[1]
Alaarg, A.; Senders, M.L.; Varela-Moreira, A.; Pérez-Medina, C.; Zhao, Y.; Tang, J.; Fay, F.; Reiner, T.; Fayad, Z.A.; Hennink, W.E. A systematic comparison of clinically viable nanomedicines targeting HMG-CoA reductase in inflammatory atherosclerosis. J. Control. Release, 2017, 262S016836591730723X
[2]
Shao, D.; Lian, Z.; Di, Y.; Lei, Z.; Rajoka, M.S.R.; Zhang, Y.; Jie, K.; Jiang, C.; Shi, J. Dietary compounds have potential in controlling atherosclerosis by modulating macrophage cholesterol metabolism and inflammation via miRNA. NPJ Sci. Food, 2018, 2(1), 13-21.
[3]
Karunakaran, D.; Rayner, K.J. Macrophage miRNAs in atherosclerosis. Biochim. Biophys. Acta Biomembr., 2016, 1861(12 Pt B), 2087-2093.
[4]
Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell, 2005, 120(1), 1-20.
[5]
Friedman, R.; Farh, K.; Bartel, D. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2008, 19(1), 92-105.
[6]
Bladé, C.; Baselga‐Escudero, L.; Salvadó, M.J.; Arola‐Arnal, A. miRNAs, polyphenols, and chronic disease. Mol. Nutr. Food Res., 2013, 57(1), 58-70.
[7]
Baselga-Escudero, L. Bladã©, C.; Ribas-Latre, A.; Casanova, E.; Salvadã3, M.J.; Arola, L.; Arola-Arnal, A. Grape seed proanthocyanidins repress the hepatic lipid regulators miR-33 and miR-122 in rats. Mol. Nutr. Food Res., 2012, 56(11), 1636-1646.
[8]
Han, Q.A.; Yan, C.; Wang, L.; Li, G.; Xu, Y.; Xia, X. Urolithin A attenuates ox-LDL-induced endothelial dysfunction partly by modulating microRNA-27 and ERK/PPAR-γ pathway. Mol. Nutr. Food Res., 2016, 60(9), 1933-1943.
[9]
Gosslau, A.; Li, S.; Ho, C.T.; Chen, K.Y.; Rawson, N.E. The importance of natural product characterization in studies of their anti-inflammatory activity. Mol. Nutr. Food Res., 2011, 55(1), 74-82.
[10]
Libby, P.; Ridker, P.M.; Hansson, G.K. Inflammation in atherosclerosis: From pathophysiology to practice. J. Am. Coll. Cardiol., 2009, 54(23), 2129-2138.
[11]
Wildgruber, M.; Lee, H.; Chudnovskiy, A.; Yoon, T.J.; Etzrodt, M.; Pittet, M.J.; Nahrendorf, M.; Croce, K.; Libby, P.; Weissleder, R. Monocyte subset dynamics in human atherosclerosis can be profiled with magnetic nano-sensors. PLoS One, 2009, 4(5)e5663
[12]
Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol., 2013, 13(10), 709-721.
[13]
Mclaren, J.E.; Michael, D.R.; Ashlin, T.G.; Ramji, D.P. Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Prog. Lipid Res., 2011, 50(4), 331-347.
[14]
Yu, X.H.; Zhang, D.W.; Zheng, X.L.; Tang, C.K. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog. Lipid Res., 2019, 73, 65-91.
[15]
Yuan, Y.; Li, P.; Ye, J. Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Proteins Cells, 2012, 03(3), 173-181.
[16]
Chistiakov, D.A.; Bobryshev, Y.V.; Orekhov, A.N. Macrophage-mediated cholesterol handling in atherosclerosis. J. Cell. Mol. Med., 2016, 20(1), 17-28.
[17]
Oram, J.F.; Heinecke, J.W. ATP-binding cassette transporter A1: A cell cholesterol exporter that protects against cardiovascular disease. Physiol. Rev., 2005, 85(4), 1343-1372.
[18]
Nan, W.; Debin, L.; Wengen, C.; Fumihiko, M.; Tall, A.R. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc. Natl. Acad. Sci. USA, 2004, 101(26), 9774-9779.
[19]
Maria Pia, A.; Francesca, Z.; Billheimer, J.T.; Nan, W.; Rader, D.J.; Phillips, M.C.; Rothblat, G.H. The roles of different pathways in the release of cholesterol from macrophages. J. Lipid Res., 2007, 48(11), 2453-2462.
[20]
May, B.; Joerg, H.; Mukaddes, B.B.; Anne, E.; Moore, K.J.; Franz, R. Selective uptake of HDL cholesteryl esters and cholesterol efflux from mouse peritoneal macrophages independent of SR-BI. J. Lipid Res., 2006, 47(11), 2408-2421.
[21]
Li, K.; Ching, D.; Fu, S.L.; Raffai, R.L. Apolipoprotein E enhances MicroRNA-146a in monocytes and macrophages to suppress nuclear factor-κB–driven inflammation and atherosclerosis novelty and significance. Circ. Res., 2015, 117(1) e1
[22]
Brown, M.S.; Goldstein, J.L. How LDL receptors influence cholesterol and atherosclerosis. Sci. Am., 1984, 251(5), 58-66.
[23]
Esteller, A. Physiology of bile secretion. World J. Gastroenterol., 2008, 14(37), 5641.
[24]
Vrins, C.; Vink, E.; Vandenberghe, K.E.; Frijters, R.; Seppen, J.; Groen, A.K. The sterol transporting heterodimer ABCG5/ABCG8 requires bile salts to mediate cholesterol efflux. FEBS Lett., 2007, 581(24), 4616-4620.
[25]
Paulusma, C.C.; Folmer, D.E.; Homok, K.S.; De, D.W.; Hilarius, P.M.; Verhoeven, A.J.; Oude, R.E. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology, 2010, 47(1), 268-278.
[26]
Feinberg, M.W.; Moore, K.J. MicroRNA regulation of atherosclerosis. Circ. Res., 2016, 118(4), 703.
[27]
Rader, D.J. Molecular regulation of HDL metabolism and function: Implications for novel therapies. J. Clin. Invest., 2006, 116(12), 3090-3100.
[28]
Lewis, G.F.; Rader, D.J. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ. Res., 2005, 96(12), 1221-1232.
[29]
Selbach, M.; Schwanhausser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. Nature, 2008, 455(7209), 58-63.
[30]
Tong, A.W.; Nemunaitis, J. Modulation of miRNA activity in human cancer: A new paradigm for cancer gene therapy? Cancer Gene Ther., 2008, 15(6), 341-355.
[31]
Isabelle, G.; Laure-Alix, C.; Olivier, H.; Nicolas, L.; Das, A.K.; Burant, C.F.; Leclercq, I.A.; Macdougald, O.A.; Bommer, G.T. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J. Biol. Chem., 2010, 285(44), 33652.
[32]
Rayner, K.J.; Sheedy, F.J.; Esau, C.C. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest., 2011, 54(5), 2921-2931.
[33]
S., Hani N.S.; Fjoralba, K.; Yingxia, L.; Toshi, S.; Cohen, D.E.; Gerszten, R.E.; Näär, A.M. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science, 2010, 328(5985), 1566-1569.
[34]
Lv, Y.C.; Tang, Y.Y.; Peng, J.; Zhao, G.J.; Yang, J.; Yao, F.; Ouyang, X.P.; He, P.P.; Xie, W.; Tan, Y.L. MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1. Atherosclerosis, 2014, 236(1), 215-226.
[35]
Dongliang, W.; Min, X.; Xiao, Y.; Dan, L.; Lei, W.; Yuxuan, X.; Tianru, J.; Wenhua, L. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ. Res., 2012, 111(8), 967-981.
[36]
Sun, D.; Zhang, J.; Xie, J.; Wei, W.; Chen, M.; Xiang, Z. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett., 2012, 586(10), 1472-1479.
[37]
Ramirez, C.M.; Dávalos, A.; Goedeke, L.; Salerno, A.G.; Warrier, N.; Cirerasalinas, D.; Suárez, Y.; Fernándezhernando, C. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler. Thromb. Vasc. Biol., 2011, 31(11), 2707-2714.
[38]
Alexandre, W.; Hani, N.S.; Lifeng, W.; Leigh, G.; Sumita, S.; Delemos, A.S.; Black, J.C.; Ramírez, C.M.; Yingxia, L.; Ryan, T. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat. Med., 2015, 21(11), 1290-1297.
[39]
Dávalos, A.; Goedeke, L.; Smibert, P.; Ramírez, C.M.; Warrier, N.P.; Andreo, U.; Cirera-Salinas, D.; Rayner, K.; Suresh, U.; Pastor-Pareja, J.C. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl. Acad. Sci. USA, 2011, 108(22), 9232-9237.
[40]
Ramirez, C.M.; Goedeke, L.; Rotllan, N.; Yoon, J.H.; Cirera-Salinas, D.; Mattison, J.A.; Suarez, Y.; de Cabo, R.; Gorospe, M.; Fernandez-Hernando, C. MicroRNA 33 regulates glucose metabolism. Mol. Cell. Biol., 2013, 33(15), 2891-2902.
[41]
Fernández-Hernando, C.; Moore, K.J. MicroRNA modulation of cholesterol homeostasis. Arterioscler. Thromb. Vasc. Biol., 2011, 31(11), 2378-2382.
[42]
Rayner, K.J.; Yajaira, S.; Alberto, D.; Saj, P.; Fitzgerald, M.L.; Norimasa, T.; Fisher, E.A.; Moore, K.J.; Carlos, F.H. MiR-33 contributes to the regulation of cholesterol homeostasis. Science, 2010, 328(5985), 1570-1573.
[43]
Ediriweera, H. Therapeutic targeting of miR-33 in atherosclerosis; Dissertations & Theses - Gradworks, 2014.
[44]
Greenow, K.; Pearce, N.J.; Ramji, D.P. The key role of apolipoprotein E in atherosclerosis. J. Mol. Med., 2005, 83(5), 329-342.
[45]
Rotllan, N.; Price, N.; Pati, P.; Goedeke, L.; Fernandez-Hernando, C. microRNAs in lipoprotein metabolism and cardiometabolic disorders. Atherosclerosis, 2016, 246, 352-360.
[46]
Ramírez, C.M.; Noemi, R.; Vlassov, A.V.; Alberto, D.; Mu, L.; Leigh, G.; Aranda, J.F.; Daniel, C.S.; Elisa, A.; Alessandro, S. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ. Res., 2013, 112(12), 1592-1601.
[47]
Takahiro, H.; Osamu, B.; Yasuhide, K.; Yoshimasa, C.; Shin, W.; Minako, K.; Masahito, H.; Tomoyuki, N.; Kazuhisa, C.; Masakatsu, H. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J. Am. Heart Assoc., 2012, 1(6), e003376-e003392.
[48]
Bidzhekov, K.; Gan, L.; Denecke, B.; Rostalsky, A.; Hristov, M.; Koeppel, T.A.; Zernecke, A.; Weber, C. microRNA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans. Thromb. Haemost., 2012, 107(04), 619-625.
[49]
Fei, M. Mordicin MD28 increases ABCA1 expression by down-regulating miR-23b-3p; , 2015. In complete
[50]
Kim, J.; Yoon, H.; Ramírez, C.M.; Lee, S.M.; Hoe, H.S.; Fernández-Hernando, C.; Kim, J. miR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression. Exp. Neurol., 2012, 235(2), 476-483.
[51]
Leigh, G.; Noemi, R.; Alberto, C.D.; Aranda, J.F.; Ramírez, C.M.; Elisa, A.; Chin-Sheng, L.; Anderson, N.N.; Alexandre, W.; Rafael, D.C. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat. Med., 2015, 21(11), 1280-1289.
[52]
de Aguiar Vallim, T.Q.; Tarling, E.J.; Kim, T.; Civelek, M.; Baldán, Á.; Esau, C.; Edwards, P.A. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor. Circ. Res., 2013, 112(12), 1602-1612.
[53]
Goedeke, L.; Rotllan, N.; Ramírez, C.M.; Aranda, J.F.; Canfrán-Duque, A.; Araldi, E.; Fernández-Hernando, A.; Langhi, C.; Cabo, R.D.; Baldán, Á. miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis, 2015, 243(2), 499-509.
[54]
Svenja, M.; Yvonne, B.; Emma, T.; Kosal, S.; Boisvert, W.A. MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2015, 35(2), 323-331.
[55]
Kang, M.H.; Lin-Hua, Z.; Nadeeja, W.; Willeke, D.H.; Stefanie, B.; Alpana, B.; Hayden, M.R. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145. Arterioscler. Thromb. Vasc. Biol., 2013, 33(12), 2724-2732.
[56]
Adlakha, Y.K.; Khanna, S.; Singh, R.; Singh, V.P.; Agrawal, A.; Saini, N. Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRα expression and cholesterol homeostasis. Cell Death Dis., 2013, 4(8), e780-e791.
[57]
Wang, D.; Yan, X.; Xia, M.; Yang, Y.; Li, D.; Li, X.; Song, F.; Ling, W. Coenzyme Q10 promotes macrophage cholesterol efflux by regulation of the activator protein-1/miR-378/ATP-binding cassette transporter G1-signaling pathway. Arterioscler. Thromb. Vasc. Biol., 2014, 34(9), 1860-1870.
[58]
Kim, T.H.; Kim, I.; Kim, E.M.; Park, H.E.; Park, E.H.; Kang, K.; Kim, C.W.; Kim, J.M.; Ihm, S.H.; Chang, K. MicroRNA 18a is a novel regulator of reverse cholesterol transport and potential therapeutic targets in atherosclerosis. Atherosclerosis, 2017, 263, e111-e112.
[59]
Acton, S.; Rigotti, A.; Landschulz, K.T.; Xu, S.; Hobbs, H.H.; Krieger, M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science, 1996, 271(5248), 518-520.
[60]
Li, W.; Xiao-Jian, J.; Hua-Jun, J.; Yu, D.; Fan, Y.; Shu-Yi, S.; Bin, H. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol. Cell. Biol., 2013, 33(10), 1956-1964.
[61]
Vickers, K.C.; Landstreet, S.R.; Levin, M.G.; Shoucri, B.M.; Toth, C.L.; Taylor, R.C.; Palmisano, B.T.; Fatiha, T.; Cui, H.L.; Kerry-Anne, R. MicroRNA-223 coordinates cholesterol homeostasis. Proc. Natl. Acad. Sci. USA, 2014, 111(40), 14518-14523.
[62]
Zhigang, H.; Wen-Jun, S.; Kraemer, F.B.; Salman, A. MicroRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type I in steroidogenic cells. Mol. Cell. Biol., 2012, 32(24), 5035-5045.
[63]
Ren, K.; Zhu, X.; Zheng, Z.; Mo, Z.C.; Peng, X.S.; Zeng, Y.Z.; Ou, H.X.; Zhang, Q.H.; Qi, H.Z.; Zhao, G.J. MicroRNA-24 aggravates atherosclerosis by inhibiting selective lipid uptake from HDL cholesterol via the post-transcriptional repression of scavenger receptor class B type I. Atherosclerosis, 2018, 270, 57-67.
[64]
Tall, A.R.; Yvancharvet, L.; Terasaka, N.; Pagler, T.; Wang, N. HDL, ABC transporters, and cholesterol efflux: Implications for the treatment of atherosclerosis. Cell Metab., 2008, 7(5), 365-375.
[65]
Huajun, J.; Jin, Z.; Yu, D.; Xiaojian, J.; Fan, Y.; Shuyi, S.; Li, W.; Bin, H. microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator. Atherosclerosis, 2015, 243(2), 523-532.
[66]
Allen, R.M.; Marquart, T.J.; Albert, C.J.; Suchy, F.J.; Wang, D.Q.; Ananthanarayanan, M.; Ford, D.A.; Baldã, N.A. miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. EMBO Mol. Med., 2012, 4(9), 882-895.
[67]
Kamisako, T.; Ogawa, H. Regulation of biliary cholesterol secretion is associated with abcg5 and abcg8 expressions in the rats: Effects of diosgenin and ethinyl estradiol. Hepatol. Res., 2003, 26(4), 348-352.
[68]
Matsumoto, N.; Okushio, K.Y. Effect of black tea polyphenols on plasma lipids in cholesterol-fed rats. J. Nutr. Sci. Vitaminol., 1998, 44(2), 337-342.
[69]
Zern, T.L.; Wood, R.J.; Christine, G.; West, K.L.; Yanzhu, L.; Dimple, A.; Shachter, N.S.; Maria Luz, F. Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J. Nutr., 2005, 135(8), 1911-1917.
[70]
Li, Y.; Kong, D.; Wang, Z.; Sarkar, F.H. Regulation of microRNAs by natural agents: An emerging field in chemoprevention and chemotherapy research. Pharm. Res., 2010, 27(6), 1027-1041.
[71]
Perumal, Y.; Dharmarajan, S. Betulinic acid and its derivatives: A review on their biological properties. Curr. Med. Chem., 2005, 12(6), 657-666.
[72]
Zhao, G.J.; Tang, S.L.; Lv, Y.C.; Ouyang, X.P.; He, P.P.; Yao, F.; Chen, W.J.; Lu, Q.; Tang, Y.Y.; Zhang, M. Antagonism of betulinic acid on LPS-mediated inhibition of ABCA1 and cholesterol efflux through inhibiting nuclear factor-kappaB signaling pathway and miR-33 expression. PLoS One, 2013, 8(9), e74782-e74783.
[73]
Hong, W.; Shengjie, B.; Yang, C.S. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1α. Carcinogenesis, 2011, 32(12), 1881-1889.
[74]
Yin, J.; Huang, F.; Yi, Y.; Yin, L.; Peng, D. EGCG attenuates atherosclerosis through the Jagged-1/Notch pathway. Int. J. Mol. Med., 2016, 37(2), 398-406.
[75]
Lv, Y.C.; Yang, J.; Yao, F.; Xie, W.; Tang, Y.Y.; Ouyang, X.P.; He, P.P.; Tan, Y.L.; Li, L.; Zhang, M. Diosgenin inhibits atherosclerosis via suppressing the MiR-19b-induced downregulation of ATP-binding cassette transporter A1. Atherosclerosis, 2015, 240(1), 80-89.
[76]
Wang, Z.; Yun-Cheng, L.; Tang, C.K.; Yao, F.; Wang, Z.B.; Liu, L.S.; Guang-Hui, Y.I.; Yang, Y.Z. Experimental studies on anti-atherosclerosis effects of Momordica charantia L in rabbits. Chin. J. Pathophysiol., 2005, 21(3), 514-518.
[77]
Song, Y.M.; Zuo, W.; Guo, Z.Y.; Zhang, X.L.; Jun, M. Effects of
momordicin on atherogenesis of apolipoprotein e knockout mice
and expression of intestinal cholesterol transport related genes.
Chin. J. Arterioscler., 2009. Incomplete
[78]
Allen, R.M.; Vickers, K.C. Coenzyme Q10 increases cholesterol efflux and inhibits atherosclerosis through microRNAs. Arterioscler. Thromb. Vasc. Biol., 2014, 34(9), 1795-1797.
[79]
Su, D.; Zhang, R.; Hou, F.; Chi, J.; Huang, F.; Yan, S.; Liu, L.; Deng, Y.; Wei, Z.; Zhang, M. Lychee pulp phenolics ameliorate hepatic lipid accumulation by reducing miR-33 and miR-122 expression in mice fed a high-fat diet. Food Funct., 2017, 8(2), 808-815.