunders, T.; Laheru, D.A.; Herman, J.M.; Hruban, R.H.; Klein, A.P.; Jones, S.; Velculescu, V.; Wolfgang, C.L.; Iacobuzio-Donahue, C.A. Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clin. Cancer Res., 2012, 18(22), 6339-6347.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1215] [PMID: 22991414]
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2994] [PMID: 29288237]
[http://dx.doi.org/10.1111/cge.12536] [PMID: 25388820]
(b) Hosoda, W.; Chianchiano, P.; Griffin, J.F.; Pittman, M.E.; Brosens, L.A.; Noe, M.; Yu, J.; Shindo, K.; Suenaga, M.; Rezaee, N.; Yonescu, R.; Ning, Y.; Albores-Saavedra, J.; Yoshizawa, N.; Harada, K.; Yoshizawa, A.; Hanada, K.; Yonehara, S.; Shimizu, M.; Uehara, T.; Samra, J.S.; Gill, A.J.; Wolfgang, C.L.; Goggins, M.G.; Hruban, R.H.; Wood, L.D. Genetic analyses of isolated high-grade pancreatic intraepithelial neoplasia (HG-PanIN) reveal paucity of alterations in TP53 and SMAD4. J. Pathol., 2017, 242(1), 16-23.
[PMID: 28188630]
[http://dx.doi.org/10.1053/j.gastro.2013.01.071] [PMID: 23622131]
(b) Gold, D.V.; Lew, K.; Maliniak, R.; Hernandez, M.; Cardillo, T. Characterization of monoclonal antibody PAM4 reactive with a pancreatic cancer mucin. Int. J. Cancer, 1994, 57(2), 204-210.
[PMID: 7512537]
(b) Calixto, G.M.; Bernegossi, J.; de Freitas, L.M.; Fontana, C.R.; Chorilli, M. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules, 2016, 21(3), 342.
(c) Fischer, A.; Wu, S.; Ho, A.L.; Lacouture, M.E. The risk of hand-foot skin reaction to axitinib, a novel VEGF inhibitor: a systematic review of literature and meta-analysis. Invest. New Drugs, 2013, 31(3), 787-797.
(d) Majhi, M.; Ali, M.A.; Limaye, A.; Sinha, K.; Bairagi, P.; Chouksey, M.; Shukla, R.; Kanwar, N.; Hussain, T.; Nayarisseri, A.; Singh, S.K. An In Silico Investigation of Potential EGFR Inhibitors for the Clinical Treatment of Colorectal Cancer. Curr. Top. Med. Chem., 2018, 18(27), 2355-2366.
(e) Zhong, H.; Bowen, J.P. Recent advances in small molecule inhibitors of VEGFR and EGFR signaling pathways. Curr. Top. Med. Chem., 2011, 11(12), 1571-1590.
[PMID: 21510831]
[http://dx.doi.org/10.1080/21691401.2019.1604535] [PMID: 31066300]
[http://dx.doi.org/10.1016/S1470-2045(12)70291-7] [PMID: 23026827]
[http://dx.doi.org/10.1126/science.6695174] [PMID: 6695174]
[http://dx.doi.org/10.1073/pnas.1412811112] [PMID: 25561545]
[http://dx.doi.org/10.1016/j.phrs.2018.10.021] [PMID: 30366101]
(b) Ritt, D.A.; Abreu-Blanco, M.T.; Bindu, L.; Durrant, D.E.; Zhou, M.; Specht, S.I.; Stephen, A.G.; Holderfield, M.; Morrison, D.K. Inhibition of Ras/Raf/MEK/ERK pathway signaling by a stress-induced phospho-regulatory circuit. Mol. Cell, 2016, 64(5), 875-887.
(c) Roskoski, R., Jr Targeting oncogenic Raf protein-serine/threonine kinases in human cancers. Pharmacol. Res., 2018, 135, 239-258.
(d) Wallace, E.M.; Lyssikatos, J.P.; Yeh, T.; Winkler, J.D.; Koch, K. Progress towards therapeutic small molecule MEK inhibitors for use in cancer therapy. Curr. Top. Med. Chem., 2005, 5(2), 215-229.
(e) Wang, J.Y.; Wilcoxen, K.M.; Nomoto, K.; Wu, S. Recent advances of MEK inhibitors and their clinical progress. Curr. Top. Med. Chem., 2007, 7(14), 1364-1378.
[PMID: 17692026]
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2848] [PMID: 15930308]
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3752] [PMID: 17332339]
[http://dx.doi.org/10.1158/2159-8290.CD-11-0347] [PMID: 22628411]
(b) Gasparri, M.L.; Besharat, Z.M.; Farooqi, A.A.; Khalid, S.; Taghavi, K.; Besharat, R.A.; Sabato, C.; Papadia, A.; Panici, P.B.; Mueller, M.D.; Ferretti, E. MiRNAs and their interplay with PI3K/AKT/mTOR pathway in ovarian cancer cells: a potential role in platinum resistance. J. Cancer Res. Clin. Oncol., 2018, 144(12), 2313-2318.
[PMID: 30109500]
[http://dx.doi.org/10.1097/JTO.0b013e31825493eb] [PMID: 22648207]
(b) Sabbah, D.A.; Hu, J.; Zhong, H.A. Advances in the Development of Class I Phosphoinositide 3-Kinase (PI3K) Inhibitors. Curr. Top. Med. Chem., 2016, 16(13), 1413-1426.
[PMID: 26369826]
[http://dx.doi.org/10.1016/j.ccr.2013.01.023] [PMID: 23453624]
[http://dx.doi.org/10.3892/or.2016.4820] [PMID: 27220401]
[http://dx.doi.org/10.1016/j.prp.2019.04.008] [PMID: 31047726]
[http://dx.doi.org/10.2142/biophysico.14.0_75] [PMID: 28744424]
[http://dx.doi.org/10.1016/j.yexcr.2013.06.020] [PMID: 23830877]
[http://dx.doi.org/10.1097/JTO.0000000000000007] [PMID: 24389431]
[http://dx.doi.org/10.1016/j.ccr.2005.04.030] [PMID: 15950903]
(b) Shepherd, F.A.; Lacas, B.; Le Teuff, G.; Hainaut, P.; Janne, P.A.; Pignon, J.P.; Le Chevalier, T.; Seymour, L.; Douillard, J.Y.; Graziano, S.; Brambilla, E.; Pirker, R.; Filipits, M.; Kratzke, R.; Soria, J.C.; Tsao, M.S. Group, L.A.-B.C., Pooled analysis of the prognostic and predictive effects of tp53 comutation status combined with KRAS or EGFR mutation in early-stage resected non-small-cell lung cancer in four trials of adjuvant chemotherapy. J. Clin. Oncol., 2017, 35(18), 2018-2027.
(c) Tomasini, P.; Walia, P.; Labbe, C.; Jao, K.; Leighl, N.B. Targeting the KRAS pathway in non-small cell lung cancer. Oncologist, 2016, 21(12), 1450-1460.
[PMID: 27807303]
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0646] [PMID: 18794081]
[PMID: 19787214]
[http://dx.doi.org/10.1093/jnci/djr523] [PMID: 22247021]
[http://dx.doi.org/10.1016/j.lungcan.2014.08.013] [PMID: 25224251]
[http://dx.doi.org/10.1016/j.ejca.2015.11.012] [PMID: 26735353]
[http://dx.doi.org/10.1038/onc.2012.619] [PMID: 23334325]
(b) Notta, F.; Chan-Seng-Yue, M.; Lemire, M.; Li, Y.; Wilson, G.W.; Connor, A.A.; Denroche, R.E.; Liang, S.B.; Brown, A.M.; Kim, J.C.; Wang, T.; Simpson, J.T.; Beck, T.; Borgida, A.; Buchner, N.; Chadwick, D.; Hafezi-Bakhtiari, S.; Dick, J.E.; Heisler, L.; Hollingsworth, M.A.; Ibrahimov, E.; Jang, G.H.; Johns, J.; Jorgensen, L.G.; Law, C.; Ludkovski, O.; Lungu, I.; Ng, K.; Pasternack, D.; Petersen, G.M.; Shlush, L.I.; Timms, L.; Tsao, M.S.; Wilson, J.M.; Yung, C.K.; Zogopoulos, G.; Bartlett, J.M.; Alexandrov, L.B.; Real, F.X.; Cleary, S.P.; Roehrl, M.H.; McPherson, J.D.; Stein, L.D.; Hudson, T.J.; Campbell, P.J.; Gallinger, S. Erratum: A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature, 2017, 542(7639), 124.
[http://dx.doi.org/10.1038/nature20164] [PMID: 27851734]
[http://dx.doi.org/10.2174/138920211794520132] [PMID: 21886451]
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0227] [PMID: 19584151]
[http://dx.doi.org/10.21037/jgo.2017.10.14] [PMID: 29564165]
[http://dx.doi.org/10.1016/j.ejso.2010.05.014] [PMID: 20542658]
[http://dx.doi.org/10.1038/bjc.2014.123] [PMID: 24667644]
(b) Oshima, K.; Khiabanian, H.; da Silva-Almeida, A.C.; Tzoneva, G.; Abate, F.; Ambesi-Impiombato, A.; Sanchez-Martin, M.; Carpenter, Z.; Penson, A.; Perez-Garcia, A.; Eckert, C.; Nicolas, C.; Balbin, M.; Sulis, M.L.; Kato, M.; Koh, K.; Paganin, M.; Basso, G.; Gastier-Foster, J.M.; Devidas, M.; Loh, M.L.; Kirschner-Schwabe, R.; Palomero, T.; Rabadan, R.; Ferrando, A.A. Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA, 2016, 113(40), 11306-11311.
[PMID: 27655895]
[http://dx.doi.org/10.1016/j.cell.2014.09.014] [PMID: 25263330]
[http://dx.doi.org/10.3390/cancers9050042] [PMID: 28452926]
[http://dx.doi.org/10.1200/JCO.2017.77.6658] [PMID: 30106639]
(b) Batra, H.; Pawar, S.; Bahl, D. Curcumin in combination with anti-cancer drugs: A nanomedicine review. Pharmacol. Res., 2019, 139, 91-105.
[http://dx.doi.org/10.1016/j.phrs.2018.08.023] [PMID: 30170190]
[http://dx.doi.org/10.1016/j.phrs.2018.11.014] [PMID: 30500458]
[http://dx.doi.org/10.1371/journal.pone.0103551] [PMID: 25090459]
[http://dx.doi.org/10.1016/j.phrs.2013.08.002] [PMID: 23969284]
(b) Roskoski, R., Jr Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol. Res., 2017, 120, 116-132.
[http://dx.doi.org/10.1007/s00109-016-1382-7] [PMID: 26960760]
[http://dx.doi.org/10.1038/nrc.2017.79] [PMID: 28984291]
[http://dx.doi.org/10.1016/j.bcp.2014.12.003] [PMID: 25529535]
[http://dx.doi.org/10.1016/j.ccell.2015.08.002] [PMID: 26343583]
(b) Cao, J.; Zhang, X.; Wang, Q.; Qiu, G.; Hou, C.; Wang, J.; Cheng, Q.; Lan, Y.; Han, H.; Shen, H.; Zhang, Y.; Yang, X.; Shen, B.; Zhang, J. Smad4 represses the generation of memory-precursor effector T cells but is required for the differentiation of central memory T cells. Cell Death Dis., 2015, 6e1984
[http://dx.doi.org/10.1038/cddis.2011.116] [PMID: 22130069]
[http://dx.doi.org/10.1038/s41419-017-0205-2] [PMID: 29396446]
[http://dx.doi.org/10.1038/cddis.2016.293] [PMID: 27685626]
[http://dx.doi.org/10.1080/15384047.2018.1504718] [PMID: 30261145]
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1386] [PMID: 31296553]
[http://dx.doi.org/10.3748/wjg.v20.i31.10740] [PMID: 25152577]