Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

General Research Article

黄腐酚及其衍生物对阿尔茨海默氏病的淀粉样β聚集的抑制和神经保护作用。

卷 16, 期 9, 2019

页: [836 - 842] 页: 7

弟呕挨: 10.2174/1567205016666190827123222

价格: $65

摘要

背景:据报道黄腐酚具有通过激活Nrf2-ARE信号通路而具有细胞保护作用;并且它具有清除自由基的能力,表明其具有预防神经变性的潜力。然而,黄腐酚的生物相容性和血脑屏障不可渗透性阻碍了其在体内治疗阿尔茨海默氏病(AD)的潜力。 目的:我们设计并制备了一系列黄腐酚衍生物,以增强所需的物理,生物学和药理特性,尤其是用于干预AD的血脑屏障通透性。 方法:我们设计并合成了一系列新的9种黄腐酚衍生物。探索了它们对β-淀粉样蛋白(1-42),Aβ1-42的抑制作用,低聚和原纤维化以及对β-淀粉样蛋白诱导的毒性的神经保护作用。 结果:在9种黄腐酚衍生物中,一些对Aβ1-42的低聚和原纤化具有中等至高的抑制作用。通过减少由淀粉样蛋白β诱导的ROS生成和钙上载,它们对SH-SY5Y细胞具有生物相容性和神经保护作用。重要的是,发现其中两个衍生物是血脑屏障可渗透的,显示出有希望的AD治疗潜力。 结论:已经确定了两种衍生物具有生物相容性,无毒,对Aβ诱导的毒性具有神经保护作用,并且具有血脑屏障可渗透性,突出了它们作为AD候选药物在未来临床应用中的潜力。

关键词: 黄腐酚的衍生物,具有神经保护作用,抑制淀粉样蛋白聚集,可渗透血脑屏障。

[1]
Alzheimers A. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 11(3): 332-84. (2015).
[http://dx.doi.org/10.1016/j.jalz.2015.02.003] [PMID: 25984581]
[2]
Scheltens P, Blennow K, Breteler MMB, de Strooper B, Frisoni GB, Salloway S, et al. Alzheimer’s disease. Lancet 388(10043): 505-17. (2016).
[http://dx.doi.org/10.1016/S0140-6736(15)01124-1] [PMID: 26921134]
[3]
Muñoz-Torrero D. Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer’s disease. Curr Med Chem 15(24): 2433-55. (2008).
[http://dx.doi.org/10.2174/092986708785909067] [PMID: 18855672]
[4]
Shi X, Lin X, Hu R, Sun N, Hao J, Gao C. Toxicological differences between nmda receptor antagonists and cholinesterase inhibitors. Am J Alzheimers Dis Other Demen 31(5): 405-12. (2016).
[http://dx.doi.org/10.1177/1533317515622283] [PMID: 26769920]
[5]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580): 353-6. (2002).
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[6]
Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284): 99-102. (1996).
[http://dx.doi.org/10.1126/science.274.5284.99] [PMID: 8810256]
[7]
Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880): 535-9. (2002).
[http://dx.doi.org/10.1038/416535a] [PMID: 11932745]
[8]
Benilova I, Karran E, De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15(3): 349-57. (2012).
[http://dx.doi.org/10.1038/nn.3028] [PMID: 22286176]
[9]
Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618): 486-9. (2003).
[http://dx.doi.org/10.1126/science.1079469] [PMID: 12702875]
[10]
Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27(4): 796-807. (2007).
[http://dx.doi.org/10.1523/JNEUROSCI.3501-06.2007] [PMID: 17251419]
[11]
De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN, et al. Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by A beta oligomers. Neurobiol Aging 29(9): 1334-47. (2008).
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.02.029] [PMID: 17403556]
[12]
Lesné SE, Sherman MA, Grant M, Kuskowski M, Schneider JA, Bennett DA, et al. Brain amyloid-β oligomers in ageing and Alzheimer’s disease. Brain 136(Pt 5): 1383-98. (2013).
[http://dx.doi.org/10.1093/brain/awt062] [PMID: 23576130]
[13]
Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, et al. Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29(28): 9078-89. (2009).
[http://dx.doi.org/10.1523/JNEUROSCI.1071-09.2009] [PMID: 19605645]
[14]
Tomiyama T, Matsuyama S, Iso H, Umeda T, Takuma H, Ohnishi K, et al. A mouse model of amyloid beta oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci 30(14): 4845-56. (2010).
[http://dx.doi.org/10.1523/JNEUROSCI.5825-09.2010] [PMID: 20371804]
[15]
Gerhäuser C. Beer constituents as potential cancer chemopreventive agents. Eur J Cancer 41(13): 1941-54. (2005).
[http://dx.doi.org/10.1016/j.ejca.2005.04.012] [PMID: 15953717]
[16]
Miranda CL, Stevens JF, Ivanov V, McCall M, Frei B, Deinzer ML, et al. Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J Agric Food Chem 48(9): 3876-84. (2000).
[http://dx.doi.org/10.1021/jf0002995] [PMID: 10995285]
[17]
Stevens JF, Page JE. Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry 65(10): 1317-30. (2004).
[http://dx.doi.org/10.1016/j.phytochem.2004.04.025] [PMID: 15231405]
[18]
Lee IS, Lim J, Gal J, Kang JC, Kim HJ, Kang BY, et al. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem Int 58(2): 153-60. (2011).
[http://dx.doi.org/10.1016/j.neuint.2010.11.008] [PMID: 21093515]
[19]
Ban JY, Jeon S-Y, Nguyen TTH, Bae K, Song K-S, Seong YH. Neuroprotective effect of oxyresveratrol from smilacis chinae rhizome on amyloid Beta protein (25-35)-induced neurotoxicity in cultured rat cortical neurons. Biol Pharm Bull 29(12): 2419-24. (2006).
[http://dx.doi.org/10.1248/bpb.29.2419] [PMID: 17142975]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy