Review Article

帕特诺尔及其类似物:一种治疗三阴性乳腺癌的新潜在策略

卷 27, 期 39, 2020

页: [6628 - 6642] 页: 15

弟呕挨: 10.2174/0929867326666190816230121

价格: $65

conference banner
摘要

三阴性乳腺癌(TNBC)是异质性和侵袭性病理,具有与它们的遗传多样性,表观遗传学,转录变化和异常分子模式相关的独特形态和临床特征。 用抗肿瘤药物治疗会产生全身性效应,但特异性较低,并且由于化学抗药性和复发性,总体生存率会得到初步改善。 TNBC治疗的新替代品迫在眉睫,并且已经研究了单苯乙内酯或其类似物。 偏苯二酚是倍半萜内酯,对TNBC细胞系具有良好的抗肿瘤作用。 这篇综述强调了单烯酚及其类似药物在TNBC治疗中的重要性。

关键词: 爬山虎精,三阴性乳腺癌,倍半萜内酯,核因子-κB,异质性,天然产物。

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[3]
Stefan, C. Will a global fund for cancer be the answer? Nat. Rev. Clin. Oncol., 2018, 15(4), 195-196.
[http://dx.doi.org/10.1038/nrclinonc.2017.211] [PMID: 29335653]
[4]
Maule, M.; Merletti, F. Cancer transition and priorities for cancer control. Lancet Oncol., 2012, 13(8), 745-746.
[http://dx.doi.org/10.1016/S1470-2045(12)70268-1] [PMID: 22846827]
[5]
Golubnitschaja, O.; Debald, M.; Yeghiazaryan, K.; Kuhn, W.; Pešta, M.; Costigliola, V.; Grech, G. Breast cancer epidemic in the early twenty-first century: evaluation of risk factors, cumulative questionnaires and recommendations for preventive measures. Tumour Biol., 2016, 37(10), 12941-12957.
[http://dx.doi.org/10.1007/s13277-016-5168-x] [PMID: 27448308]
[6]
DeSantis, C.E.; Ma, J.; Goding Sauer, A.; Newman, L.A.; Jemal, A. Breast cancer statistics 2017, racial disparity in mortality by state. CA Cancer J. Clin., 2017, 67(6), 439-448.
[http://dx.doi.org/10.3322/caac.21412] [PMID: 28972651]
[7]
Câncer, I.N.d. Estimativa 2018: Incidência de Câncer no Brasil. Availalble at: https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-incidencia-de-cancer-no-brasil-2018.pdf (Accessed Date: 4th March, 2019.)
[8]
Society, A.C. Breast Cancer Facts & Figures 2017-2018, 2017.
[9]
Ford, D.; Easton, D.F. The genetics of breast and ovarian cancer. Br. J. Cancer, 1995, 72(4), 805-812.
[http://dx.doi.org/10.1038/bjc.1995.417] [PMID: 7547224]
[10]
Rowan, E.; Poll, A.; Narod, S.A. A prospective study of breast cancer risk in relatives of BRCA1/BRCA2 mutation carriers. J. Med. Genet., 2007, 44(8), e89.
[PMID: 17673443]
[11]
Apostolou, P.; Fostira, F. Hereditary breast cancer: the era of new susceptibility genes. BioMed Res. Int., 2013, 2013, 747318.
[http://dx.doi.org/10.1155/2013/747318] [PMID: 23586058]
[12]
Dieci, M.V.; Orvieto, E.; Dominici, M.; Conte, P.; Guarneri, V. Rare breast cancer subtypes: histological, molecular and clinical peculiarities. Oncologist, 2014, 19(8), 805-813.
[http://dx.doi.org/10.1634/theoncologist.2014-0108] [PMID: 24969162]
[13]
Weigelt, B.; Reis-Filho, J.S. Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat. Rev. Clin. Oncol., 2009, 6(12), 718-730.
[http://dx.doi.org/10.1038/nrclinonc.2009.166] [PMID: 19942925]
[14]
Sachs, N.; de Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H. A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018, 172(1-2), 373-386.
[http://dx.doi.org/10.1016/j.cell.2017.11.010]
[15]
Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.J. Panel members. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann. Oncol., 2013, 24(9), 2206-2223.
[http://dx.doi.org/10.1093/annonc/mdt303] [PMID: 23917950]
[16]
Curigliano, G.; Burstein, H.J.; Winer, E.P.; Gnant, M.; Dubsky, P.; Loibl, S.; Colleoni, M.; Regan, M.M.; Piccart-Gebhart, M.; Senn, H.J.; Thürlimann, B.; André, F.; Baselga, J.; Bergh, J.; Bonnefoi, H.; Brucker, S.Y.; Cardoso, F.; Carey, L.; Ciruelos, E.; Cuzick, J.; Denkert, C.; Di Leo, A.; Ejlertsen, B.; Francis, P.; Galimberti, V.; Garber, J.; Gulluoglu, B.; Goodwin, P.; Harbeck, N.; Hayes, D.F.; Huang, C.S.; Huober, J.; Hussein, K.; Jassem, J.; Jiang, Z.; Karlsson, P.; Morrow, M.; Orecchia, R.; Osborne, K.C.; Pagani, O.; Partridge, A.H.; Pritchard, K.; Ro, J.; Rutgers, E.J.T.; Sedlmayer, F.; Semiglazov, V.; Shao, Z.; Smith, I.; Toi, M.; Tutt, A.; Viale, G.; Watanabe, T.; Whelan, T.J.; Xu, B.St. Gallen international expert consensus on the primary therapy of early breast cancer 2017. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen international expert consensus conference on the primary therapy of early breast cancer 2017. Ann. Oncol., 2017, 28(8), 1700-1712.
[http://dx.doi.org/10.1093/annonc/mdx308] [PMID: 28838210]
[17]
Dai, X.; Xiang, L.; Li, T.; Bai, Z. Cancer hallmarks, biomarkers and breast cancer molecular subtypes. J. Cancer, 2016, 7(10), 1281-1294.
[http://dx.doi.org/10.7150/jca.13141] [PMID: 27390604]
[18]
Toft, D.J.; Cryns, V.L. Minireview: Basal-like breast cancer: from molecular profiles to targeted therapies. Mol. Endocrinol., 2011, 25(2), 199-211.
[http://dx.doi.org/10.1210/me.2010-0164] [PMID: 20861225]
[19]
Fragomeni, S.M.; Sciallis, A.; Jeruss, J.S. Molecular subtypes and local-regional control of breast cancer. Surg. Oncol. Clin. N. Am., 2018, 27(1), 95-120.
[http://dx.doi.org/10.1016/j.soc.2017.08.005] [PMID: 29132568]
[20]
Giordano, S.H.; Temin, S.; Chandarlapaty, S.; Crews, J.R.; Esteva, F.J.; Kirshner, J.J.; Krop, I.E.; Levinson, J.; Lin, N.U.; Modi, S.; Patt, D.A.; Perlmutter, J.; Ramakrishna, N.; Winer, E.P.; Davidson, N.E. Systemic therapy for patients with advanced human epidermal growth factor receptor 2-positive breast cancer: ASCO clinical practice guideline update. J. Clin. Oncol., 2018, 36(26), 2736-2740.
[http://dx.doi.org/10.1200/JCO.2018.79.2697] [PMID: 29939838]
[21]
Weigel, M.T.; Dowsett, M. Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr. Relat. Cancer, 2010, 17(4), R245-R262.
[http://dx.doi.org/10.1677/ERC-10-0136] [PMID: 20647302]
[22]
Constantinidou, A.; Smith, I. Is there a case for anti-HER2 therapy without chemotherapy in early breast cancer? Breast, 2011, 20(Suppl. 3), S158-S161.
[http://dx.doi.org/10.1016/S0960-9776(11)70316-2] [PMID: 22015286]
[23]
Kumar, M.; Sahu, R.K.; Goyal, A.; Sharma, S.; Kaur, N.; Mehrotra, R.; Singh, U.R.; Hedau, S. BRCA1 promoter methylation and expression - associations with ER+, PR+ and HER2+ subtypes of breast carcinoma. Asian Pac. J. Cancer Prev., 2017, 18(12), 3293-3299.
[http://dx.doi.org/10.22034/APJCP.2017.18.12.3293 ] [PMID: 29286222]
[24]
Criscitiello, C.; Azim, H.A. Jr.; Schouten, P.C.; Linn, S.C.; Sotiriou, C. Understanding the biology of triple-negative breast cancer. Ann. Oncol., 2012, 23(Suppl. 6), vi13-vi18.
[http://dx.doi.org/10.1093/annonc/mds188] [PMID: 23012296]
[25]
Tyanova, S.; Albrechtsen, R.; Kronqvist, P.; Cox, J.; Mann, M.; Geiger, T. Proteomic maps of breast cancer subtypes. Nat. Commun., 2016, 7, 10259.
[http://dx.doi.org/10.1038/ncomms10259] [PMID: 26725330]
[26]
Lei, J.; Rudolph, A.; Moysich, K.B.; Rafiq, S.; Behrens, S.; Goode, E.L.; Pharoah, P.P.; Seibold, P.; Fasching, P.A.; Andrulis, I.L.; Kristensen, V.N.; Couch, F.J.; Hamann, U.; Hooning, M.J.; Nevanlinna, H.; Eilber, U.; Bolla, M.K.; Dennis, J.; Wang, Q.; Lindblom, A.; Mannermaa, A.; Lambrechts, D.; García-Closas, M.; Hall, P.; Chenevix-Trench, G.; Shah, M.; Luben, R.; Haeberle, L.; Ekici, A.B.; Beckmann, M.W.; Knight, J.A.; Glendon, G.; Tchatchou, S.; Alnæs, G.I.; Borresen-Dale, A.L.; Nord, S.; Olson, J.E.; Hallberg, E.; Vachon, C.; Torres, D.; Ulmer, H.U.; Rüdiger, T.; Jager, A.; van Deurzen, C.H.; Tilanus-Linthorst, M.M.; Muranen, T.A.; Aittomäki, K.; Blomqvist, C.; Margolin, S.; Kosma, V.M.; Hartikainen, J.M.; Kataja, V.; Hatse, S.; Wildiers, H.; Smeets, A.; Figueroa, J.; Chanock, S.J.; Lissowska, J.; Li, J.; Humphreys, K.; Phillips, K.A.; Linn, S.; Cornelissen, S.; van den Broek, S.A.; Kang, D.; Choi, J.Y.; Park, S.K.; Yoo, K.Y.; Hsiung, C.N.; Wu, P.E.; Hou, M.F.; Shen, C.Y.; Teo, S.H.; Taib, N.A.; Yip, C.H.; Ho, G.F.; Matsuo, K.; Ito, H.; Iwata, H.; Tajima, K.; Dunning, A.M.; Benitez, J.; Czene, K.; Sucheston, L.E.; Maishman, T.; Tapper, W.J.; Eccles, D.; Easton, D.F.; Schmidt, M.K.; Chang-Claude, J. kConFab Investigators. Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with prognosis of estrogen receptor-negative breast cancer after chemotherapy. Breast Cancer Res., 2015, 17(1), 18.
[http://dx.doi.org/10.1186/s13058-015-0522-2] [PMID: 25849327]
[27]
Asaduzzaman, M.; Constantinou, S.; Min, H.; Gallon, J.; Lin, M-L.; Singh, P.; Raguz, S.; Ali, S.; Shousha, S.; Coombes, R.C.; Lam, E.W.; Hu, Y.; Yagüe, E. Tumour suppressor EP300, a modulator of paclitaxel resistance and stemness, is downregulated in metaplastic breast cancer. Breast Cancer Res. Treat., 2017, 163(3), 461-474.
[http://dx.doi.org/10.1007/s10549-017-4202-z] [PMID: 28341962]
[28]
Greenlee, H.; DuPont-Reyes, M.J.; Balneaves, L.G.; Carlson, L.E.; Cohen, M.R.; Deng, G.; Johnson, J.A.; Mumber, M.; Seely, D.; Zick, S.M.; Boyce, L.M.; Tripathy, D. Clinical practice guidelines on the evidence-based use of integrative therapies during and after breast cancer treatment. CA Cancer J. Clin., 2017, 67(3), 194-232.
[http://dx.doi.org/10.3322/caac.21397] [PMID: 28436999]
[29]
Jones, M.E.; Schoemaker, M.J.; Wright, L.B.; Ashworth, A.; Swerdlow, A.J. Smoking and risk of breast cancer in the Generations Study cohort. Breast Cancer Res., 2017, 19(1), 118.
[http://dx.doi.org/10.1186/s13058-017-0908-4] [PMID: 29162146]
[30]
Zakaria, N.; Mohd Yusoff, N.; Zakaria, Z.; Widera, D.; Yahaya, B.H. Inhibition of NF-κB signaling reduces the stemness characteristics of lung cancer stem cells. Front. Oncol., 2018, 8, 166.
[http://dx.doi.org/10.3389/fonc.2018.00166] [PMID: 29868483]
[31]
Ghantous, A.; Sinjab, A.; Herceg, Z.; Darwiche, N. Parthenolide: from plant shoots to cancer roots. Drug Discov. Today, 2013, 18(17-18), 894-905.
[http://dx.doi.org/10.1016/j.drudis.2013.05.005] [PMID: 23688583]
[32]
Wiedhopf, R.M.; Young, M.; Bianchi, E.; Cole, J.R. Tumor inhibitory agent from Magnolia grandiflora (Magnoliaceae). I. Parthenolide. J. Pharm. Sci., 1973, 62(2), 345.
[http://dx.doi.org/10.1002/jps.2600620244] [PMID: 4686424]
[33]
Groenewegen, W.A.; Heptinstall, S. A comparison of the effects of an extract of feverfew and parthenolide, a component of feverfew, on human platelet activity in-vitro. J. Pharm. Pharmacol., 1990, 42(8), 553-557.
[http://dx.doi.org/10.1111/j.2042-7158.1990.tb07057.x] [PMID: 1981582]
[34]
Tiuman, T.S.; Ueda-Nakamura, T.; Garcia Cortez, D.A.; Dias Filho, B.P.; Morgado-Díaz, J.A.; de Souza, W.; Nakamura, C.V. Antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetum parthenium. Antimicrob. Agents Chemother., 2005, 49(1), 176-182.
[http://dx.doi.org/10.1128/AAC.49.11.176-182.2005] [PMID: 15616293]
[35]
Schinella, G.R.; Giner, R.M.; Recio, M.C.; Mordujovich de Buschiazzo, P.; Ríos, J.L.; Máñez, S. Anti-inflammatory effects of South American tanacetum vulgare. J. Pharm. Pharmacol., 1998, 50(9), 1069-1074.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb06924.x] [PMID: 9811170]
[36]
Murphy, J.J.; Heptinstall, S.; Mitchell, J.R. Randomised double-blind placebo-controlled trial of feverfew in migraine prevention. Lancet, 1988, 2(8604), 189-192.
[http://dx.doi.org/10.1016/S0140-6736(88)92289-1] [PMID: 2899663]
[37]
Koganov, M. Parthenolide free bioactive ingredients from feverfew (Tanacetum parthenium) and processes for their production. WO 2007/098471 A3, 2007.
[38]
Baskaran, N.; Selvam, G.S.; Yuvaraj, S.; Abhishek, A. Parthenolide attenuates 7,12-dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis. Mol. Cell. Biochem., 2018, 440(1-2), 11-22.
[http://dx.doi.org/10.1007/s11010-017-3151-5] [PMID: 28801714]
[39]
Alonso, M.R.; Anesini, C.A.; Martino, R.F. Anti-inflammatory activity in: Sesquiterpene Lactones., ; Sulsen, V.P.; Martino, V.S., Eds.; SpringerLink, 2018, pp. 325-346.
[http://dx.doi.org/10.1007/978-3-319-78274-4_14]
[40]
Benassi-Zanqueta, É.; Marques, C.F.; Nocchi, S.R.; Dias Filho, B.P.; Nakamura, C.V.; Ueda-Nakamura, T. Parthenolide Influences Herpes simplex virus 1 Replication in vitro. Intervirology, 2018, 61(1), 14-22.
[http://dx.doi.org/10.1159/000490055] [PMID: 30001535]
[41]
Xu, S.; Zhao, X.; Liu, F.; Cao, Y.; Wang, B.; Wang, X.; Yin, M.; Wang, Q.; Feng, X. Crucial role of oxidative stress in bactericidal effect of parthenolide against Xanthomonas oryzae pv. oryzae. Pest Manag. Sci., 2018, 74(12), 2716-2723.
[http://dx.doi.org/10.1002/ps.5091] [PMID: 29808556]
[42]
Jafari, N.; Nazeri, S.; Enferadi, S.T. Parthenolide reduces metastasis by inhibition of vimentin expression and induces apoptosis by suppression elongation factor α - 1 expression. Phytomedicine, 2018, 41, 67-73.
[http://dx.doi.org/10.1016/j.phymed.2018.01.022] [PMID: 29519321]
[43]
Jin, X.; Zhou, J.; Zhang, Z.; Lv, H. The combined administration of parthenolide and ginsenoside CK in long circulation liposomes with targeted tLyp-1 ligand induce mitochondria-mediated lung cancer apoptosis. Artif. Cells Nanomed. Biotechnol,, 2018, 46(sup3), S931-S942.
[http://dx.doi.org/10.1080/21691401.2018.1518913]
[44]
Yu, H.J.; Jung, J.Y.; Jeong, J.H.; Cho, S.D.; Lee, J.S. Induction of apoptosis by parthenolide in human oral cancer cell lines and tumor xenografts. Oral Oncol., 2015, 51(6), 602-609.
[http://dx.doi.org/10.1016/j.oraloncology.2015.03.003] [PMID: 25817195]
[45]
Liu, W.; Wang, X.; Sun, J.; Yang, Y.; Li, W.; Song, J. Parthenolide suppresses pancreatic cell growth by autophagy-mediated apoptosis. OncoTargets Ther., 2017, 10, 453-461.
[http://dx.doi.org/10.2147/OTT.S117250] [PMID: 28176967]
[46]
Ramachandran, C.; Resek, A.P.; Escalon, E.; Aviram, A.; Melnick, S.J. Potentiation of gemcitabine by Turmeric Force in pancreatic cancer cell lines. Oncol. Rep., 2010, 23(6), 1529-1535.
[http://dx.doi.org/10.3892/or_00000792] [PMID: 20428806]
[47]
Siveen, K.S.; Uddin, S.; Mohammad, R.M. Targeting acute myeloid leukemia stem cell signaling by natural products. Mol. Cancer, 2017, 16(1), 13.
[http://dx.doi.org/10.1186/s12943-016-0571-x] [PMID: 28137265]
[48]
Zahedpanah, M.; Shaiegan, M.; Ghaffari, S.H.; Nikbakht, M.; Nikugoftar, M.; Mohammadi, S. Parthenolide induces apoptosis in committed progenitor AML cell line U937 via reduction in osteopontin. Rep. Biochem. Mol. Biol., 2016, 4(2), 82-88.
[PMID: 27536701]
[49]
Yang, C.; Yang, Q.O.; Kong, Q.J.; Yuan, W.; O., Yang Y.P.; Parthenolide induces reactive oxygen species-mediated autophagic cell death, Y.P. parthenolide induces reactive oxygen species-mediated autophagic cell death in human osteosarcoma cells. Cell. Physiol. Biochem., 2016, 40(1-2), 146-154.
[http://dx.doi.org/10.1159/000452532] [PMID: 27855364]
[50]
Duan, D.; Zhang, J.; Yao, J.; Liu, Y.; Fang, J. Targeting thioredoxin reductase by parthenolide contributes to inducing apoptosis of HeLa cells. J. Biol. Chem., 2016, 291(19), 10021-10031.
[http://dx.doi.org/10.1074/jbc.M115.700591] [PMID: 27002142]
[51]
Jeyamohan, S.; Moorthy, R.K.; Kannan, M.K.; Arockiam, A.J. Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer. Biotechnol. Lett., 2016, 38(8), 1251-1260.
[http://dx.doi.org/10.1007/s10529-016-2102-7] [PMID: 27099069]
[52]
Hartman, M.L.; Talar, B.; Sztiller-Sikorska, M.; Nejc, D.; Czyz, M. Parthenolide induces MITF-M downregulation and senescence in patient-derived MITF-M(high) melanoma cell populations. Oncotarget, 2016, 7(8), 9026-9040.
[http://dx.doi.org/10.18632/oncotarget.7030] [PMID: 26824319]
[53]
George, V.C.; Kumar, D.R.; Kumar, R.A. Relative in vitro potentials of parthenolide to induce apoptosis and cell cycle arrest in skin cancer cells. Curr. Drug Discov. Technol., 2016, 13(1), 34-40.
[http://dx.doi.org/10.2174/1570163813666160224124029] [PMID: 26906908]
[54]
Morel, K.L.; Ormsby, R.J.; Solly, E.L.; Tran, L.N.K.; Sweeney, C.J.; Klebe, S.; Cordes, N.; Sykes, P.J. Chronic low dose ethanol induces an aggressive metastatic phenotype in TRAMP mice, which is counteracted by parthenolide. Clin. Exp. Metastasis, 2018, 35(7), 649-661.
[http://dx.doi.org/10.1007/s10585-018-9915-9] [PMID: 29936575]
[55]
Kawasaki, B.T.; Hurt, E.M.; Kalathur, M.; Duhagon, M.A.; Milner, J.A.; Kim, Y.S.; Farrar, W.L. Effects of the sesquiterpene lactone parthenolide on prostate tumor-initiating cells: An integrated molecular profiling approach. Prostate, 2009, 69(8), 827-837.
[http://dx.doi.org/10.1002/pros.20931] [PMID: 19204913]
[56]
Hayashi, S.; Koshiba, K.; Hatashita, M.; Sato, T.; Jujo, Y.; Suzuki, R.; Tanaka, Y.; Shioura, H. Thermosensitization and induction of apoptosis or cell-cycle arrest via the MAPK cascade by parthenolide, an NF-κB inhibitor, in human prostate cancer androgen-independent cell lines. Int. J. Mol. Med., 2011, 28(6), 1033-1042.
[http://dx.doi.org/10.3892/ijmm.2011.760] [PMID: 21805026]
[57]
Mendonca, M.S.; Turchan, W.T.; Alpuche, M.E.; Watson, C.N.; Estabrook, N.C.; Chin-Sinex, H.; Shapiro, J.B.; Imasuen-Williams, I.E.; Rangel, G.; Gilley, D.P.; Huda, N.; Crooks, P.A.; Shapiro, R.H. DMAPT inhibits NF-κB activity and increases sensitivity of prostate cancer cells to X-rays in vitro and in tumor xenografts in vivo. Free Radic. Biol. Med., 2017, 112, 318-326.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.08.001] [PMID: 28782644]
[58]
Ghorbani-Abdi-Saedabad, A.; Hanafi-Bojd, M.Y.; Parsamanesh, N.; Tayarani-Najaran, Z.; Mollaei, H.; Hoshyar, R. Anticancer and apoptotic activities of parthenolide in combination with epirubicin in MDA-MB-468 breast cancer cells. Mol. Biol. Rep., 2020, 47(8), 5807-5815.
[http://dx.doi.org/10.1007/s11033-020-05649-3] [PMID: 32686017]
[59]
Sufian, H.B. Studying the anticancer properties of Parthenolide (PTL) in MCF-7 breast cancer cells, 2018.
[60]
Al-Fatlawi, A.A.; Al-Fatlawi, A.A.; Irshad, M. Rahisuddin.; Ahmad, A. Effect of parthenolide on growth and apoptosis regulatory genes of human cancer cell lines. Pharm. Biol., 2015, 53(1), 104-109.
[http://dx.doi.org/10.3109/13880209.2014.911919] [PMID: 25289524]
[61]
Carlisi, D.; Buttitta, G.; Di Fiore, R.; Scerri, C.; Drago-Ferrante, R.; Vento, R.; Tesoriere, G. Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis. Cell Death Dis., 2016, 7(4), e2194.
[http://dx.doi.org/10.1038/cddis.2016.94]
[62]
Ge, W.; Hao, X.; Han, F.; Liu, Z.; Wang, T.; Wang, M.; Chen, N.; Ding, Y.; Chen, Y.; Zhang, Q. Synthesis and structure-activity relationship studies of parthenolide derivatives as potential anti-triple negative breast cancer agents. Eur. J. Med. Chem., 2019, 166, 445-469.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.058] [PMID: 30739826]
[63]
Lamture, G.; Crooks, P.A.; Borrelli, M.J. Actinomycin-D and dimethylamino-parthenolide synergism in treating human pancreatic cancer cells. Drug Dev. Res., 2018, 79(6), 287-294.
[http://dx.doi.org/10.1002/ddr.21441] [PMID: 30295945]
[64]
Schneider, B.P.; Winer, E.P.; Foulkes, W.D.; Garber, J.; Perou, C.M.; Richardson, A.; Sledge, G.W.; Carey, L.A. Triple-negative breast cancer: risk factors to potential targets. Clin. Cancer Res., 2008, 14(24), 8010-8018.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1208] [PMID: 19088017]
[65]
Blows, F.M.; Driver, K.E.; Schmidt, M.K.; Broeks, A.; van Leeuwen, F.E.; Wesseling, J.; Cheang, M.C.; Gelmon, K.; Nielsen, T.O.; Blomqvist, C.; Heikkilä, P.; Heikkinen, T.; Nevanlinna, H.; Akslen, L.A.; Bégin, L.R.; Foulkes, W.D.; Couch, F.J.; Wang, X.; Cafourek, V.; Olson, J.E.; Baglietto, L.; Giles, G.G.; Severi, G.; McLean, C.A.; Southey, M.C.; Rakha, E.; Green, A.R.; Ellis, I.O.; Sherman, M.E.; Lissowska, J.; Anderson, W.F.; Cox, A.; Cross, S.S.; Reed, M.W.; Provenzano, E.; Dawson, S.J.; Dunning, A.M.; Humphreys, M.; Easton, D.F.; García-Closas, M.; Caldas, C.; Pharoah, P.D.; Huntsman, D. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med., 2010, 7(5), e1000279.
[http://dx.doi.org/10.1371/journal.pmed.1000279] [PMID: 20520800]
[66]
Gadi, V.K.; Davidson, N.E. Practical approach to triple-negative breast cancer. J. Oncol. Pract., 2017, 13(5), 293-300.
[http://dx.doi.org/10.1200/JOP.2017.022632] [PMID: 28489980]
[67]
Bauer, K.R.; Brown, M.; Cress, R.D.; Parise, C.A.; Caggiano, V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer, 2007, 109(9), 1721-1728.
[http://dx.doi.org/10.1002/cncr.22618] [PMID: 17387718]
[68]
Howell, A.; Anderson, A.S.; Clarke, R.B.; Duffy, S.W.; Evans, D.G.; Garcia-Closas, M.; Gescher, A.J.; Key, T.J.; Saxton, J.M.; Harvie, M.N. Risk determination and prevention of breast cancer. Breast Cancer Res., 2014, 16(5), 446.
[http://dx.doi.org/10.1186/s13058-014-0446-2] [PMID: 25467785]
[69]
Kashi, A.S.Y.; Yazdanfar, S.; Akbari, M.-E.; Rakhsha, A. Triple negative breast cancer in iranian women: clinical profile and survival study. Int J Cancer Manag., 2017, 10(8)
[http://dx.doi.org/10.5812/ijcm.10471]
[70]
Li, X.; Yang, J.; Peng, L.; Sahin, A.A.; Huo, L.; Ward, K.C.; O’Regan, R.; Torres, M.A.; Meisel, J.L. Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res. Treat., 2017, 161(2), 279-287.
[http://dx.doi.org/10.1007/s10549-016-4059-6] [PMID: 27888421]
[71]
Urru, S.A.M.; Gallus, S.; Bosetti, C.; Moi, T.; Medda, R.; Sollai, E.; Murgia, A.; Sanges, F.; Pira, G.; Manca, A.; Palmas, D.; Floris, M.; Asunis, A.M.; Atzori, F.; Carru, C.; D’Incalci, M.; Ghiani, M.; Marras, V.; Onnis, D.; Santona, M.C.; Sarobba, G.; Valle, E.; Canu, L.; Cossu, S.; Bulfone, A.; Rocca, P.C.; De Miglio, M.R.; Orrù, S. Clinical and pathological factors influencing survival in a large cohort of triple-negative breast cancer patients. BMC Cancer, 2018, 18(1), 56.
[http://dx.doi.org/10.1186/s12885-017-3969-y] [PMID: 29310602]
[72]
Haffty, B.G.; Yang, Q.; Reiss, M.; Kearney, T.; Higgins, S.A.; Weidhaas, J.; Harris, L.; Hait, W.; Toppmeyer, D. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J. Clin. Oncol., 2006, 24(36), 5652-5657.
[http://dx.doi.org/10.1200/JCO.2006.06.5664] [PMID: 17116942]
[73]
Gray, J.M.; Rasanayagam, S.; Engel, C.; Rizzo, J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ. Health, 2017, 16(1), 94.
[http://dx.doi.org/10.1186/s12940-017-0287-4] [PMID: 28865460]
[74]
Tischkowitz, M.; Brunet, J.S.; Bégin, L.R.; Huntsman, D.G.; Cheang, M.C.; Akslen, L.A.; Nielsen, T.O.; Foulkes, W.D. Use of immunohistochemical markers can refine prognosis in triple negative breast cancer. BMC Cancer, 2007, 7, 134.
[http://dx.doi.org/10.1186/1471-2407-7-134] [PMID: 17650314]
[75]
Gulzar, F.; Akhtar, M.S.; Sadiq, R.; Bashir, S.; Jamil, S.; Baig, S.M. Identifying the reasons for delayed presentation of Pakistani breast cancer patients at a tertiary care hospital. Cancer Manag. Res., 2019, 11, 1087-1096.
[http://dx.doi.org/10.2147/CMAR.S180388] [PMID: 30774437]
[76]
Bayraktar, S.; Glück, S. Molecularly targeted therapies for metastatic triple-negative breast cancer. Breast Cancer Res. Treat., 2013, 138(1), 21-35.
[http://dx.doi.org/10.1007/s10549-013-2421-5] [PMID: 23358903]
[77]
Perou, C.M. Molecular stratification of triple-negative breast cancers. Oncologist, 2010, 15(Suppl. 5), 39-48.
[http://dx.doi.org/10.1634/theoncologist.2010-S5-39] [PMID: 21138954]
[78]
Garrido-Castro, A.C.; Lin, N.U.; Polyak, K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov., 2019, 9(2), 176-198.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1177] [PMID: 30679171]
[79]
Judes, G.; Rifaï, K.; Daures, M.; Dubois, L.; Bignon, Y.J.; Penault-Llorca, F.; Bernard-Gallon, D. High-throughput «Omics» technologies: new tools for the study of triple-negative breast cancer. Cancer Lett., 2016, 382(1), 77-85.
[http://dx.doi.org/10.1016/j.canlet.2016.03.001] [PMID: 26965997]
[80]
Hosseini, S.; Behjati, F.; Rahimi, M.; Taheri, N.; Khoram Khorshid, H.; Aghakhani Moghaddam, F.; Ghasemi, S.; Karimlou, M.; Sirati, F.; Keyhani, E. Relationship between PIK3CA amplification and P110α and CD34 tissue expression as angiogenesis markers in iranian women with sporadic breast cancer. Iran. J. Pathol., 2018, 13(4), 447-453.
[PMID: 30774684]
[81]
Peng, Y. Potential prognostic tumor biomarkers in triple-negative breast carcinoma. Beijing da xue xue bao Yi xue ban, 2012, 44(5), 666-672.
[PMID: 23073572]
[82]
Bosch, A.; Eroles, P.; Zaragoza, R.; Viña, J.R.; Lluch, A. Triple-negative breast cancer: molecular features, pathogenesis, treatment and current lines of research. Cancer Treat. Rev., 2010, 36(3), 206-215.
[http://dx.doi.org/10.1016/j.ctrv.2009.12.002] [PMID: 20060649]
[83]
Moinfar, F. Is ‘basal-like’ carcinoma of the breast a distinct clinicopathological entity? A critical review with cautionary notes. Pathobiology, 2008, 75(2), 119-131.
[http://dx.doi.org/10.1159/000123850] [PMID: 18544967]
[84]
De Francesco, E.; Maggiolini, M.; Musti, A. Crosstalk between Notch, HIF-1α and GPER in Breast Cancer EMT. Int. J. Mol. Sci., 2018, 19(7), 2011.
[http://dx.doi.org/10.3390/ijms19072011]
[85]
Prat, A.; Parker, J.S.; Karginova, O.; Fan, C.; Livasy, C.; Herschkowitz, J.I.; He, X.; Perou, C.M. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res., 2010, 12(5), R68.
[http://dx.doi.org/10.1186/bcr2635] [PMID: 20813035]
[86]
Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest., 2011, 121(7), 2750-2767.
[http://dx.doi.org/10.1172/JCI45014] [PMID: 21633166]
[87]
Wagle, N.; Painter, C.; Anastasio, E.; Dunphy, M.; McGillicuddy, M.; Stoddard, R.E.; Jain, E.; Kim, D.; Lascio, S.D.; Tompson, B.N.; Balch, S.; Thomas, B.; Kumari, P.; Johnson, S.F.; Holloway, J.N.; Cohen, O.; Knelson, E.; Larkin, K.; Pollock, S.; Wong, A.; Bahl, S.; Maiwald, S.; Zimmer, A.; Baker, E.O.; Lapan, J.H.; Sutherland, S.; Sassone, S.; Adalsteinsson, V.; Lander, E.; Golub, T. The metastatic breast cancer project: Partnering with patients to accelerate progress in cancer research; AACR, 2018, pp. 5371-5371.
[http://dx.doi.org/10.1158/1538-7445.AM2018-5371]
[88]
Evans, D.G.; Harkness, E.F.; Howel, S.; Woodward, E.R.; Howell, A.; Lalloo, F. Young age at first pregnancy does protect against early onset breast cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res. Treat., 2018, 167(3), 779-785.
[http://dx.doi.org/10.1007/s10549-017-4557-1] [PMID: 29116468]
[89]
Xu, L.Z.; Li, S.S.; Zhou, W.; Kang, Z.J.; Zhang, Q.X.; Kamran, M.; Xu, J.; Liang, D.P.; Wang, C.L.; Hou, Z.J.; Wan, X.B.; Wang, H.J.; Lam, E.W.; Zhao, Z.W.; Liu, Q. p62/SQSTM1 enhances breast cancer stem-like properties by stabilizing MYC mRNA. Oncogene, 2017, 36(3), 304-317.
[http://dx.doi.org/10.1038/onc.2016.202] [PMID: 27345399]
[90]
Sutton, L.M.; Han, J.S.; Molberg, K.H.; Sarode, V.R.; Cao, D.; Rakheja, D.; Sailors, J.; Peng, Y. Intratumoral expression level of epidermal growth factor receptor and cytokeratin 5/6 is significantly associated with nodal and distant metastases in patients with basal-like triple-negative breast carcinoma. Am. J. Clin. Pathol., 2010, 134(5), 782-787.
[http://dx.doi.org/10.1309/AJCPRMD3ARUO5WPN] [PMID: 20959661]
[91]
Maximov, P.Y.; Abderrahman, B.; Curpan, R.F.; Hawsawi, Y.M.; Fan, P.; Jordan, V.C. A unifying biology of sex steroid-induced apoptosis in prostate and breast cancers. Endocr. Relat. Cancer, 2018, 25(2), R83-R113.
[http://dx.doi.org/10.1530/ERC-17-0416] [PMID: 29162647]
[92]
Nichols, H.B.; Schoemaker, M.J.; Wright, L.B.; McGowan, C.; Brook, M.N.; McClain, K.M.; Jones, M.E.; Adami, H-O.; Agnoli, C.; Baglietto, L.; Bernstein, L.; Bertrand, K.A.; Blot, W.J.; Boutron-Ruault, M.C.; Butler, L.; Chen, Y.; Doody, M.M.; Dossus, L.; Eliassen, A.H.; Giles, G.G.; Gram, I.T.; Hankinson, S.E.; Hoffman-Bolton, J.; Kaaks, R.; Key, T.J.; Kirsh, V.A.; Kitahara, C.M.; Koh, W.P.; Larsson, S.C.; Lund, E.; Ma, H.; Merritt, M.A.; Milne, R.L.; Navarro, C.; Overvad, K.; Ozasa, K.; Palmer, J.R.; Peeters, P.H.; Riboli, E.; Rohan, T.E.; Sadakane, A.; Sund, M.; Tamimi, R.M.; Trichopoulou, A.; Vatten, L.; Visvanathan, K.; Weiderpass, E.; Willett, W.C.; Wolk, A.; Zeleniuch-Jacquotte, A.; Zheng, W.; Sandler, D.P.; Swerdlow, A.J. The premenopausal breast cancer collaboration: a pooling project of studies participating in the national cancer institute cohort consortium. Cancer Epidemiol. Biomarkers Prev., 2017, 26(9), 1360-1369.
[http://dx.doi.org/10.1158/1055-9965.EPI-17-0246] [PMID: 28600297]
[93]
Peto, R.; Davies, C.; Godwin, J.; Gray, R.; Pan, H.C.; Clarke, M.; Cutter, D.; Darby, S.; McGale, P.; Taylor, C.; Wang, Y.C.; Bergh, J.; Di Leo, A.; Albain, K.; Swain, S.; Piccart, M.; Pritchard, K. Early breast cancer trialists’ collaborative group (EBCTCG). Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet, 2012, 379(9814), 432-444.
[http://dx.doi.org/10.1016/S0140-6736(11)61625-5] [PMID: 22152853]
[94]
Ichikawa, Y.; Ghanefar, M.; Bayeva, M.; Wu, R.; Khechaduri, A.; Naga Prasad, S.V.; Mutharasan, R.K.; Naik, T.J.; Ardehali, H. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J. Clin. Invest., 2014, 124(2), 617-630.
[http://dx.doi.org/10.1172/JCI72931] [PMID: 24382354]
[95]
André, F.; Zielinski, C.C. Optimal strategies for the treatment of metastatic triple-negative breast cancer with currently approved agents. Ann. Oncol., 2012, 23(Suppl. 6), vi46-vi51.
[http://dx.doi.org/10.1093/annonc/mds195] [PMID: 23012302]
[96]
Kalimutho, M.; Parsons, K.; Mittal, D.; López, J.A.; Srihari, S.; Khanna, K.K. Targeted therapies for triple-negative breast cancer: combating a stubborn disease. Trends Pharmacol. Sci., 2015, 36(12), 822-846.
[http://dx.doi.org/10.1016/j.tips.2015.08.009] [PMID: 26538316]
[97]
Janganati, V.; Ponder, J.; Balasubramaniam, M.; Bhat-Nakshatri, P.; Bar, E.E.; Nakshatri, H.; Jordan, C.T.; Crooks, P.A. MMB triazole analogs are potent NF-κB inhibitors and anti-cancer agents against both hematological and solid tumor cells. Eur. J. Med. Chem., 2018, 157, 562-581.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.010] [PMID: 30121494]
[98]
Sun, X.; Wang, M.; Wang, M.; Yao, L.; Li, X.; Dong, H.; Li, M.; Li, X.; Liu, X.; Xu, Y. Exploring the metabolic vulnerabilities of epithelial-mesenchymal transition in breast cancer. Front. Cell Dev. Biol., 2020, 8, 655.
[http://dx.doi.org/10.3389/fcell.2020.00655] [PMID: 32793598]
[99]
D’Anneo, A.; Carlisi, D.; Lauricella, M.; Puleio, R.; Martinez, R.; Di Bella, S.; Di Marco, P.; Emanuele, S.; Di Fiore, R.; Guercio, A.; Vento, R.; Tesoriere, G. Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer. Cell Death Dis., 2013, 4(10), e891.
[http://dx.doi.org/10.1038/cddis.2013.415] [PMID: 24176849]
[100]
Li, C.J.; Guo, S.F.; Shi, T.M. Culture supernatants of breast cancer cell line MDA-MB-231 treated with parthenolide inhibit the proliferation, migration, and lumen formation capacity of human umbilical vein endothelial cells. Chin. Med. J. (Engl.), 2012, 125(12), 2195-2199.
[PMID: 22884152]
[101]
Idris, A.I.; Libouban, H.; Nyangoga, H.; Landao-Bassonga, E.; Chappard, D.; Ralston, S.H. Pharmacologic inhibitors of IkappaB kinase suppress growth and migration of mammary carcinosarcoma cells in vitro and prevent osteolytic bone metastasis in vivo. Mol. Cancer Ther., 2009, 8(8), 2339-2347.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0133] [PMID: 19671767]
[102]
Kim, S.L.; Kim, S.H.; Park, Y.R.; Liu, Y.C.; Kim, E.M.; Jeong, H.J.; Kim, Y.N.; Seo, S.Y.; Kim, I.H.; Lee, S.O.; Lee, S.T.; Kim, S.W. Combined parthenolide and balsalazide have enhanced antitumor efficacy through blockade of NF-κB activation. Mol. Cancer Res., 2017, 15(2), 141-151.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0101] [PMID: 28108625]
[103]
Li, X.; Payne, D.; Ampolu, B.; Bland, N.; Brown, J.T.; Dutton, M.; Fitton, C.; Guliver, A.; Hale, L.; Hamza, D. Derivatisation of parthenolide to address chemoresistant chronic lymphocytic leukaemia. ChemRxiv, 2019, 10(8), 1379-1390.
[http://dx.doi.org/10.1039/C9MD00297A] [PMID: 32952998]
[104]
Anesini, C.A.; Alonso, M.R.; Martino, R.F. Antiproliferative and cytotoxic activities in: Sesquiterpene Lactones. ; Sulsen, V.P.; Martino, S.P., Eds.; Springer Link, 2018, pp. 303-323.
[http://dx.doi.org/10.1007/978-3-319-78274-4_13 ]
[105]
Diakos, C.I.; Charles, K.A.; McMillan, D.C.; Clarke, S.J. Cancer-related inflammation and treatment effectiveness. Lancet Oncol., 2014, 15(11), e493-e503.
[http://dx.doi.org/10.1016/S1470-2045(14)70263-3] [PMID: 25281468]
[106]
Morrow, R.J.; Etemadi, N.; Yeo, B.; Ernst, M. Challenging a misnomer? The role of inflammatory pathways in inflammatory breast cancer. Mediators Inflamm., 2017, 2017, 4754827.
[http://dx.doi.org/10.1155/2017/4754827] [PMID: 28607534]
[107]
Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2, 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[108]
Arutla, V.; Punganuru, S.R.; Madala, H.; Srivenugopal, K.S. Design and develpomentof a parthenolidecombretastatin hybrid drug (VA-11) with highly potent antimicrotubule and NF-kB inhibitory activities. AACR, 2018, 1667-1667.
[http://dx.doi.org/10.1158/1538-7445.AM2018-1667]
[109]
Pajak, B.; Gajkowska, B.; Orzechowski, A. Molecular basis of parthenolide-dependent proapoptotic activity in cancer cells. Folia Histochem. Cytobiol., 2008, 46(2), 129-135.
[http://dx.doi.org/10.2478/v10042-008-0019-2] [PMID: 18519227]
[110]
Wladis, E.J.; Lau, K.W.; Adam, A.P. Nuclear factor kappa-β is enriched in eyelid specimens of rosacea: implications for pathogenesis and therapy. Am. J. Ophthalmol., 2019, 201, 72-81.
[http://dx.doi.org/10.1016/j.ajo.2019.01.018] [PMID: 30703356]
[111]
Saber, S.; Khalil, R.M.; Abdo, W.S.; Nassif, D.; El-Ahwany, E. Olmesartan ameliorates chemically-induced ulcerative colitis in rats via modulating NFκB and Nrf-2/HO-1 signaling crosstalk. Toxicol. Appl. Pharmacol., 2019, 364, 120-132.
[http://dx.doi.org/10.1016/j.taap.2018.12.020] [PMID: 30594690]
[112]
Terrinoni, M.; Holmgren, J.; Lebens, M.; Larena, M. Proteomic analysis of cholera toxin adjuvant-stimulated human monocytes identifies Thrombospondin-1 and Integrin-β1 as strongly upregulated molecules involved in adjuvant activity. Sci. Rep., 2019, 9(1), 2812.
[http://dx.doi.org/10.1038/s41598-019-38726-0] [PMID: 30808871]
[113]
Sun, S.C.; Ley, S.C. New insights into NF-kappaB regulation and function. Trends Immunol., 2008, 29(10), 469-478.
[http://dx.doi.org/10.1016/j.it.2008.07.003] [PMID: 18775672]
[114]
Dede, F.; Karadenizli, S.; Ozsoy, O.D.; Eraldemir, F.C.; Sahin, D.; Ates, N. Antagonism of adenosinergic system decrease SWD occurrence via an increment in thalamic NFkB and IL-6 in absence epilepsy. J. Neuroimmunol., 2019, 326, 1-8.
[http://dx.doi.org/10.1016/j.jneuroim.2018.11.004] [PMID: 30423516]
[115]
Saber, S.; Goda, R.; El-Tanbouly, G.S.; Ezzat, D. Lisinopril inhibits nuclear transcription factor kappa B and augments sensitivity to silymarin in experimental liver fibrosis. Int. Immunopharmacol., 2018, 64, 340-349.
[http://dx.doi.org/10.1016/j.intimp.2018.09.021] [PMID: 30243070]
[116]
Li, Y.; Liu, S.; Zhang, Y.; Gao, Q.; Sun, W.; Fu, L.; Cao, J. Histone demethylase JARID1B regulates proliferation and migration of pulmonary arterial smooth muscle cells in mice with chronic hypoxia-induced pulmonary hypertension via nuclear factor-kappa B (NFkB). Cardiovasc. Pathol., 2018, 37, 8-14.
[http://dx.doi.org/10.1016/j.carpath.2018.07.004] [PMID: 30172777]
[117]
Hayden, M.S.; Ghosh, S. Shared principles in NF-kappaB signaling. Cell, 2008, 132(3), 344-362.
[http://dx.doi.org/10.1016/j.cell.2008.01.020] [PMID: 18267068]
[118]
Carlisi, D.; De Blasio, A.; Drago-Ferrante, R.; Di Fiore, R.; Buttitta, G.; Morreale, M.; Scerri, C.; Vento, R.; Tesoriere, G. Parthenolide prevents resistance of MDA-MB231 cells to doxorubicin and mitoxantrone: the role of Nrf2. Cell Death Discov., 2017, 3, 17078.
[http://dx.doi.org/10.1038/cddiscovery.2017.78] [PMID: 29354292]
[119]
Kim, J.Y.; Jung, H.H.; Ahn, S.; Bae, S.; Lee, S.K.; Kim, S.W.; Lee, J.E.; Nam, S.J.; Ahn, J.S.; Im, Y.H.; Park, Y.H. The relationship between nuclear factor (NF)-κB family gene expression and prognosis in triple-negative breast cancer (TNBC) patients receiving adjuvant doxorubicin treatment. Sci. Rep., 2016, 6, 31804.
[http://dx.doi.org/10.1038/srep31804] [PMID: 27545642]
[120]
García-Piñeres, A.J.; Lindenmeyer, M.T.; Merfort, I. Role of cysteine residues of p65/NF-kappaB on the inhibition by the sesquiterpene lactone parthenolide and N-ethyl maleimide, and on its transactivating potential. Life Sci., 2004, 75(7), 841-856.
[http://dx.doi.org/10.1016/j.lfs.2004.01.024] [PMID: 15183076]
[121]
Koprowska, K.; Czyz, M. [Molecular mechanisms of parthenolide's action: Old drug with a new face] Postepy Hig. Med. Dosw., 2010, 64, 100-114.
[PMID: 20354259]
[122]
Cieslar-Pobuda, A.; Yue, J.; Lee, H.C. ROS and oxidative stress in stem cells. Oxid. Med. Cell. Longev., 2017, 2017, 5047168.
[http://dx.doi.org/10.1155/2017/5047168] [PMID: 29018510]
[123]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[124]
Carlisi, D.; D’Anneo, A.; Martinez, R.; Emanuele, S.; Buttitta, G.; Di Fiore, R.; Vento, R.; Tesoriere, G.; Lauricella, M. The oxygen radicals involved in the toxicity induced by parthenolide in MDA-MB-231 cells. Oncol. Rep., 2014, 32(1), 167-172.
[http://dx.doi.org/10.3892/or.2014.3212] [PMID: 24859613]
[125]
Copple, I.M.; Dinkova-Kostova, A.T.; Kensler, T.W.; Liby, K.T.; Wigley, W.C. NRF2 as an emerging therapeutic target. Oxid. Med. Cell. Longev., 2017, 2017, 8165458.
[http://dx.doi.org/10.1155/2017/8165458] [PMID: 28250892]
[126]
Lu, C.; Zhou, L.Y.; Xu, H.J.; Chen, X.Y.; Tong, Z.S.; Liu, X.D.; Jia, Y.S.; Chen, Y. RIP3 overexpression sensitizes human breast cancer cells to parthenolide in vitro via intracellular ROS accumulation. Acta Pharmacol. Sin., 2014, 35(7), 929-936.
[http://dx.doi.org/10.1038/aps.2014.31] [PMID: 24909514]
[127]
Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer, 2017, 17(2), 93-115.
[http://dx.doi.org/10.1038/nrc.2016.138] [PMID: 28127048]
[128]
Carlisi, D.; Lauricella, M.; D’Anneo, A.; Buttitta, G.; Emanuele, S.; di Fiore, R.; Martinez, R.; Rolfo, C.; Vento, R.; Tesoriere, G. The synergistic effect of SAHA and parthenolide in MDA-MB231 breast cancer cells. J. Cell. Physiol., 2015, 230(6), 1276-1289.
[http://dx.doi.org/10.1002/jcp.24863] [PMID: 25370819]
[129]
Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism and disease. Cell, 2017, 168(6), 960-976.
[http://dx.doi.org/10.1016/j.cell.2017.02.004] [PMID: 28283069]
[130]
van Haaften, C.; van Eendenburg, J.; Boot, A.; Corver, W.E.; Haans, L.; van Wezel, T.; Trimbos, J.B. Chemosensitivity of BRCA1-mutated ovarian cancer cells and established cytotoxic agents. Int. J. Gynecol. Cancer, 2017, 27(8), 1571-1578.
[http://dx.doi.org/10.1097/IGC.0000000000001052] [PMID: 28604461]
[131]
Guzman, M.L.; Rossi, R.M.; Neelakantan, S.; Li, X.; Corbett, C.A.; Hassane, D.C.; Becker, M.W.; Bennett, J.M.; Sullivan, E.; Lachowicz, J.L.; Vaughan, A.; Sweeney, C.J.; Matthews, W.; Carroll, M.; Liesveld, J.L.; Crooks, P.A.; Jordan, C.T. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood, 2007, 110(13), 4427-4435.
[http://dx.doi.org/10.1182/blood-2007-05-090621] [PMID: 17804695]
[132]
Alwaseem, H.; Frisch, B.J.; Fasan, R. Anticancer activity profiling of parthenolide analogs generated via P450-mediated chemoenzymatic synthesis. Bioorg. Med. Chem., 2018, 26(7), 1365-1373.
[http://dx.doi.org/10.1016/j.bmc.2017.08.009] [PMID: 28826596]
[133]
Long, J.; Ding, Y.H.; Wang, P.P.; Zhang, Q.; Chen, Y. Protection-group-free semisyntheses of parthenolide and its cyclopropyl analogue. J. Org. Chem., 2013, 78(20), 10512-10518.
[http://dx.doi.org/10.1021/jo401606q] [PMID: 24047483]
[134]
Nasim, S.; Pei, S.; Hagen, F.K.; Jordan, C.T.; Crooks, P.A. Melampomagnolide B: a new antileukemic sesquiterpene. Bioorg. Med. Chem., 2011, 19(4), 1515-1519.
[http://dx.doi.org/10.1016/j.bmc.2010.12.045] [PMID: 21273084]
[135]
Kruk, P.J. Beneficial effect of additional treatment with widely available anticancer agents in advanced small lung cell carcinoma: a case report. Mol. Clin. Oncol., 2018, 9(6), 647-650.
[http://dx.doi.org/10.3892/mco.2018.1736] [PMID: 30546895]
[136]
Konstat-Korzenny, E.; Ascencio-Aragón, J.A.; Niezen-Lugo, S.; Vázquez-López, R. Artemisinin and its synthetic derivatives as a possible therapy for cancer. Med. Sci. (Basel), 2018, 6(1), E19.
[http://dx.doi.org/10.3390/medsci6010019] [PMID: 29495461]
[137]
Patel, N.M.; Nozaki, S.; Shortle, N.H.; Bhat-Nakshatri, P.; Newton, T.R.; Rice, S.; Gelfanov, V.; Boswell, S.H.; Goulet, R.J. Jr.; Sledge, G.W.Jr.; Nakshatri, H. Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kappaB is enhanced by IkappaBalpha super-repressor and parthenolide. Oncogene, 2000, 19(36), 4159-4169.
[http://dx.doi.org/10.1038/sj.onc.1203768] [PMID: 10962577]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy