Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Neutrophils as Sentinel Cells of the Immune System: A Role of the MPO-halide-system in Innate and Adaptive Immunity

Author(s): Janusz Marcinkiewicz* and Maria Walczewska

Volume 27, Issue 17, 2020

Page: [2840 - 2851] Pages: 12

DOI: 10.2174/0929867326666190819123300

Price: $65

Abstract

For decades, neutrophils were generally regarded as the cells of innate immunity with proinflammatory and phagocytic properties involved in a dual activity, beneficial (antimicrobial) and detrimental (tissue damage). Importantly, until the discovery of toll-like receptors (TLRs), a role of neutrophils in adaptive immunity was limited to the effector stage of humoral response and phagocytosis of opsonized antigens. Moreover, in common opinion, neutrophils, as well as the entire innate immune system, were not functionally associated with adaptive immunity. At the time we demonstrated protein chlorination by HOCl, the major product of neutrophil MPO-halide system enhances protein immunogenicity. Based on this discovery, we proposed, as the first, a new role for neutrophils as APC-accessory cells involved in the induction stage of adaptive immunity. Thereafter, we developed our theory concerning the role of neutrophils as the cells which link innate and adaptive immunity. We proposed that protein modification by HOCl may act as a neutrophildependent molecular tagging system, by which sentinel dendritic cells can faster recognise pathogen- derived antigens. Contemporaneously, it was demonstrated that taurine, the most abundant free amino acid in neutrophil cytosol and the major scavenger of HOCl, is a part of the oxidantantioxidant network and is responsible for the regulation and termination of acute inflammation. Moreover, it has been described, that taurine chloramine (TauCl), the physiological products of the reaction of HOCl with taurine, show anti-microbial and anti-inflammatory properties.

In this review, the role of HOCl, taurine and TauCl in innate and adaptive immunity will be discussed.

Keywords: Neutrophils, myeloperoxidase, hypochlorous acid, taurine, taurine chloramine, inflammation, protein oxidation, antigen processing.

[1]
Klebanoff, S.J. Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J. Bacteriol., 1968, 95(6), 2131-2138.
[http://dx.doi.org/10.1128/JB.95.6.2131-2138.1968] [PMID: 4970226]
[2]
Klebanoff, S.J. Myeloperoxidase. Proc. Assoc. Am. Physicians, 1999, 111(5), 383-389.
[http://dx.doi.org/10.1111/paa.1999.111.5.383] [PMID: 10519157]
[3]
Babior, B.M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N. Engl. J. Med., 1978, 298(12), 659-668.
[http://dx.doi.org/10.1056/NEJM197803232981205] [PMID: 24176]
[4]
Smith, J.A. Neutrophils, host defense, and inflammation: a double-edged sword. J. Leukoc. Biol., 1994, 56(6), 672-686.
[http://dx.doi.org/10.1002/jlb.56.6.672] [PMID: 7996043]
[5]
Hampton, M.B.; Kettle, A.J.; Winterbourn, C.C. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood, 1998, 92(9), 3007-3017.
[http://dx.doi.org/10.1182/blood.V92.9.3007] [PMID: 9787133]
[6]
Weiss, S.J. Tissue destruction by neutrophils. N. Engl. J. Med., 1989, 320(6), 365-376.
[http://dx.doi.org/10.1056/NEJM198902093200606] [PMID: 2536474]
[7]
Kragh, K.N.; Alhede, M.; Jensen, P.Ø.; Moser, C.; Scheike, T.; Jacobsen, C.S.; Seier Poulsen, S.; Eickhardt-Sørensen, S.R.; Trøstrup, H.; Christoffersen, L.; Hougen, H.P.; Rickelt, L.F.; Kühl, M.; Høiby, N.; Bjarnsholt, T. Polymorphonuclear leukocytes restrict growth of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Infect. Immun., 2014, 82(11), 4477-4486.
[http://dx.doi.org/10.1128/IAI.01969-14] [PMID: 25114118]
[8]
Kruger, P.; Saffarzadeh, M.; Weber, A.N.; Rieber, N.; Radsak, M.; von Bernuth, H.; Benarafa, C.; Roos, D.; Skokowa, J.; Hartl, D. Neutrophils: Between host defence, immune modulation, and tissue injury. PLoS Pathog., 2015, 11(3) e1004651
[http://dx.doi.org/10.1371/journal.ppat.1004651] [PMID: 25764063]
[9]
Borregaard, N.; Cowland, J.B. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood, 1997, 89(10), 3503-3521.
[http://dx.doi.org/10.1182/blood.V89.10.3503] [PMID: 9160655]
[10]
Stapels, D.A.; Geisbrecht, B.V.; Rooijakkers, S.H. Neutrophil serine proteases in antibacterial defense. Curr. Opin. Microbiol., 2015, 23, 42-48.
[http://dx.doi.org/10.1016/j.mib.2014.11.002] [PMID: 25461571]
[11]
Huxtable, R.J. Physiological actions of taurine. Physiol. Rev., 1992, 72(1), 101-163.
[http://dx.doi.org/10.1152/physrev.1992.72.1.101] [PMID: 1731369]
[12]
Kennedy, A.D.; DeLeo, F.R. Neutrophil apoptosis and the resolution of infection. Immunol. Res., 2009, 43(1-3), 25-61.
[http://dx.doi.org/10.1007/s12026-008-8049-6] [PMID: 19066741]
[13]
Klebanoff, S.J. Myeloperoxidase: friend and foe. J. Leukoc. Biol., 2005, 77(5), 598-625.
[http://dx.doi.org/10.1189/jlb.1204697] [PMID: 15689384]
[14]
Weiss, S.J.; Klein, R.; Slivka, A.; Wei, M. Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J. Clin. Invest., 1982, 70(3), 598-607.
[http://dx.doi.org/10.1172/JCI110652] [PMID: 6286728]
[15]
Marcinkiewicz, J.; Grabowska, A.; Bereta, J.; Stelmaszyńska, T. Taurine chloramine, a product of activated neutrophils, inhibits in vitro the generation of nitric oxide and other macrophage inflammatory mediators. J. Leukoc. Biol., 1995, 58(6), 667-674.
[http://dx.doi.org/10.1002/jlb.58.6.667] [PMID: 7499964]
[16]
Marcinkiewicz, J.; Grabowska, A.; Bereta, J.; Stelmaszyńska, T. Taurine chloramine, a product of activated neutrophils, inhibits in vitro the generation of nitric oxide and other macrophage inflammatory mediators. J. Leukoc. Biol., 1995, 58(6), 667-674.
[http://dx.doi.org/10.1002/jlb.58.6.667]
[17]
Marcinkiewicz, J.; Grabowska, A.; Bereta, J.; Bryniarski, K.; Nowak, B. Taurine chloramine down-regulates the generation of murine neutrophil inflammatory mediators. Immunopharmacology, 1998, 40(1), 27-38.
[http://dx.doi.org/10.1016/S0162-3109(98)00023-X] [PMID: 9776476]
[18]
Park, E.; Schuller-Levis, G.; Quinn, M.R. Taurine chloramine inhibits production of nitric oxide and TNF-alpha in activated RAW 264.7 cells by mechanisms that involve transcriptional and translational events. J. Immunol., 1995, 154(9), 4778-4784.
[PMID: 7536781]
[19]
Park, E.; Quinn, M.R.; Schuller-Levis, G. Taurine chloramine attenuates the hydrolytic activity of matrix metalloproteinase-9 in LPS-activated murine peritoneal macrophages. Adv. Exp. Med. Biol., 2000, 483, 389-398.
[http://dx.doi.org/10.1007/0-306-46838-7_44] [PMID: 11787624]
[20]
King, C.C.; Jefferson, M.M.; Thomas, E.L. Secretion and inactivation of myeloperoxidase by isolated neutrophils. J. Leukoc. Biol., 1997, 61(3), 293-302.
[http://dx.doi.org/10.1002/jlb.61.3.293] [PMID: 9060452]
[21]
Metzler, K.D.; Fuchs, T.A.; Nauseef, W.M.; Reumaux, D.; Roesler, J.; Schulze, I.; Wahn, V.; Papayannopoulos, V.; Zychlinsky, A. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood, 2011, 117(3), 953-959.
[http://dx.doi.org/10.1182/blood-2010-06-290171] [PMID: 20974672]
[22]
Papayannopoulos, V.; Zychlinsky, A. NETs: a new strategy for using old weapons. Trends Immunol., 2009, 30(11), 513-521.
[http://dx.doi.org/10.1016/j.it.2009.07.011] [PMID: 19699684]
[23]
Papayannopoulos, V.; Metzler, K.D.; Hakkim, A.; Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol., 2010, 191(3), 677-691.
[http://dx.doi.org/10.1083/jcb.201006052] [PMID: 20974816]
[24]
Thomas, E.L. Myeloperoxidase-hydrogen peroxide-chloride antimicrobial system: effect of exogenous amines on antibacterial action against Escherichia coli. Infect. Immun., 1979, 25(1), 110-116.
[http://dx.doi.org/ 10.1128/IAI.25.1.110-116.1979] [PMID: 39030]
[25]
Pattison, D.I.; Davies, M.J. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem. Res. Toxicol., 2001, 14(10), 1453-1464.
[http://dx.doi.org/10.1021/tx0155451] [PMID: 11599938]
[26]
Pattison, D.I.; Davies, M.J. Kinetic analysis of the reactions of hypobromous acid with protein components: implications for cellular damage and use of 3-bromotyrosine as a marker of oxidative stress. Biochemistry, 2004, 43(16), 4799-4809.
[http://dx.doi.org/10.1021/bi035946a] [PMID: 15096049]
[27]
Pattison, D.I.; Davies, M.J.; Hawkins, C.L. Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids. Free Radic. Res., 2012, 46(8), 975-995.
[http://dx.doi.org/10.3109/10715762.2012.667566] [PMID: 22348603]
[28]
Chapman, A.L.; Hampton, M.B.; Senthilmohan, R.; Winterbourn, C.C.; Kettle, A.J. Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus. J. Biol. Chem., 2002, 277(12), 9757-9762.
[http://dx.doi.org/10.1074/jbc.M106134200] [PMID: 11733505]
[29]
Winterbourn, C.C.; Kettle, A.J. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid. Redox Signal., 2013, 18(6), 642-660.
[http://dx.doi.org/10.1089/ars.2012.4827] [PMID: 22881869]
[30]
Prütz, W.A. Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch. Biochem. Biophys., 1996, 332(1), 110-120.
[http://dx.doi.org/10.1006/abbi.1996.0322] [PMID: 8806715]
[31]
Hawkins, C.L.; Pattison, D.I.; Davies, M.J. Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids, 2003, 25(3-4), 259-274.
[http://dx.doi.org/10.1007/s00726-003-0016-x] [PMID: 14661089]
[32]
Senthilmohan, R.; Kettle, A.J. Bromination and chlorination reactions of myeloperoxidase at physiological concentrations of bromide and chloride. Arch. Biochem. Biophys., 2006, 445(2), 235-244.
[http://dx.doi.org/10.1016/j.abb.2005.07.005] [PMID: 16125131]
[33]
Hawkins, C.L.; Davies, M.J. Hypochlorite-induced oxidation of proteins in plasma: formation of chloramines and nitrogen-centred radicals and their role in protein fragmentation. Biochem. J., 1999, 340(Pt 2), 539-548.
[http://dx.doi.org/10.1042/bj3400539] [PMID: 10333500]
[34]
Hawkins, C.L.; Davies, M.J. Inactivation of protease inhibitors and lysozyme by hypochlorous acid: role of side-chain oxidation and protein unfolding in loss of biological function. Chem. Res. Toxicol., 2005, 18(10), 1600-1610.
[http://dx.doi.org/10.1021/tx050207b] [PMID: 16533025]
[35]
Hawkins, C.L.; Pattison, D.I.; Stanley, N.R.; Davies, M.J. Tryptophan residues are targets in hypothiocyanous acid-mediated protein oxidation. Biochem. J., 2008, 416(3), 441-452.
[http://dx.doi.org/10.1042/BJ20070941] [PMID: 18652572]
[36]
Woods, A.A.; Davies, M.J. Fragmentation of extracellular matrix by hypochlorous acid. Biochem. J., 2003, 376(Pt 1), 219-227.
[http://dx.doi.org/10.1042/bj20030715] [PMID: 12911330]
[37]
Naskalski, J.W.; Marcinkiewicz, J.; Drozdz, R. Myeloperoxidase-mediated protein oxidation: its possible biological functions. Clin. Chem. Lab. Med., 2002, 40(5), 463-468.
[http://dx.doi.org/10.1515/CCLM.2002.080] [PMID: 12113289]
[38]
Schönberg, M.; Reibetanz, U.; Rathmann, S.; Lessig, J. Maintenance of α(1)-antitrypsin activity by means of co-application of hypochlorous acid-scavengers in vitro and in the supernatant of polymorphonuclear leukocytes: as a basis for a new drug delivery approach. Biomatter, 2012, 2(1), 24-36.
[http://dx.doi.org/10.4161/biom.19190] [PMID: 23507783]
[39]
Peskin, A.V.; Winterbourn, C.C. Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic. Biol. Med., 2001, 30(5), 572-579.
[http://dx.doi.org/10.1016/S0891-5849(00)00506-2] [PMID: 11182528]
[40]
Montecucco, F.; Bertolotto, M.; Ottonello, L.; Pende, A.; Dapino, P.; Quercioli, A.; Mach, F.; Dallegri, F. Chlorhexidine prevents hypochlorous acid-induced inactivation of alpha1-antitrypsin. Clin. Exp. Pharmacol. Physiol., 2009, 36(11), e72-e77.
[http://dx.doi.org/10.1111/j.1440-1681.2009.05270.x] [PMID: 19671069]
[41]
Wang, Y.; Rosen, H.; Madtes, D.K.; Shao, B.; Martin, T.R.; Heinecke, J.W.; Fu, X. Myeloperoxidase inactivates TIMP-1 by oxidizing its N-terminal cysteine residue: an oxidative mechanism for regulating proteolysis during inflammation. J. Biol. Chem., 2007, 282(44), 31826-31834.
[http://dx.doi.org/10.1074/jbc.M704894200] [PMID: 17726014]
[42]
Davies, J.M.; Horwitz, D.A.; Davies, K.J. Inhibition of collagenase activity by N-chlorotaurine, a product of activated neutrophils. Arthritis Rheum., 1994, 37(3), 424-427.
[http://dx.doi.org/10.1002/art.1780370317] [PMID: 8129798]
[43]
Rosen, H.; Klebanoff, S.J.; Wang, Y.; Brot, N.; Heinecke, J.W.; Fu, X. Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. Proc. Natl. Acad. Sci. USA, 2009, 106(44), 18686-18691.
[http://dx.doi.org/10.1073/pnas.0909464106] [PMID: 19833874]
[44]
Carr, A.C.; Hawkins, C.L.; Thomas, S.R.; Stocker, R.; Frei, B. Relative reactivities of N-chloramines and hypochlorous acid with human plasma constituents. Free Radic. Biol. Med., 2001, 30(5), 526-536.
[http://dx.doi.org/10.1016/S0891-5849(00)00495-0] [PMID: 11182523]
[45]
Learn, D.B.; Fried, V.A.; Thomas, E.L. Taurine and hypotaurine content of human leukocytes. J. Leukoc. Biol., 1990, 48(2), 174-182.
[http://dx.doi.org/10.1002/jlb.48.2.174] [PMID: 2370482]
[46]
Marcinkiewicz, J.; Kontny, E. Taurine and inflammatory diseases. Amino Acids, 2014, 46(1), 7-20.
[http://dx.doi.org/10.1007/s00726-012-1361-4] [PMID: 22810731]
[47]
Schuller-Levis, G.B.; Park, E. Taurine and its chloramine: modulators of immunity. Neurochem. Res., 2004, 29(1), 117-126.
[http://dx.doi.org/10.1023/B:NERE.0000010440.37629.17] [PMID: 14992270]
[48]
Wang, L.; Zhao, N. Zhang, Fang.; Yue, Wang.; Liang, M. Effect of taurine on leukocyte function. Eur. J. Pharmacol., 2009, 616, 275-280.
[http://dx.doi.org/10.1016/j.ejphar.2009.05.027] [PMID: 19490912]
[49]
Zgliczynski, J.M.; Selvaraj, R.J.; Paul, B.B.; Stelmaszynska, T.; Poskitt, P.K.; Sbarra, A.J. Chlorination by the myeloperoxidase- H2O2-Cl- antimicrobial system at acid and neutral pH. Proc. Soc. Exp. Biol. Med., 1977, 154(3), 418-422.
[http://dx.doi.org/10.3181/00379727-154-39684] [PMID: 15280]
[50]
Kim, C.; Cha, Y.N. Production of reactive oxygen and nitrogen species in phagocytes is regulated by taurine chloramine. Adv. Exp. Med. Biol., 2009, 643, 463-472.
[http://dx.doi.org/10.1007/978-0-387-75681-3_48] [PMID: 19239178]
[51]
Marcinkiewicz, J.; Chain, B.; Nowak, B.; Grabowska, A.; Bryniarski, K.; Baran, J. Antimicrobial and cytotoxic activity of hypochlorous acid: interactions with taurine and nitrite. Inflamm. Res., 2000, 49(6), 280-289.
[http://dx.doi.org/10.1007/PL00000208] [PMID: 10939618]
[52]
Oliveira, M.W.; Minotto, J.B.; de Oliveira, M.R.; Zanotto-Filho, A.; Behr, G.A.; Rocha, R.F.; Moreira, J.C.; Klamt, F. Scavenging and antioxidant potential of physiological taurine concentrations against different reactive oxygen/nitrogen species. Pharmacol. Rep., 2010, 62(1), 185-193.
[http://dx.doi.org/10.1016/S1734-1140(10)70256-5] [PMID: 20360629]
[53]
Schaffer, S.W.; Azuma, J.; Mozaffari, M. Role of antioxidant activity of taurine in diabetes. Can. J. Physiol. Pharmacol., 2009, 87(2), 91-99.
[http://dx.doi.org/10.1139/Y08-110] [PMID: 19234572]
[54]
Nagl, M.; Hess, M.W.; Pfaller, K.; Hengster, P.; Gottardi, W. Bactericidal activity of micromolar N-chlorotaurine: evidence for its antimicrobial function in the human defense system. Antimicrob. Agents Chemother., 2000, 44(9), 2507-2513.
[http://dx.doi.org/10.1128/AAC.44.9.2507-2513.2000] [PMID: 10952603]
[55]
Gottardi, W.; Nagl, M. N-chlorotaurine, a natural antiseptic with outstanding tolerability. J. Antimicrob. Chemother., 2010, 65(3), 399-409.
[http://dx.doi.org/10.1093/jac/dkp466] [PMID: 20053689]
[56]
Marcinkiewicz, J.; Wojas-Pelc, A.; Walczewska, M.; Lipko-Godlewska, S.; Jachowicz, R.; Maciejewska, A.; Białecka, A.; Kasprowicz, A. Topical taurine bromamine, a new candidate in the treatment of moderate inflammatory acne vulgaris: a pilot study. Eur. J. Dermatol., 2008, 18(4), 433-439.
[PMID: 18573718]
[57]
Marcinkiewicz, J.; Strus, M.; Walczewska, M.; Machul, A.; Mikołajczyk, D. Influence of taurine haloamines (TauCl and TauBr) on the development of Pseudomonas aeruginosa biofilm: a preliminary study. Adv. Exp. Med. Biol., 2013, 775, 269-283.
[http://dx.doi.org/10.1007/978-1-4614-6130-2_23] [PMID: 23392942]
[58]
Strus, M.; Walczewska, M.; Machul, A.; Mikołajczyk, D.; Marcinkiewicz, J. Taurine haloamines and biofilm. part I: antimicrobial activity of taurine bromamine and chlorhexidine against biofilm forming Pseudomonas aeruginosa. Adv. Exp. Med. Biol., 2015, 803, 121-132.
[http://dx.doi.org/10.1007/978-3-319-15126-7_11] [PMID: 25833493]
[59]
Gottardi, W.; Hagleitner, M.; Nagl, M. N,N-dichlorotaurine: chemical and bactericidal properties. Arch. Pharm. (Weinheim), 2005, 338(10), 473-483.
[http://dx.doi.org/10.1002/ardp.200500146] [PMID: 16211659]
[60]
Kim, W.; Kim, H.U.; Lee, H.N.; Kim, S.H.; Kim, C.; Cha, Y.N.; Joe, Y.; Chung, H.T.; Jang, J.; Kim, K.; Suh, Y.G.; Jin, H.O.; Lee, J.K.; Surh, Y.J. Taurine chloramine stimulates efferocytosis through upregulation of Nrf2-mediated heme oxygenase-1 expression in murine macrophages: possible involvement of carbon monoxide. Antioxid. Redox Signal., 2015, 23(2), 163-177.
[http://dx.doi.org/10.1089/ars.2013.5825] [PMID: 25816687]
[61]
Olszanecki, R.; Marcinkiewicz, J. Taurine chloramine and taurine bromamine induce heme oxygenase-1 in resting and LPS-stimulated J774.2 macrophages. Amino Acids, 2004, 27(1), 29-35.
[http://dx.doi.org/10.1007/s00726-004-0097-1] [PMID: 15309569]
[62]
Olszanecki, R.; Kurnyta, M.; Biedroń, R.; Chorobik, P.; Bereta, M.; Marcinkiewicz, J. The role of heme oxygenase-1 in down regulation of PGE2 production by taurine chloramine and taurine bromamine in J774.2 macrophages. Amino Acids, 2008, 35(2), 359-364.
[http://dx.doi.org/10.1007/s00726-007-0609-x] [PMID: 18157587]
[63]
McCracken, J.M.; Allen, L.A. Regulation of human neutrophil apoptosis and lifespan in health and disease. J. Cell Death, 2014, 7, 15-23.
[http://dx.doi.org/10.4137/JCD.S11038] [PMID: 25278783]
[64]
Hirschfeld, J. Dynamic interactions of neutrophils and biofilms. J. Oral Microbiol., 2014, 6, 26102.
[http://dx.doi.org/10.3402/jom.v6.26102] [PMID: 25523872]
[65]
Claesson, R.; Karlsson, M.; Zhang, Y.; Carlsson, J. Relative role of chloramines, hypochlorous acid, and proteases in the activation of human polymorphonuclear leukocyte collagenase. J. Leukoc. Biol., 1996, 60(5), 598-602.
[http://dx.doi.org/10.1002/jlb.60.5.598] [PMID: 8929550]
[66]
Segal, A.W. How neutrophils kill microbes. Annu. Rev. Immunol., 2005, 23, 197-223.
[http://dx.doi.org/10.1146/annurev.immunol.23.021704.115653] [PMID: 15771570]
[67]
McKenna, S.M.; Davies, K.J.A. The inhibition of bacterial growth by hypochlorous acid. Possible role in the bactericidal activity of phagocytes. Biochem. J., 1988, 254(3), 685-692.
[http://dx.doi.org/10.1042/bj2540685] [PMID: 2848494]
[68]
Nauseef, W.M. How human neutrophils kill and degrade microbes: an integrated view. Immunol. Rev., 2007, 219, 88-102.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00550.x] [PMID: 17850484]
[69]
Nauseef, W.M. Myeloperoxidase in human neutrophil host defence. Cell. Microbiol., 2014, 16(8), 1146-1155.
[http://dx.doi.org/10.1111/cmi.12312] [PMID: 24844117]
[70]
Palmer, L.J.; Cooper, P.R.; Ling, M.R.; Wright, H.J.; Huissoon, A.; Chapple, I.L. Hypochlorous acid regulates neutrophil extracellular trap release in humans. Clin. Exp. Immunol., 2012, 167(2), 261-268.
[http://dx.doi.org/10.1111/j.1365-2249.2011.04518.x] [PMID: 22236002]
[71]
Bergt, C.; Pennathur, S.; Fu, X.; Byun, J.; O’Brien, K.; McDonald, T.O.; Singh, P.; Anantharamaiah, G.M.; Chait, A.; Brunzell, J.; Geary, R.L.; Oram, J.F.; Heinecke, J.W. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc. Natl. Acad. Sci. USA, 2004, 101(35), 13032-13037.
[http://dx.doi.org/10.1073/pnas.0405292101] [PMID: 15326314]
[72]
Fu, X.; Kassim, S.Y.; Parks, W.C.; Heinecke, J.W. Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J. Biol. Chem., 2003, 278(31), 28403-28409.
[http://dx.doi.org/10.1074/jbc.M304739200] [PMID: 12759346]
[73]
Malle, E.; Marsche, G.; Arnhold, J.; Davies, M.J. Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid. Biochim. Biophys. Acta, 2006, 1761(4), 392-415.
[http://dx.doi.org/10.1016/j.bbalip.2006.03.024] [PMID: 16698314]
[74]
Matsuura, E.; Hughes, G.R.; Khamashta, M.A. Oxidation of LDL and its clinical implication. Autoimmun. Rev., 2008, 7(7), 558-566.
[http://dx.doi.org/10.1016/j.autrev.2008.04.018] [PMID: 18625445]
[75]
Hirche, T.O.; Gaut, J.P.; Heinecke, J.W.; Belaaouaj, A. Myeloperoxidase plays critical roles in killing Klebsiella pneumoniae and inactivating neutrophil elastase: effects on host defense. J. Immunol., 2005, 174(3), 1557-1565.
[http://dx.doi.org/10.4049/jimmunol.174.3.1557] [PMID: 15661916]
[76]
Melnyk, R.A.; Youngblut, M.D.; Clark, I.C.; Carlson, H.K.; Wetmore, K.M.; Price, M.N.; Iavarone, A.T.; Deutschbauer, A.M.; Arkin, A.P.; Coates, J.D. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich Peptide and methionine sulfoxide reductase. MBio, 2015, 6(3), e00233-e15.
[http://dx.doi.org/10.1128/mBio.00233-15] [PMID: 25968643]
[77]
Cui, Z.J.; Han, Z.Q.; Li, Z.Y. Modulating protein activity and cellular function by methionine residue oxidation. Amino Acids, 2012, 43(2), 505-517.
[http://dx.doi.org/10.1007/s00726-011-1175-9] [PMID: 22146868]
[78]
Shao, B.; Belaaouaj, A.; Verlinde, C.L.; Fu, X.; Heinecke, J.W. Methionine sulfoxide and proteolytic cleavage contribute to the inactivation of cathepsin G by hypochlorous acid: an oxidative mechanism for regulation of serine proteinases by myeloperoxidase. J. Biol. Chem., 2005, 280(32), 29311-29321.
[http://dx.doi.org/10.1074/jbc.M504040200] [PMID: 15967795]
[79]
Olszowski, S.; Olszowska, E.; Stelmaszyńska, T.; Krawczyk, A.; Marcinkiewicz, J.; Bączek, N. Oxidative modification of ovalbumin. Acta Biochim. Pol., 1996, 43(4), 661-672.
[http://dx.doi.org/10.18388/abp.1996_4462] [PMID: 9104502]
[80]
Olszowska, E.; Olszowski, S.; Zgliczyński, J.M.; Stelmaszyńska, T. Enhancement of proteinase-mediated degradation of proteins modified by chlorination. Int. J. Biochem., 1989, 21(7), 799-805.
[http://dx.doi.org/10.1016/0020-711X(89)90213-9] [PMID: 2668067]
[81]
Prokopowicz, Z.M.; Arce, F.; Biedroń, R.; Chiang, C.L.; Ciszek, M.; Katz, D.R.; Nowakowska, M.; Zapotoczny, S.; Marcinkiewicz, J.; Chain, B.M. Hypochlorous acid: a natural adjuvant that facilitates antigen processing, cross-priming, and the induction of adaptive immunity. J. Immunol., 2010, 184(2), 824-835.
[http://dx.doi.org/10.4049/jimmunol.0902606] [PMID: 20018624]
[82]
Marcinkiewicz, J.; Czajkowska, B.; Grabowska, A.; Kasprowicz, A.; Kociszewska, B. Differential effects of chlorination of bacteria on their capacity to generate NO, TNF-alpha and IL-6 in macrophages. Immunology, 1994, 83(4), 611-616.
[PMID: 7875741]
[83]
Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol., 2001, 1(2), 135-145.
[http://dx.doi.org/10.1038/35100529] [PMID: 11905821]
[84]
Park, B.S.; Song, D.H.; Kim, H.M.; Choi, B.S.; Lee, H.; Lee, J.O. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature, 2009, 458(7242), 1191-1195.
[http://dx.doi.org/10.1038/nature07830] [PMID: 19252480]
[85]
Józefowski, S. The danger model: questioning an unconvincing theory. Immunol. Cell Biol., 2016, 94(5), 525.
[http://dx.doi.org/10.1038/icb.2016.29] [PMID: 27216566]
[86]
Fridlender, Z.G.; Sun, J.; Kim, S.; Kapoor, V.; Cheng, G.; Ling, L.; Worthen, G.S.; Albelda, S.M. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 2009, 16(3), 183-194.
[http://dx.doi.org/10.1016/j.ccr.2009.06.017] [PMID: 19732719]
[87]
Brennan, M.L.; Anderson, M.M.; Shih, D.M.; Qu, X.D.; Wang, X.; Mehta, A.C.; Lim, L.L.; Shi, W.; Hazen, S.L.; Jacob, J.S.; Crowley, J.R.; Heinecke, J.W.; Lusis, A.J. Increased atherosclerosis in myeloperoxidase-deficient mice. J. Clin. Invest., 2001, 107(4), 419-430.
[http://dx.doi.org/10.1172/JCI8797] [PMID: 11181641]
[88]
Kontny, E.; Grabowska, A.; Kowalczewski, J.; Kurowska, M.; Janicka, I.; Marcinkiewicz, J.; Maśliński, W. Taurine chloramine inhibition of cell proliferation and cytokine production by rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheum., 1999, 42(12), 2552-2560.
[http://dx.doi.org/10.1002/1529-0131(199912)42:12<2552:AID-ANR7>3.0.CO;2-V] [PMID: 10616000]
[89]
Kontny, E.; Chorąży-Massalska, M.; Rudnicka, W.; Janicka, I.; Marcinkiewicz, J.; Maśliński, W. The effect of taurine and its metabolites on the pathogenic functions of rheumatoid arthritis fibroblast-like synoviocytes. Cent. Eur. J. Immunol., 2003, 28, 167-172.
[90]
Ray, R.S.; Katyal, A. Myeloperoxidase: Bridging the gap in neurodegeneration. Neurosci. Biobehav. Rev., 2016, 68, 611-620.
[http://dx.doi.org/10.1016/j.neubiorev.2016.06.031] [PMID: 27343997]
[91]
Yap, Y.W.; Whiteman, M.; Bay, B.H.; Li, Y.; Sheu, F.S.; Qi, R.Z.; Tan, C.H.; Cheung, N.S. Hypochlorous acid induces apoptosis of cultured cortical neurons through activation of calpains and rupture of lysosomes. J. Neurochem., 2006, 98(5), 1597-1609.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03996.x] [PMID: 16923169]
[92]
Jeitner, T.M.; Kalogiannis, M.; Krasnikov, B.F.; Gomolin, I.; Peltier, M.R.; Moran, G.R. Linking inflammation and parkinson disease: hypochlorous acid generates parkinsonian poisons. Toxicol. Sci., 2016, 151(2), 388-402.
[http://dx.doi.org/10.1093/toxsci/kfw052] [PMID: 27026709]
[93]
Nusshold, C.; Kollroser, M.; Köfeler, H.; Rechberger, G.; Reicher, H.; Ullen, A.; Bernhart, E.; Waltl, S.; Kratzer, I.; Hermetter, A.; Hackl, H.; Trajanoski, Z.; Hrzenjak, A.; Malle, E.; Sattler, W. Hypochlorite modification of sphingomyelin generates chlorinated lipid species that induce apoptosis and proteome alterations in dopaminergic PC12 neurons in vitro. Free Radic. Biol. Med., 2010, 48(12), 1588-1600.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.02.037] [PMID: 20226853]
[94]
Marcinkiewicz, J.; Stręk, P.; Strus, M.; Głowacki, R.; Ciszek-Lenda, M.; Zagórska-Świeży, K.; Gawda, A.; Tomusiak, A. Staphylococcus epidermidis and biofilm-associated neutrophils in chronic rhinosinusitis. A pilot study. Int. J. Exp. Pathol., 2015, 96(6), 378-386.
[http://dx.doi.org/10.1111/iep.12156] [PMID: 26765504]
[95]
Ciszek-Lenda, M.; Strus, M.; Walczewska, M.; Machul-Żwirbla, A.; Mikołajczyk, D.; Koziel, J.; Marcinkiewicz, J. Hyperinflammatory response of phagocytes exposed to biofilm- forming Pseudomonas aeruginosa. A role of biofilmtrapped LPS and DNA. 2017.
[96]
Marcinkiewicz, J.; Chain, B.M.; Olszowska, E.; Olszowski, S.; Zgliczyński, J.M. Enhancement of immunogenic properties of ovalbumin as a result of its chlorination. Int. J. Biochem., 1991, 23(12), 1393-1395.
[http://dx.doi.org/10.1016/0020-711X(91)90280-Z] [PMID: 1761149]
[97]
Marcinkiewicz, J.; Olszowska, E.; Olszowski, S.; Zgliczyński, J.M. Enhancement of trinitrophenyl-specific humoral response to TNP proteins as the result of carrier chlorination. Immunology, 1992, 76(3), 385-388.
[PMID: 1382040]
[98]
Marcinkiewicz, J.; Grabowska, A.; Chain, B.M. Modulation of antigen-specific T-cell activation in vitro by taurine chloramine. Immunology, 1998, 94(3), 325-330.
[http://dx.doi.org/10.1046/j.1365-2567.1998.00515.x] [PMID: 9767413]
[99]
Prokopowicz, Z.; Marcinkiewicz, J.; Katz, D.R.; Chain, B.M. Neutrophil myeloperoxidase: soldier and statesman. Arch. Immunol. Ther. Exp. (Warsz.), 2012, 60(1), 43-54.
[http://dx.doi.org/10.1007/s00005-011-0156-8] [PMID: 22143159]
[100]
Marcinkiewicz, J. Neutrophil chloramines: missing links between innate and acquired immunity. Immunol. Today, 1997, 18(12), 577-580.
[http://dx.doi.org/10.1016/S0167-5699(97)01161-4] [PMID: 9425735]
[101]
Allison, M.E.; Fearon, D.T. Enhanced immunogenicity of aldehyde-bearing antigens: a possible link between innate and adaptive immunity. Eur. J. Immunol., 2000, 30(10), 2881-2887.
[http://dx.doi.org/10.1002/1521-4141(200010)30:10<2881:AID-IMMU2881>3.0.CO;2-9] [PMID: 11069070]
[102]
Chiang, C.L.; Ledermann, J.A.; Rad, A.N.; Katz, D.R.; Chain, B.M. Hypochlorous acid enhances immunogenicity and uptake of allogeneic ovarian tumor cells by dendritic cells to cross-prime tumor-specific T cells. Cancer Immunol. Immunother., 2006, 55(11), 1384-1395.
[http://dx.doi.org/10.1007/s00262-006-0127-9] [PMID: 16463039]
[103]
Carrasco-Marín, E.; Paz-Miguel, J.E.; López-Mato, P.; Alvarez-Domínguez, C.; Leyva-Cobián, F. Oxidation of defined antigens allows protein unfolding and increases both proteolytic processing and exposes peptide epitopes which are recognized by specific T cells. Immunology, 1998, 95(3), 314-321.
[http://dx.doi.org/10.1046/j.1365-2567.1998.00618.x] [PMID: 9824492]
[104]
Marsche, G.; Weigle, B.; Sattler, W.; Malle, E. Soluble RAGE blocks scavenger receptor CD36-mediated uptake of hypochlorite-modified low-density lipoprotein. FASEB J., 2007, 21(12), 3075-3082.
[http://dx.doi.org/10.1096/fj.07-8316com] [PMID: 17536039]
[105]
Biedroń, R.; Konopiński, M.K.; Marcinkiewicz, J.; Józefowski, S. Oxidation by neutrophils-derived HOCl increases immunogenicity of proteins by converting them into ligands of several endocytic receptors involved in antigen uptake by dendritic cells and macrophages. PLoS One, 2015, 10(4) e0123293
[http://dx.doi.org/10.1371/journal.pone.0123293] [PMID: 25849867]
[106]
Rutgers, A.; Heeringa, P.; Tervaert, J.W. The role of myeloperoxidase in the pathogenesis of systemic vasculitis. Clin. Exp. Rheumatol., 2003, 21(6 Suppl. 32), S55-S63.
[PMID: 14740428]
[107]
Strzepa, A.; Pritchard, K.A.; Dittel, B.N. Myeloperoxidase: A new player in autoimmunity. Cell. Immunol., 2017, 317, 1-8.
[http://dx.doi.org/10.1016/j.cellimm.2017.05.002] [PMID: 28511921]
[108]
Westman, E.; Harris, H.E. Alteration of an autoantigen by chlorination, a process occurring during inflammation, can overcome adaptive immune tolerance. Scand. J. Immunol., 2004, 59(5), 458-463.
[http://dx.doi.org/10.1111/j.0300-9475.2004.01428.x] [PMID: 15140055]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy