Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Are Viruses and Parasites Linked to Celiac Disease? A Question that Still has no Definite Answer

Author(s): Aref Shariati, Hamid R. Aslani, Mohammad R.H. Shayesteh, Ali Taghipour, Ahmad Nasser, Hossein Safari, Mahmood Alizade-Sani, Amin Dehghan and Taher Azimi*

Volume 20, Issue 14, 2019

Page: [1181 - 1193] Pages: 13

DOI: 10.2174/1389201020666190828124924

Price: $65

Abstract

Celiac Disease (CD) is a complex autoimmune enteropathy of the small intestine that commonly occurs in genetically predisposed individuals due to intake of gluten and related proteins. Gluten consumption, duration of breast-feeding, various infections, especially frequent intestinal infections, vaccinations and use of antibiotics can be linked to CD. It is predicted that it affects 1% of the global population and its incidence rate is increasing. Most of the people with the HLA-DQ2 or HLADQ8 are at a higher risk of developing this disease. The link between infections and autoimmune diseases has been very much considered in recent years. In several studies, we explained that pathogenic and non-pathogenic microorganisms might have multiple roles in initiation, exacerbation, and development of Irritable Bowel Syndrome (IBS) and Inflammatory Bowel Disease (IBD). In various studies, the relationship between infections caused by viruses, such as Epstein-Barr Virus (EBV), Rotavirus, Hepatitis C (HCV), Hepatitis B virus (HBV), Cytomegalovirus (CMV), and Influenza virus, and parasites including Giardia spp. and Toxoplasma gondii with CD has been raised. However, increasing evidence proposes that some of these microorganisms, especially helminths, can also have protective and even therapeutic roles in the CD process. Therefore, in order to determine the role of microorganisms in the process of this disease, we attempted to summarize the evidence suggesting the role of viral and parasitic agents in pathogenesis of CD.

Keywords: Celiac disease, gluten, viral infection, parasites, intestinal infection, Irritable Bowel Syndrome (IBS).

Graphical Abstract

[1]
Ercolini, A.M.; Miller, S.D. The role of infections in autoimmune disease. Clin. Exp. Immunol., 2009, 155(1), 1-5.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03834.x] [PMID: 19076824]
[2]
Pormohammad, A.; Azimi, T.; Falah, F.; Faghihloo, E. Relationship of human herpes virus 6 and multiple sclerosis: A systematic review and meta-analysis. J. Cell. Physiol., 2018, 233(4), 2850-2862.
[http://dx.doi.org/10.1002/jcp.26000] [PMID: 28631829]
[3]
Azimi, T.; Nasiri, M.J.; Zamani, S.; Hashemi, A.; Goudarzi, H.; Fooladi, A.A.I.; Feizabadi, M.M.; Fallah, F. High genetic diversity among Mycobacterium tuberculosis strains in Tehran, Iran. J. Clin. Tuberc. Other Mycobact. Dis., 2018, 11, 1-6.
[http://dx.doi.org/10.1016/j.jctube.2018.01.001]
[4]
Nasser, A.; Jazireian, P.; Safari, H.; Alizade-Sani, M.; Pourmand, M.R.; Azimi, T. Staphylococcus aureus versus neutrophil: Scrutiny of ancient combat. Microb. Pathog., 2019, 131, 259-269.
[5]
Nasiri, M.J.; Heidary, M.; Azimi, T.; Goudarzi, H.; Tabarsi, P.; Sarokhalil, D.D.; Feizabadi, M.M. Mycobacterium simiae pulmonary disease in Iran: A systematic review and meta-analysis. New Microbes New Infect., 2018, 22(26), 118-123.
[http://dx.doi.org/10.1016/j.nmni.2018.09.008]
[6]
Purmohamad, A.; Abasi, E.; Azimi, T.; Hosseini, S.; Safari, H.; Nasiri, M.J.; Imani Fooladi, A.A. Global estimate of Neisseria meningitidis serogroups proportion in invasive meningococcal disease: A systematic review and meta-analysis. Microb. Pathog., 2019.134103571
[http://dx.doi.org/10.1016/j.micpath.2019.103571] [PMID: 31163252]
[7]
Plot, L.; Amital, H. Infectious associations of Celiac disease. Autoimmun. Rev., 2009, 8(4), 316-319.
[http://dx.doi.org/10.1016/j.autrev.2008.10.001] [PMID: 18973831]
[8]
Girschick, H.J.; Guilherme, L.; Inman, R.D.; Latsch, K.; Rihl, M.; Sherer, Y.; Shoenfeld, Y.; Zeidler, H.; Arienti, S.; Doria, A. Bacterial triggers and autoimmune rheumatic diseases. Clin. Exp. Rheumatol., 2008, 26(1)(Suppl. 48), S12-S17.
[PMID: 18570749]
[9]
Azimi, T.; Shariati, A.; Fallah, F.; Fooladi, A.A.I.; Hashemi, A.; Goudarzi, H.; Nasiri, M.J. Mycobacterium tuberculosis Genotyping using MIRU-VNTR typing. Majallah-i Danishgah-i Ulum-i Pizishki-i Mazandaran, 2017, 27(149), 40-48.
[10]
Sharahi, J.Y.; Azimi, T.; Shariati, A.; Safari, H.; Tehrani, M.K.; Hashemi, A. Advanced strategies for combating bacterial biofilms. J. Cell. Physiol., 2019, 234(9), 14689-14708.
[11]
Papadopoulos, G.K.; Wijmenga, C.; Koning, F. Interplay between genetics and the environment in the development of celiac disease: Perspectives for a healthy life. J. Clin. Invest., 2001, 108(9), 1261-1266.
[http://dx.doi.org/10.1172/JCI14344] [PMID: 11696566]
[12]
Shariati, A.; Fallah, F.; Pormohammad, A.; Taghipour, A.; Safari, H.; Chirani, A.S.; Sabour, S.; Alizadeh-Sani, M.; Azimi, T. The possible role of bacteria, viruses, and parasites in initiation and exacerbation of irritable bowel syndrome. J. Cell. Physiol., 2019, 234(6), 8550-8569.
[http://dx.doi.org/10.1002/jcp.27828] [PMID: 30480810]
[13]
Cataldo, F.; Montalto, G. Celiac disease in the developing countries: A new and challenging public health problem. World J. Gastroenterol., 2007, 13(15), 2153-2159.
[http://dx.doi.org/10.3748/wjg.v13.i15.2153] [PMID: 17465493]
[14]
Gujral, N.; Freeman, H.J.; Thomson, A.B. Celiac disease: Prevalence, diagnosis, pathogenesis and treatment. World J. Gastroenterol., 2012, 18(42), 6036-6059.
[http://dx.doi.org/10.3748/wjg.v18.i42.6036] [PMID: 23155333]
[15]
Setty, M.; Hormaza, L.; Guandalini, S. Celiac disease: Risk assessment, diagnosis, and monitoring. Mol. Diagn. Ther., 2008, 12(5), 289-298.
[http://dx.doi.org/10.1007/BF03256294] [PMID: 18803427]
[16]
Poddighe, D.; Rakhimzhanova, M.; Marchenko, Y.; Catassi, C. Pediatric celiac disease in central and east Asia: Current knowledge and prevalence. Medicine , 2019, 55(1), 11.
[http://dx.doi.org/10.3390/medicina55010011] [PMID: 30642036]
[17]
Mårild, K.; Størdal, K.; Hagman, A.; Ludvigsson, J.F. Turner syndrome and celiac disease: A case-control study. Pediatrics, 2016, 137(2)e20152232
[http://dx.doi.org/10.1542/peds.2015-2232] [PMID: 26746404]
[18]
Bonamico, M.; Pasquino, A.M.; Mariani, P.; Danesi, H.M.; Culasso, F.; Mazzanti, L.; Petri, A.; Bona, G.; Hepatology, I.S.O.P.G.; Syndrome, I.S.G.T. Italian Society of Pediatric Gastroenterology Hepatology (SIGEP) Italian Study Group for Turner Syndrom (ISGTS). Prevalence and clinical picture of celiac disease in Turner syndrome. J. Clin. Endocrinol. Metab., 2002, 87(12), 5495-5498.
[http://dx.doi.org/10.1210/jc.2002-020855] [PMID: 12466343]
[19]
Volta, U.; Tovoli, F.; Caio, G. Clinical and immunological features of celiac disease in patients with Type 1 diabetes mellitus. Expert Rev. Gastroenterol. Hepatol., 2011, 5(4), 479-487.
[http://dx.doi.org/10.1586/egh.11.38] [PMID: 21780895]
[20]
Wouters, J.; Weijerman, M.E.; van Furth, A.M.; Schreurs, M.W.; Crusius, J.B.A.; von Blomberg, B.M.E.; de Baaij, L.R.; Broers, C.J.; Gemke, R.J. Prospective human leukocyte antigen, endomysium immunoglobulin A antibodies, and transglutaminase antibodies testing for celiac disease in children with Down syndrome. J. Pediatr., 2009, 154(2), 239-242.
[http://dx.doi.org/10.1016/j.jpeds.2008.08.007] [PMID: 18822429]
[21]
Dørum, S.; Arntzen, M.Ø.; Qiao, S-W.; Holm, A.; Koehler, C.J.; Thiede, B.; Sollid, L.M.; Fleckenstein, B. The preferred substrates for transglutaminase 2 in a complex wheat gluten digest are Peptide fragments harboring celiac disease T-cell epitopes. PLoS One, 2010, 5(11)e14056
[http://dx.doi.org/10.1371/journal.pone.0014056] [PMID: 21124911]
[22]
Sollid, L.M.; Jabri, B. Celiac disease and transglutaminase 2: a model for posttranslational modification of antigens and HLA association in the pathogenesis of autoimmune disorders. Curr. Opin. Immunol., 2011, 23(6), 732-738.
[http://dx.doi.org/10.1016/j.coi.2011.08.006] [PMID: 21917438]
[23]
Rubio-Tapia, A.; Van Dyke, C.T.; Lahr, B.D.; Zinsmeister, A.R.; El-Youssef, M.; Moore, S.B.; Bowman, M.; Burgart, L.J.; Melton, L.J., III; Murray, J.A. Predictors of family risk for celiac disease: A population-based study. Clin. Gastroenterol. Hepatol., 2008, 6(9), 983-987.
[http://dx.doi.org/10.1016/j.cgh.2008.04.008] [PMID: 18585974]
[24]
Karell, K.; Louka, A.S.; Moodie, S.J.; Ascher, H.; Clot, F.; Greco, L.; Ciclitira, P.J.; Sollid, L.M.; Partanen, J. European genetics cluster on celiac disease. HLA types in celiac disease patients not carrying the DQA1*05-DQB1*02 (DQ2) heterodimer: Results from the European Genetics Cluster on Celiac Disease. Hum. Immunol., 2003, 64(4), 469-477.
[http://dx.doi.org/10.1016/S0198-8859(03)00027-2]
[25]
Barakauskas, V.E.; Lam, G.Y.; Estey, M.P. Digesting all the options: Laboratory testing for celiac disease. Crit. Rev. Clin. Lab. Sci., 2014, 51(6), 358-378.
[http://dx.doi.org/10.3109/10408363.2014.958813] [PMID: 25244521]
[26]
Kemppainen, K.M.; Lynch, K.F.; Liu, E.; Lönnrot, M.; Simell, V.; Briese, T.; Koletzko, S.; Hagopian, W.; Rewers, M.; She, J-X. Factors that increase risk of celiac disease autoimmunity after a gastrointestinal infection in early life. Clin. Gastroenterol. Hepatol., 2017, 15(5), 694-702.
[http://dx.doi.org/10.1016/j.cgh.2016.10.033]
[27]
Lohi, S.; Mustalahti, K.; Kaukinen, K.; Laurila, K.; Collin, P.; Rissanen, H.; Lohi, O.; Bravi, E.; Gasparin, M.; Reunanen, A.; Mäki, M. Increasing prevalence of coeliac disease over time. Aliment. Pharmacol. Ther., 2007, 26(9), 1217-1225.
[http://dx.doi.org/10.1111/j.1365-2036.2007.03502.x] [PMID: 17944736]
[28]
Barker, J.M.; Liu, E. Celiac disease: Pathophysiology, clinical manifestations, and associated autoimmune conditions. Adv. Pediatr., 2008, 55(1), 349-365.
[http://dx.doi.org/10.1016/j.yapd.2008.07.001] [PMID: 19048738]
[29]
Lionetti, E.; Catassi, C. New clues in celiac disease epidemiology, pathogenesis, clinical manifestations, and treatment. Int. Rev. Immunol., 2011, 30(4), 219-231.
[http://dx.doi.org/10.3109/08830185.2011.602443] [PMID: 21787227]
[30]
Husby, S.; Koletzko, S.; Korponay-Szabó, I.R.; Mearin, M.L.; Phillips, A.; Shamir, R.; Troncone, R.; Giersiepen, K.; Branski, D.; Catassi, C.; Lelgeman, M.; Mäki, M.; Ribes-Koninckx, C.; Ventura, A.; Zimmer, K.P. ESPGHAN Working Group on Coeliac Disease Diagnosis. ESPGHAN Gastroenterology Committee.European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J. Pediatr. Gastroenterol. Nutr., 2012, 54(1), 136-160.
[http://dx.doi.org/10.1097/MPG.0b013e31821a23d0] [PMID: 22197856]
[31]
Scanlon, S.A.; Murray, J.A. Update on celiac disease - etiology, differential diagnosis, drug targets, and management advances. Clin. Exp. Gastroenterol., 2011, 4, 297-311.
[PMID: 22235174]
[32]
Hahn, M.; Hagel, A.F.; Hirschmann, S.; Bechthold, C.; Konturek, P.; Neurath, M.; Raithel, M. Modern diagnosis of celiac disease and relevant differential diagnoses in the case of cereal intolerance. Allergo J. Int., 2014, 23(2), 67-77.
[http://dx.doi.org/10.1007/s40629-014-0006-4] [PMID: 26120517]
[33]
Azimi, T.; Nasiri, M.J.; Chirani, A.S.; Pouriran, R.; Dabiri, H. The role of bacteria in the inflammatory bowel disease development: A narrative review. APMIS, 2018, 126(4), 275-283.
[http://dx.doi.org/10.1111/apm.12814] [PMID: 29508438]
[34]
Rostami, K.; Kerckhaert, J.; Tiemessen, R.; von Blomberg, B.M.; Meijer, J.W.; Mulder, C.J. Sensitivity of antiendomysium and antigliadin antibodies in untreated celiac disease: Disappointing in clinical practice. Am. J. Gastroenterol., 1999, 94(4), 888-894.
[http://dx.doi.org/10.1111/j.1572-0241.1999.983_f.x] [PMID: 10201452]
[35]
Green, P.H.; Cellier, C. Celiac disease. N. Engl. J. Med., 2007, 357(17), 1731-1743.
[http://dx.doi.org/10.1056/NEJMra071600] [PMID: 17960014]
[36]
Diaconescu, I.; Alexandru, G.; Carpa, R.; Lupan, I.; Crisan, C.; Sur, L.; Sur, G.; Girbovan, A. Too few studies provided a link between viral infections and celiac disease. Int. J. Celiac Dis., 2016, 4, 135-137.
[37]
Makarova, S.; Boldyreva, M.; Lavrova, T.; Petrovskaya, M. Intestinal microbiocenosis, food tolerance and food allergy. current state of a problem. Voprosy Sovremennoj Pediatrii, 2014, 13(3), 21-29.
[http://dx.doi.org/10.15690/vsp.v13i3.1024]
[38]
Tannock, G.W.; Munro, K.; Harmsen, H.J.; Welling, G.W.; Smart, J.; Gopal, P.K. Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl. Environ. Microbiol., 2000, 66(6), 2578-2588.
[http://dx.doi.org/10.1128/AEM.66.6.2578-2588.2000] [PMID: 10831441]
[39]
Brown, J.J.; Jabri, B.; Dermody, T.S. A viral trigger for celiac disease. PLoS Pathog., 2018, 14(9)e1007181
[http://dx.doi.org/10.1371/journal.ppat.1007181] [PMID: 30235320]
[40]
Vatsiou, A.I.; Bazin, E.; Gaggiotti, O.E. Changes in selective pressures associated with human population expansion may explain metabolic and immune related pathways enriched for signatures of positive selection. BMC Genomics, 2016, 17(1), 504.
[http://dx.doi.org/10.1186/s12864-016-2783-2] [PMID: 27444955]
[41]
Christen, U.; von Herrath, M.G. Infections and autoimmunity--good or bad? J. Immunol., 2005, 174(12), 7481-7486.
[http://dx.doi.org/10.4049/jimmunol.174.12.7481] [PMID: 15944245]
[42]
Kagan, K.O.; Goelz, R.; Hamprecht, K. Cytomegalo virus infection in der Schwangerschaft. Gynakologe, 2016, 49(8), 582-591.
[http://dx.doi.org/10.1007/s00129-016-3923-0]
[43]
Britt, W. Controversies in the natural history of congenital human cytomegalovirus infection: The paradox of infection and disease in offspring of women with immunity prior to pregnancy. Med. Microbiol. Immunol. (Berl.), 2015, 204(3), 263-271.
[http://dx.doi.org/10.1007/s00430-015-0399-9] [PMID: 25764180]
[44]
Manicklal, S.; Emery, V.C.; Lazzarotto, T.; Boppana, S.B.; Gupta, R.K. The “silent” global burden of congenital cytomegalovirus. Clin. Microbiol. Rev., 2013, 26(1), 86-102.
[http://dx.doi.org/10.1128/CMR.00062-12] [PMID: 23297260]
[45]
Kagan, K.O.; Hamprecht, K. Cytomegalovirus infection in pregnancy. Arch. Gynecol. Obstet., 2017, 296(1), 15-26.
[http://dx.doi.org/10.1007/s00404-017-4380-2] [PMID: 28508343]
[46]
Dunne, M.R.; Elliott, L.; Hussey, S.; Mahmud, N.; Kelly, J.; Doherty, D.G.; Feighery, C.F. Persistent changes in circulating and intestinal γδ T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease. PLoS One, 2013, 8(10)e76008
[http://dx.doi.org/10.1371/journal.pone.0076008] [PMID: 24124528]
[47]
Jansen, M.A.E.; van den Heuvel, D.; Jaddoe, V.W.V.; van Zelm, M.C.; Moll, H.A. Abnormalities in CD57+ cytotoxic T cells and Vδ1+ γδT cells in subclinical celiac disease in childhood are affected by cytomegalovirus. The Generation R Study. Clin. Immunol., 2017, 183, 233-239.
[http://dx.doi.org/10.1016/j.clim.2017.04.008] [PMID: 28456719]
[48]
Oberhuber, G.; Vogelsang, H.; Stolte, M.; Muthenthaler, S.; Kummer, J.A.; Radaszkiewicz, T. Evidence that intestinal intraepithelial lymphocytes are activated cytotoxic T cells in celiac disease but not in giardiasis. Am. J. Pathol., 1996, 148(5), 1351-1357.
[PMID: 8623906]
[49]
Jansen, M.A.; Beth, S.A.; Van Den Heuvel, D.; Kiefte-de Jong, J.C.; Raat, H.; Jaddoe, V.W.; van Zelm, M.C.; Moll, H.A. Ethnic differences in coeliac disease autoimmunity in childhood: The Generation R Study. Arch. Dis. Child., 2017, 2016311343
[50]
Zheng, R.; Yang, Q. The role of the γδ T cell in allergic diseases. J. Immunol. Res.,, 2014, 2014
[51]
Plot, L.; Amital, H.; Barzilai, O.; Ram, M.; Bizzaro, N.; Shoenfeld, Y. Infections may have a protective role in the etiopathogenesis of celiac disease. Ann. N. Y. Acad. Sci., 2009, 1173(1), 670-674.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04814.x] [PMID: 19758214]
[52]
Izadi, F.; Rezaei Tavirani, M.; Honarkar, Z.; Rostami-Nejad, M. Celiac disease and hepatitis C relationships in transcriptional regulatory networks. Gastroenterol. Hepatol. Bed Bench, 2017, 10(4), 303-310.
[PMID: 29379596]
[53]
Thevenot, T.; Denis, J.; Jouannaud, V.; Monnet, E.; Renou, C.; Labadie, H.; Abdelli, N.; Nguyen-Khac, E.; Dumouchel, P.; Bresson-Hadni, S.; Chousterman, M.; DI Martino,, V.; Cadranel, J.F. . Coeliac disease in chronic hepatitis C: A French multicentre prospective study. Aliment. Pharmacol. Ther., 2007, 26(9), 1209-1216.
[http://dx.doi.org/10.1111/j.1365-2036.2007.03499.x] [PMID: 17944735]
[54]
Bardella, M.T.; Marino, R.; Meroni, P.L. Celiac disease during interferon treatment. Ann. Intern. Med., 1999, 131(2), 157-158.
[http://dx.doi.org/10.7326/0003-4819-131-2-199907200-00024] [PMID: 10419441]
[55]
Picarelli, A.; di Tola, M.; Sabbatella, L.; Mastracchio, A.; Trecca, A.; Gabrielli, F.; di Cello, T.; Anania, M.C.; Torsoli, A. Identification of a new coeliac disease subgroup: Antiendomysial and anti-transglutaminase antibodies of IgG class in the absence of selective IgA deficiency. J. Intern. Med., 2001, 249(2), 181-188.
[http://dx.doi.org/10.1046/j.1365-2796.2001.00793.x] [PMID: 11240848]
[56]
Chiang, B-L.; Yang, P-M.; Hwang, L-H.; Wang, J-M.; Kao, S-F.; Pan, C-H.; Chi, W-K.; Chen, P-J.; Chen, D-S. Establishment and characterization of NS3 protein-specific T-cell clones from a patient with chronic hepatitis C. J. Biomed. Sci., 1998, 5(4), 290-296.
[http://dx.doi.org/10.1007/BF02255861] [PMID: 9691222]
[57]
Davison, S. Coeliac disease and liver dysfunction. Arch. Dis. Child., 2002, 87(4), 293-296.
[http://dx.doi.org/10.1136/adc.87.4.293] [PMID: 12243999]
[58]
Peng, Y-C.; Hsieh, S-C.; Yang, D-Y.; Tung, C-F.; Hu, W-H.; Huang, W-N.; Chen, G-H. Expression and clinical significance of antinuclear antibody in hepatitis C virus infection. J. Clin. Gastroenterol., 2001, 33(5), 402-406.
[http://dx.doi.org/10.1097/00004836-200111000-00012] [PMID: 11606858]
[59]
Chrétien, P.; Chousterman, M.; Abd Alsamad, I.; Ozenne, V.; Rosa, I.; Barrault, C.; Lons, T.; Hagège, H. Non-organ-specific auto antibodies in chronic hepatitis C patients: Association with histological activity and fibrosis. J. Autoimmun., 2009, 32(3-4), 201-205.
[http://dx.doi.org/10.1016/j.jaut.2009.02.005] [PMID: 19324518]
[60]
Narciso-Schiavon, J.L. Schiavon, Lde, L. Autoantibodies in chronic hepatitis C: A clinical perspective. World J. Hepatol., 2015, 7(8), 1074-1085.
[http://dx.doi.org/10.4254/wjh.v7.i8.1074] [PMID: 26052396]
[61]
Cammarota, G.; Cuoco, L.; Cianci, R.; Pandolfi, F.; Gasbarrini, G. Onset of coeliac disease during treatment with interferon for chronic hepatitis C. Lancet, 2000, 356(9240), 1494-1495.
[http://dx.doi.org/10.1016/S0140-6736(00)02880-4] [PMID: 11081540]
[62]
Adinolfi, L.E.; Durante Mangoni, E.; Andreana, A. Interferon and ribavirin treatment for chronic hepatitis C may activate celiac disease. Am. J. Gastroenterol., 2001, 96(2), 607-608.
[http://dx.doi.org/10.1111/j.1572-0241.2001.03574.x] [PMID: 11232725]
[63]
Garg, A.; Reddy, C.; Duseja, A.; Chawla, Y.; Dhiman, R.K. Association between celiac disease and chronic hepatitis C virus infection. J. Clin. Exp. Hepatol., 2011, 1(1), 41-44.
[http://dx.doi.org/10.1016/S0973-6883(11)60116-3] [PMID: 25755310]
[64]
Tam, R.C.; Pai, B.; Bard, J.; Lim, C.; Averett, D.R.; Phan, U.T.; Milovanovic, T. Ribavirin polarizes human T cell responses towards a Type 1 cytokine profile. J. Hepatol., 1999, 30(3), 376-382.
[http://dx.doi.org/10.1016/S0168-8278(99)80093-2] [PMID: 10190717]
[65]
Singh, A.; Zaeri, N.; Ho, I. K. Onset of celiac disease after treatment of chronic hepatitis C with interferon based triple therapy. Case Reports Hepatol.,, 2015, 2015
[66]
Durante-Mangoni, E.; Iardino, P.; Resse, M.; Cesaro, G.; Sica, A.; Farzati, B.; Ruggiero, G.; Adinolfi, L.E. Silent celiac disease in chronic hepatitis C: Impact of interferon treatment on the disease onset and clinical outcome. J. Clin. Gastroenterol., 2004, 38(10), 901-905.
[http://dx.doi.org/10.1097/00004836-200411000-00014] [PMID: 15492610]
[67]
Dumoulin, F.L.; Leifeld, L.; Sauerbruch, T.; Spengler, U. Autoimmunity induced by interferon-α therapy for chronic viral hepatitis. Biomed. Pharmacother., 1999, 53(5-6), 242-254.
[http://dx.doi.org/10.1016/S0753-3322(99)80095-X] [PMID: 10424246]
[68]
Vasiliadis, T.; Anagnostis, P.; Nalmpantidis, G.; Soufleris, K.; Patsiaoura, K.; Grammatikos, N.; Orfanou-Koumerkeridou, E.; Kargiotis, K.; Slavakis, A.; Deliyiannidis, A.; Eugenidis, N. Thyroid dysfunction and long-term outcome during and after interferon-alpha therapy in patients with chronic hepatitis C. Ann. Acad. Med. Singapore, 2011, 40(9), 394-400.
[PMID: 22065032]
[69]
Hernandez, L.; Johnson, T.C.; Naiyer, A.J.; Kryszak, D.; Ciaccio, E.J.; Min, A.; Bodenheimer, H.C., Jr; Brown, R.S., Jr; Fasano, A.; Green, P.H. Chronic hepatitis C virus and celiac disease, is there an association? Dig. Dis. Sci., 2008, 53(1), 256-261.
[http://dx.doi.org/10.1007/s10620-007-9851-z] [PMID: 17549632]
[70]
Fine, K.D.; Ogunji, F.; Saloum, Y.; Beharry, S.; Crippin, J.; Weinstein, J. Celiac sprue: Another autoimmune syndrome associated with hepatitis C. Am. J. Gastroenterol., 2001, 96(1), 138-145.
[http://dx.doi.org/10.1111/j.1572-0241.2001.03464.x] [PMID: 11197243]
[71]
Vivas, S.; Ruiz de Morales, J.M.; Martinez, J.; González, M.C.; Martín, S.; Martín, J.; Cechini, C.; Olcoz, J.L. Human recombinant anti-transglutaminase antibody testing is useful in the diagnosis of silent coeliac disease in a selected group of at-risk patients. Eur. J. Gastroenterol. Hepatol., 2003, 15(5), 479-483.
[http://dx.doi.org/10.1097/01.meg.0000059104.41030.1c] [PMID: 12702903]
[72]
Gravina, A.G.; Federico, A.; Masarone, M.; Cuomo, A.; Tuccillo, C.; Loguercio, C.; Persico, M.; Romano, M. Coeliac disease and C virus-related chronic hepatitis: A non-association. BMC Res. Notes, 2012, 5(1), 533.
[http://dx.doi.org/10.1186/1756-0500-5-533] [PMID: 23009068]
[73]
Honeyman, M.C.; Coulson, B.S.; Stone, N.L.; Gellert, S.A.; Goldwater, P.N.; Steele, C.E.; Couper, J.J.; Tait, B.D.; Colman, P.G.; Harrison, L.C. Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes, 2000, 49(8), 1319-1324.
[http://dx.doi.org/10.2337/diabetes.49.8.1319] [PMID: 10923632]
[74]
Kirkwood, C.D.; Ma, L.F.; Carey, M.E.; Steele, A.D. The rotavirus vaccine development pipeline. Vaccine, 2017, S0264-410X . (17), 30410-3.
[http://dx.doi.org/10.1016/j.vaccine.2017.03.076] [PMID: 28396207]
[75]
Hungerford, D.; Vivancos, R.; Read, J.M.; Iturriza-Gόmara, M.; French, N.; Cunliffe, N.A. Rotavirus vaccine impact and socioeconomic deprivation: An interrupted time-series analysis of gastrointestinal disease outcomes across primary and secondary care in the UK. BMC Med., 2018, 16(1), 10.https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-017-0989-z
[http://dx.doi.org/] [PMID: 29375036]
[76]
Myléus, A.; Hernell, O.; Gothefors, L.; Hammarström, M-L.; Persson, L-Å.; Stenlund, H.; Ivarsson, A. Early infections are associated with increased risk for celiac disease: An incident case-referent study. BMC Pediatr., 2012, 12(1), 194.
[http://dx.doi.org/10.1186/1471-2431-12-194] [PMID: 23249321]
[77]
Stene, L.C.; Honeyman, M.C.; Hoffenberg, E.J.; Haas, J.E.; Sokol, R.J.; Emery, L.; Taki, I.; Norris, J.M.; Erlich, H.A.; Eisenbarth, G.S.; Rewers, M. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: A longitudinal study. Am. J. Gastroenterol., 2006, 101(10), 2333-2340.
[http://dx.doi.org/10.1111/j.1572-0241.2006.00741.x] [PMID: 17032199]
[78]
Liu, E.; Lee, H-S.; Aronsson, C.A.; Hagopian, W.A.; Koletzko, S.; Rewers, M.J.; Eisenbarth, G.S.; Bingley, P.J.; Bonifacio, E.; Simell, V.; Agardh, D. TEDDY Study Group. Risk of pediatric celiac disease according to HLA haplotype and country. N. Engl. J. Med., 2014, 371(1), 42-49.
[http://dx.doi.org/10.1056/NEJMoa1313977] [PMID: 24988556]
[79]
Romanos, J.; Rosén, A.; Kumar, V.; Trynka, G.; Franke, L.; Szperl, A.; Gutierrez-Achury, J.; van Diemen, C.C.; Kanninga, R.; Jankipersadsing, S.A.; Steck, A.; Eisenbarth, G.; van Heel, D.A.; Cukrowska, B.; Bruno, V.; Mazzilli, M.C.; Núñez, C.; Bilbao, J.R.; Mearin, M.L.; Barisani, D.; Rewers, M.; Norris, J.M.; Ivarsson, A.; Boezen, H.M.; Liu, E.; Wijmenga, C.; Prevent, C.D. Group. Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants. Gut, 2014, 63(3), 415-422.
[http://dx.doi.org/10.1136/gutjnl-2012-304110] [PMID: 23704318]
[80]
Mårild, K.; Vistnes, M.; Tapia, G.; Midttun, Ø.; Ueland, P.M.; Viken, M.K.; Magnus, P.; Berg, J.P.; Stene, L.C.; Størdal, K. Midpregnancy and cord blood immunologic biomarkers, HLA genotype, and pediatric celiac disease. J. Allergy Clin. Immunol., 2017, 139(5), 1696-1698.
[http://dx.doi.org/10.1016/j.jaci.2016.10.016] [PMID: 27865861]
[81]
Olivares, M.; Neef, A.; Castillejo, G.; Palma, G.D.; Varea, V.; Capilla, A.; Palau, F.; Nova, E.; Marcos, A.; Polanco, I.; Ribes-Koninckx, C.; Ortigosa, L.; Izquierdo, L.; Sanz, Y. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut, 2015, 64(3), 406-417.
[http://dx.doi.org/10.1136/gutjnl-2014-306931] [PMID: 24939571]
[82]
Dolcino, M.; Zanoni, G.; Bason, C.; Tinazzi, E.; Boccola, E.; Valletta, E.; Contreas, G.; Lunardi, C.; Puccetti, A. A subset of anti-rotavirus antibodies directed against the viral protein VP7 predicts the onset of celiac disease and induces typical features of the disease in the intestinal epithelial cell line T84. Immunol. Res., 2013, 56(2-3), 465-476.
[http://dx.doi.org/10.1007/s12026-013-8420-0] [PMID: 23572432]
[83]
Ziberna, F.; De Lorenzo, G.; Schiavon, V.; Arnoldi, F.; Quaglia, S.; De Leo, L.; Vatta, S.; Martelossi, S.; Burrone, O.R.; Ventura, A.; Not, T. Lack of evidence of rotavirus-dependent molecular mimicry as a trigger of coeliac disease. Clin. Exp. Immunol., 2016, 186(3), 356-363.
[http://dx.doi.org/10.1111/cei.12855] [PMID: 27548641]
[84]
Zanoni, G.; Navone, R.; Lunardi, C.; Tridente, G.; Bason, C.; Sivori, S.; Beri, R.; Dolcino, M.; Valletta, E.; Corrocher, R.; Puccetti, A. In celiac disease, a subset of autoantibodies against transglutaminase binds toll-like receptor 4 and induces activation of monocytes. PLoS Med., 2006, 3(9)e358
[http://dx.doi.org/10.1371/journal.pmed.0030358] [PMID: 16984219]
[85]
Kemppainen, K.M.; Lynch, K.F.; Liu, E.; Lonnrot, M.; Simell, V.; Briese, T.; Koletzko, S.; Hagopian, W.; Rewers, M.; She, J.X.; Simell, O.; Toppari, J.; Ziegler, A.G.; Akolkar, B.; Krischer, J.P.; Lernmark, A.; Hyoty, H.; Triplett, E.W.; Agardh, D. Factors that increase risk of celiac disease autoimmunity after a gastrointestinal infection in early life. Clin. Gastroenterol. Hepatol., 2017, 15(5), 694-702.
[http://dx.doi.org/10.1016/j.cgh.2016.10.033]
[86]
Kårhus, L.L.; Gunnes, N.; Størdal, K.; Bakken, I.J.; Tapia, G.; Stene, L.C.; Håberg, S.E.; Mårild, K. Influenza and risk of later celiac disease: A cohort study of 2.6 million people. Scand. J. Gastroenterol., 2018, 53(1), 15-23.
[http://dx.doi.org/10.1080/00365521.2017.1362464] [PMID: 29076383]
[87]
Nau, A.L.; Fayad, L.; Lazzarotto, C.; Shiozawa, M.B.C.; Dantas-Corrêa, E.B. Schiavon, Lde.L.; Narciso-Schiavon, J.L. Prevalence and clinical features of celiac disease in patients with hepatitis B virus infection in Southern Brazil. Rev. Soc. Bras. Med. Trop., 2013, 46(4), 397-402.
[http://dx.doi.org/10.1590/0037-8682-0093-2013] [PMID: 23982094]
[88]
Sima, H.; Hekmatdoost, A.; Ghaziani, T.; Alavian, S.M.; Mashayekh, A.; Zali, M.R. The prevalence of celiac autoantibodies in hepatitis patients. Iran. J. Allergy Asthma Immunol., 2010, 9(3), 157-162.
[PMID: 20952805]
[89]
Soto Iglesias, S.; Vázquez Rodríguez, S.; Ulla Rocha, J.L.; Baltar Arias, R.; Díaz Saá, W.; Barrio Antoranz, J.; González Carrera, V.; Vázquez Astray, E. Onset of celiac disease after acute hepatitis B infection. Gastroenterol. Hepatol., 2010, 33(1), 17-20.
[http://dx.doi.org/10.1016/j.gastrohep.2009.06.005] [PMID: 19744748]
[90]
Kagnoff, M.F.; Austin, R.K.; Hubert, J.J.; Bernardin, J.E.; Kasarda, D.D. Possible role for a human adenovirus in the pathogenesis of celiac disease. J. Exp. Med., 1984, 160(5), 1544-1557.
[http://dx.doi.org/10.1084/jem.160.5.1544] [PMID: 6491604]
[91]
Lahdeaho, M.L.; Parkkonen, P.; Reunala, T.; Maki, M.; Lehtinen, M. Antibodies to E1b protein-derived peptides of enteric adenovirus type 40 are associated with celiac disease and dermatitis herpetiformis. Clin. Immunol. Immunopathol., 1993, 69(3), 300-305.
[92]
Trojnar, Z.; Ciepiela, O.; Demkow, U.A. The prevalence of IgG and IgA against adenoviruses in serum of children aged 11-26 months, hospitalised in the Clinical Paediatric Hospital in Warsaw, Poland. Cent. Eur. J. Immunol., 2014, 39(1), 91-95.
[http://dx.doi.org/10.5114/ceji.2014.42131] [PMID: 26155106]
[93]
Swinson, C.M.; Slavin, G.; Coles, E.C.; Booth, C.C. Coeliac disease and malignancy. Lancet, 1983, 1(8316), 111-115.
[http://dx.doi.org/10.1016/S0140-6736(83)91754-3] [PMID: 6129425]
[94]
Ellis, H.J.; Doyle, A.P.; Sturgess, R.P.; Ciclitira, P.J. Coeliac disease: Characterisation of monoclonal antibodies raised against a synthetic peptide corresponding to amino acid residues 206-217 of A-gliadin. Gut, 1992, 33(11), 1504-1507.
[http://dx.doi.org/10.1136/gut.33.11.1504] [PMID: 1280610]
[95]
Howdle, P.D.; Blair Zajdel, M.E.; Smart, C.J.; Trejdosiewicz, L.K.; Blair, G.E.; Losowky, M.S. Lack of a serologic response to an E1B protein of adenovirus 12 in coeliac disease. Scand. J. Gastroenterol., 1989, 24(3), 282-286.
[http://dx.doi.org/10.3109/00365528909093047] [PMID: 2525272]
[96]
Mahon, J.; Blair, G.E.; Wood, G.M.; Scott, B.B.; Losowsky, M.S.; Howdle, P.D. Is persistent adenovirus 12 infection involved in coeliac disease? A search for viral DNA using the polymerase chain reaction. Gut, 1991, 32(10), 1114-1116.
[http://dx.doi.org/10.1136/gut.32.10.1114] [PMID: 1955164]
[97]
Perfetti, V.; Baldanti, F.; Lenti, M.V.; Vanoli, A.; Biagi, F.; Gatti, M.; Riboni, R.; Dallera, E.; Paulli, M.; Pedrazzoli, P.; Corazza, G.R. Detection of active Epstein-Barr virus infection in duodenal mucosa of patients with refractory celiac disease. Clin. Gastroenterol. Hepatol., 2016, 14(8), 1216-1220.
[http://dx.doi.org/10.1016/j.cgh.2016.03.022] [PMID: 27033429]
[98]
Icheva, V.; Kayser, S.; Wolff, D.; Tuve, S.; Kyzirakos, C.; Bethge, W.; Greil, J.; Albert, M.H.; Schwinger, W.; Nathrath, M.; Schumm, M.; Stevanovic, S.; Handgretinger, R.; Lang, P.; Feuchtinger, T. Adoptive transfer of Epstein-Barr Virus (EBV) nuclear antigen 1-specific t cells as treatment for EBV reactivation and lymphoproliferative disorders after allogeneic stem-cell transplantation. J. Clin. Oncol., 2013, 31(1), 39-48.
[http://dx.doi.org/10.1200/JCO.2011.39.8495] [PMID: 23169501]
[99]
Shannon-Lowe, C.; Rowe, M. Epstein-Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell-mediated transfer infection. PLoS Pathog., 2011, 7(5)e1001338
[http://dx.doi.org/10.1371/journal.ppat.1001338] [PMID: 21573183]
[100]
Lerner, A.; Arleevskaya, M.; Schmiedl, A.; Matthias, T. Microbes and viruses are bugging the gut in celiac disease. Are they friends or foes? Front. Microbiol., 2017, 8, 1392-1392.
[http://dx.doi.org/10.3389/fmicb.2017.01392] [PMID: 28824555]
[101]
Bethony, J.; Brooker, S.; Albonico, M.; Geiger, S.M.; Loukas, A.; Diemert, D.; Hotez, P.J. Soil-transmitted helminth infections: Ascariasis, trichuriasis, and hookworm. Lancet, 2006, 367(9521), 1521-1532.
[http://dx.doi.org/10.1016/S0140-6736(06)68653-4] [PMID: 16679166]
[102]
Hotez, P.J.; Brooker, S.; Bethony, J.M.; Bottazzi, M.E.; Loukas, A.; Xiao, S. Hookworm infection. N. Engl. J. Med., 2004, 351(8), 799-807.
[http://dx.doi.org/10.1056/NEJMra032492] [PMID: 15317893]
[103]
McKay, D.M. The therapeutic helminth? Trends Parasitol., 2009, 25(3), 109-114.
[http://dx.doi.org/10.1016/j.pt.2008.11.008] [PMID: 19167926]
[104]
Elliott, D.E.; Weinstock, J.V. Helminthic therapy: Using worms to treat immune-mediated disease. Adv. Exp. Med. Biol., 2009, 666, 157-166.
[http://dx.doi.org/10.1007/978-1-4419-1601-3_12] [PMID: 20054982]
[105]
Fleming, J.O. Helminth therapy and multiple sclerosis. Int. J. Parasitol., 2013, 43(3-4), 259-274.
[http://dx.doi.org/10.1016/j.ijpara.2012.10.025] [PMID: 23298637]
[106]
Wolff, M.J.; Broadhurst, M.J.; Loke, P. Helminthic therapy: Improving mucosal barrier function. Trends Parasitol., 2012, 28(5), 187-194.
[http://dx.doi.org/10.1016/j.pt.2012.02.008] [PMID: 22464690]
[107]
McSorley, H.J.; Loukas, A. The immunology of human hookworm infections. Parasite Immunol., 2010, 32(8), 549-559.
[PMID: 20626810]
[108]
McSorley, H.J.; Gaze, S.; Daveson, J.; Jones, D.; Anderson, R.P.; Clouston, A.; Ruyssers, N.E.; Speare, R.; McCarthy, J.S.; Engwerda, C.R.; Croese, J.; Loukas, A. Suppression of inflammatory immune responses in celiac disease by experimental hookworm infection. PLoS One, 2011, 6(9)e24092
[http://dx.doi.org/10.1371/journal.pone.0024092] [PMID: 21949691]
[109]
Daveson, A.J.; Jones, D.M.; Gaze, S.; McSorley, H.; Clouston, A.; Pascoe, A.; Cooke, S.; Speare, R.; Macdonald, G.A.; Anderson, R.; McCarthy, J.S.; Loukas, A.; Croese, J. Effect of hookworm infection on wheat challenge in celiac disease--a randomised double-blinded placebo controlled trial. PLoS One, 2011, 6(3)e17366
[http://dx.doi.org/10.1371/journal.pone.0017366] [PMID: 21408161]
[110]
Gaze, S.; McSorley, H.J.; Daveson, J.; Jones, D.; Bethony, J.M.; Oliveira, L.M.; Speare, R.; McCarthy, J.S.; Engwerda, C.R.; Croese, J.; Loukas, A. Characterising the mucosal and systemic immune responses to experimental human hookworm infection. PLoS Pathog., 2012, 8(2)e1002520
[http://dx.doi.org/10.1371/journal.ppat.1002520] [PMID: 22346753]
[111]
Diliani, N.; Dondji, B. Hookworm excretory/secretory products modulate immune responses to heterologous and species-specific antigens. Parasite Immunol., 2017, 39(10)e12459
[http://dx.doi.org/10.1111/pim.12459] [PMID: 28796897]
[112]
Croese, J.; Gaze, S.T.; Loukas, A. Changed gluten immunity in celiac disease by Necator americanus provides new insights into autoimmunity. Int. J. Parasitol., 2013, 43(3-4), 275-282.
[http://dx.doi.org/10.1016/j.ijpara.2012.12.005] [PMID: 23291460]
[113]
Hmida, N.B.; Ben Ahmed, M.; Moussa, A.; Rejeb, M.B.; Said, Y.; Kourda, N.; Meresse, B.; Abdeladhim, M.; Louzir, H.; Cerf-Bensussan, N. Impaired control of effector T cells by regulatory T cells: A clue to loss of oral tolerance and autoimmunity in celiac disease? Am. J. Gastroenterol., 2012, 107(4), 604-611.
[http://dx.doi.org/10.1038/ajg.2011.397] [PMID: 22108452]
[114]
Briani, C.; Samaroo, D.; Alaedini, A. Celiac disease: From gluten to autoimmunity. Autoimmun. Rev., 2008, 7(8), 644-650.
[http://dx.doi.org/10.1016/j.autrev.2008.05.006] [PMID: 18589004]
[115]
Croese, J.; Giacomin, P.; Navarro, S.; Clouston, A.; McCann, L.; Dougall, A.; Ferreira, I.; Susianto, A.; O’Rourke, P.; Howlett, M. Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease. J. Allergy Clin. Immunol., 2015, 135(2), 508-516.
[116]
Giacomin, P.; Zakrzewski, M.; Croese, J.; Su, X.; Sotillo, J.; McCann, L.; Navarro, S.; Mitreva, M.; Krause, L.; Loukas, A.; Cantacessi, C. Experimental hookworm infection and escalating gluten challenges are associated with increased microbial richness in celiac subjects. Sci. Rep., 2015, 5, 13797.
[http://dx.doi.org/10.1038/srep13797] [PMID: 26381211]
[117]
Tenter, A.M.; Heckeroth, A.R.; Weiss, L.M. Toxoplasma gondii: from animals to humans. Int. J. Parasitol., 2000, 30(12-13), 1217-1258.
[http://dx.doi.org/10.1016/S0020-7519(00)00124-7] [PMID: 11113252]
[118]
Hill, D.; Dubey, J. Toxoplasma gondii. Foodborne Parasites; Springer, 2018, pp. 119-138.
[http://dx.doi.org/10.1007/978-3-319-67664-7_6]
[119]
Kravetz, J.D.; Federman, D.G. Toxoplasmosis in pregnancy. Am. J. Med., 2005, 118(3), 212-216.
[http://dx.doi.org/10.1016/j.amjmed.2004.08.023] [PMID: 15745715]
[120]
Jones, J.; Lopez, A.; Wilson, M. Congenital toxoplasmosis. Am. Fam. Physician, 2003, 67(10), 2131-2138.
[PMID: 12776962]
[121]
Ahmadpour, E.; Daryani, A.; Sharif, M.; Sarvi, S.; Aarabi, M.; Mizani, A.; Rahimi, M.T.; Shokri, A. Toxoplasmosis in immunocompromised patients in Iran: a systematic review and meta-analysis. J. Infect. Dev. Ctries., 2014, 8(12), 1503-1510.
[http://dx.doi.org/10.3855/jidc.4796] [PMID: 25500647]
[122]
Torgerson, P.R.; Mastroiacovo, P. The global burden of congenital toxoplasmosis: A systematic review. Bull. World Health Organ., 2013, 91(7), 501-508.
[http://dx.doi.org/10.2471/BLT.12.111732] [PMID: 23825877]
[123]
Shapira, Y.; Agmon-Levin, N.; Selmi, C.; Petríková, J.; Barzilai, O.; Ram, M.; Bizzaro, N.; Valentini, G.; Matucci-Cerinic, M.; Anaya, J-M.; Katz, B.S.; Shoenfeld, Y. Prevalence of anti-Toxoplasma antibodies in patients with autoimmune diseases. J. Autoimmun., 2012, 39(1-2), 112-116.
[http://dx.doi.org/10.1016/j.jaut.2012.01.001] [PMID: 22297145]
[124]
Fischer, S.; Agmon-Levin, N.; Shapira, Y.; Porat Katz, B.S.; Graell, E.; Cervera, R.; Stojanovich, L.; Gómez Puerta, J.A.; Sanmartí, R.; Shoenfeld, Y. Toxoplasma gondii: Bystander or cofactor in rheumatoid arthritis. Immunol. Res., 2013, 56(2-3), 287-292.
[http://dx.doi.org/10.1007/s12026-013-8402-2] [PMID: 23553228]
[125]
Rostami Nejad, M.; Rostami, K.; Cheraghipour, K.; Nazemalhosseini Mojarad, E.; Volta, U.; Al Dulaimi, D.; Zali, M.R. Celiac disease increases the risk of Toxoplasma gondii infection in a large cohort of pregnant women. Am. J. Gastroenterol., 2011, 106(3), 548-549.
[http://dx.doi.org/10.1038/ajg.2010.425] [PMID: 21378773]
[126]
Ergün, C.; Urhan, M.; Ayer, A. A review on the relationship between gluten and schizophrenia: Is gluten the cause? Nutr. Neurosci., 2018, 21(7), 455-466.
[http://dx.doi.org/10.1080/1028415X.2017.1313569] [PMID: 28393621]
[127]
Rostami Nejad, M.; Ishaq, S.; Al Dulaimi, D.; Zali, M.R.; Rostami, K. The role of infectious mediators and gut microbiome in the pathogenesis of celiac disease. Arch. Iran Med., 2015, 18(4), 244-249.
[PMID: 25841946]
[128]
Rostami-Nejad, M.; Hejazi, S.H.; Peña, A.S.; Asadzadeh-Aghdaei, H.; Rostami, K.; Volta, U.; Zali, M.R. Contributions of HLA haplotypes, IL8 level and Toxoplasma gondii infection in defining celiac disease’s phenotypes. BMC Gastroenterol., 2018, 18(1), 66.
[http://dx.doi.org/10.1186/s12876-018-0796-9] [PMID: 29776388]
[129]
Severance, E.G.; Kannan, G.; Gressitt, K.L.; Xiao, J.; Alaedini, A.; Pletnikov, M.V.; Yolken, R.H. Anti-gluten immune response following Toxoplasma gondii infection in mice. PLoS One, 2012, 7(11), e50991-e50991.
[http://dx.doi.org/10.1371/journal.pone.0050991] [PMID: 23209841]
[130]
Kannan, G.; Prandovszky, E.; Severance, E.; Yolken, R.H.; Pletnikov, M.V. A new T. gondii mouse model of gene-environment interaction relevant to psychiatric disease. Science, 2018, 20187590958
[http://dx.doi.org/10.1155/2018/7590958] [PMID: 30631636]
[131]
Rostami-Nejad, R-N.; Hejazi, S.H.; Bahadoran, M.; Pestehhian, N.; Pourhoseingholi, M.A.; Hosseini-Safa, A.; Sadeghi, A.; Nobakht, H.; Tajabadi Farahani, R.; Zali, M.R. Prevalence of toxoplasma gondii and the level of IL8 in patients with Celiac disease; Faslnamahi Kumish, 2016, pp. 79-85.
[132]
Smith, W.B.; Gamble, J.R.; Clark-Lewis, I.; Vadas, M.A. Interleukin-8 induces neutrophil transendothelial migration. Immunology, 1991, 72(1), 65-72.
[PMID: 1997402]
[133]
Taghipour, A.; Azimi, T.; Javanmard, E.; Pormohammad, A.; Olfatifar, M.; Rostami, A.; Tabarsi, P.; Sohrabi, M.R.; Mirjalali, H.; Haghighi, A. Immunocompromised patients with pulmonary tuberculosis; a susceptible group to intestinal parasites. Gastroenterol. Hepatol. Bed Bench, 2018, 11(Suppl. 1), S134-S139.
[PMID: 30774820]
[134]
Wolfe, M.S. Giardiasis. Clin. Microbiol. Rev., 1992, 5(1), 93-100.
[http://dx.doi.org/10.1128/CMR.5.1.93] [PMID: 1735095]
[135]
Thompson, R.C.; Reynoldson, J.A.; Mendis, A.H. Giardia and giardiasis. Adv. Parasitol., 1993, 32, 71-160.
[http://dx.doi.org/10.1016/S0065-308X(08)60207-9] [PMID: 8237618]
[136]
Koot, B.G.; ten Kate, F.J.; Juffrie, M.; Rosalina, I.; Taminiau, J.J.; Benninga, M.A. Does Giardia lamblia cause villous atrophy in children?: A retrospective cohort study of the histological abnormalities in giardiasis. J. Pediatr. Gastroenterol. Nutr., 2009, 49(3), 304-308.
[http://dx.doi.org/10.1097/MPG.0b013e31818de3c4] [PMID: 19525873]
[137]
Müller, N.; von Allmen, N. Recent insights into the mucosal reactions associated with Giardia lamblia infections. Int. J. Parasitol., 2005, 35(13), 1339-1347.
[http://dx.doi.org/10.1016/j.ijpara.2005.07.008] [PMID: 16182298]
[138]
Bartelt, L.A.; Platts-Mills, J.A. Giardia: A pathogen or commensal for children in high prevalence settings? Curr. Opin. Infect. Dis., 2016, 29(5), 502.
[http://dx.doi.org/10.1097/QCO.0000000000000293] [PMID: 27479025]
[139]
Wright, S.G.; Tomkins, A.M. Quantification of the lymphocytic infiltrate in jejunal epithelium in giardiasis. Clin. Exp. Immunol., 1977, 29(3), 408-412.
[PMID: 589861]
[140]
Ward, H.; Jalan, K.N.; Maitra, T.K.; Agarwal, S.K.; Mahalanabis, D. Small intestinal nodular lymphoid hyperplasia in patients with giardiasis and normal serum immunoglobulins. Gut, 1983, 24(2), 120-126.
[http://dx.doi.org/10.1136/gut.24.2.120] [PMID: 6852622]
[141]
Mastropasqua, E.; Rolandi, R.; Farruggio, A.; Lirussi, F. Giardia duodenalis: A confounding factor for the diagnosis of celiac disease. J. Clin. Gastroenterol., 2003, 36(2), 185-186.
[http://dx.doi.org/10.1097/00004836-200302000-00023] [PMID: 12544209]
[142]
Schiepatti, A.; Biagi, F.; Fraternale, G.; Vattiato, C.; Balduzzi, D.; Agazzi, S.; Alpini, C.; Klersy, C.; Corazza, G.R. Short article: Mortality and differential diagnoses of villous atrophy without coeliac antibodies. Eur. J. Gastroenterol. Hepatol., 2017, 29(5), 572-576.
[http://dx.doi.org/10.1097/MEG.0000000000000836] [PMID: 28350748]
[143]
Oberhuber, G.; Stolte, M. Symptoms in patients with giardiasis undergoing upper gastrointestinal endoscopy. Endoscopy, 1997, 29(8), 716-720.
[http://dx.doi.org/10.1055/s-2007-1004295] [PMID: 9427489]
[144]
Corleto, V.D.; Di Marino, V.P.; Galli, G.; Antonelli, G.; Coluccio, C.; Di Cerbo, A.; Uccini, S.; Annibale, B. Improving basic skills in celiac-like disease diagnosis: A case report. BMC Gastroenterol., 2018, 18(1), 162.
[http://dx.doi.org/10.1186/s12876-018-0894-8] [PMID: 30390626]
[145]
John, B.M.; Devgan, A.; Mitra, B. Prevalence of rotavirus infection in children below two years presenting with diarrhea. Med. J. Armed Forces India, 2014, 70(2), 116-119.
[http://dx.doi.org/10.1016/j.mjafi.2014.02.008] [PMID: 24843198]
[146]
Gasparinho, C.; Piedade, J.; Mirante, M.C.; Mendes, C.; Mayer, C.; Vaz Nery, S.; Brito, M.; Istrate, C. Characterization of rotavirus infection in children with acute gastroenteritis in Bengo province, Northwestern Angola, prior to vaccine introduction. PLoS One, 2017, 12(4)e0176046
[http://dx.doi.org/10.1371/journal.pone.0176046] [PMID: 28422995]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy