Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Changes in the Density of Corneal Endothelial Cells in Elderly Diabetic Patients After Combined Phacovitrectomy and Ex-PRESS Glaucoma Implants

Author(s): Anita Lyssek-Boroń*, Katarzyna Krysik, Magdalena Kijonka, Mateusz Osuch, Beniamin O. Grabarek and Dariusz Dobrowolski

Volume 20, Issue 12, 2019

Page: [1037 - 1043] Pages: 7

DOI: 10.2174/1389201020666190808154341

open access plus

Abstract

Background & Objective: Corneal endothelial cells (ECD) are characterized by limited regenerative potential, which is additionally impaired in patients with diabetes. This retrospective study included 27 patients aged 58.1±13.6, 16 female and 11 males, who underwent 23-gauge vitrectomy in combination with cataract surgery (phacovitrectomy) and further Ex-PRESS shunt implantation throughout 2013-2017 at St. Barbara Hospital in Sosnowiec, Poland.

Methods: In our study, we distinguished 4 periods: initial period; post phacovitrectomy and removal of oil tamponade; and 3 and 12 months post implantation of the Ex-PRESS shunt. Statistical analysis was performed at the level of statistical significance of p<0.05. It included an analysis of variance (ANOVA) and Tukey’s post-hoc test in order to determine the differences in the density of ECD cells/mm2 between the periods of observation. The paired-samples t-Student test was also performed to determine whether the differences in visual acuity values before and after PPV and before and after Ex-PRESS shunt were statistically significant.

Results: The initial count of ECD cells was 2381.1±249, which decreased to 1872.8±350.7 cell/mm2 and finally to 1677.9±327 at the endpoint. Differences in the density of ECD cells/mm2 were observed to be statistically significant between the periods: after PPV vs. initial number of ECD (p = 0.000138); before 3 months after Ex-PRESS shunt vs. initial number of ECD (p = 0.000138); 12 months after Ex- PRESS shunt vs. initial number of ECD (p = 0000138). Analyzing the changes in visual acuity, we observed a deterioration both before and 3 months after Ex-PRESS shunt (p = 0.007944) and before and after PPV (p = 0.060334). In turn, correlation analysis indicated that there is a statistically significant, moderate, positive relationship. The relationship between visual acuity after Ex-PRESS shunt and ECD cells/mm2 density turned out to be statistically significant (r = +0.521381; p < 0.05).

Conclusion: Regardless of the period of observation and the choice of ophthalmic treatment of diabetic complications, we observed a decrease in the number of ECD cells and a deterioration in visual acuity. It is, therefore, reasonable to provide the patient with complete information about the proposed procedures and to consider the risk-benefit balance.

Keywords: Corneal endothelial cells, Ex-PRESS shunt, visual acuity, diabetes, silicon oil, phacovitrectomy.

Graphical Abstract

[1]
Waring, G.O., III; Bourne, W.M.; Edelhauser, H.F.; Kenyon, K.R. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology, 1982, 89(6), 531-590.
[http://dx.doi.org/10.1016/S0161-6420(82)34746-6] [PMID: 7122038]
[2]
Kim, D.H.; Wee, W.R.; Hyon, J.Y. The pattern of early corneal endothelial cell recovery following cataract surgery: Cellular migration or enlargement? Graefes Arch. Clin. Exp. Ophthalmol., 2015, 253(12), 2211-2216.
[http://dx.doi.org/10.1007/s00417-015-3100-5] [PMID: 26170045]
[3]
Joyce, N.C. Cell cycle status in human corneal endothelium. Exp. Eye Res., 2005, 81(6), 629-638.
[http://dx.doi.org/10.1016/j.exer.2005.06.012] [PMID: 16054624]
[4]
Bourne, W.M.; Nelson, L.R.; Hodge, D.O. Central corneal endothelial cell changes over a ten-year period. Invest. Ophthalmol. Vis. Sci., 1997, 38(3), 779-782.
[PMID: 9071233]
[5]
Werblin, T.P. Long-term endothelial cell loss following phacoemulsification: Model for evaluating endothelial damage after intraocular surgery. Refract. Corneal Surg., 1993, 9(1), 29-35.
[PMID: 8481370]
[6]
Culbertson, W.W.; Abbott, R.L.; Forster, R.K. Endothelial cell loss in penetrating keratoplasty. Ophthalmology, 1982, 89(6), 600-604.
[http://dx.doi.org/10.1016/S0161-6420(82)34754-5] [PMID: 6750488]
[7]
Eom, Y.; Kim, S.W.; Ahn, J.; Kim, J.T.; Huh, K. Comparison of cornea endothelial cell counts after combined phacovitrectomy versus pars plana vitrectomy with fragmentation. Graefes Arch. Clin. Exp. Ophthalmol., 2013, 251(9), 2187-2193.
[http://dx.doi.org/10.1007/s00417-013-2440-2] [PMID: 23949639]
[8]
Koushan, K.; Mikhail, M.; Beattie, A.; Ahuja, N.; Liszauer, A.; Kobetz, L.; Farrokhyar, F.; Martin, J.A. Corneal endothelial cell loss after pars plana vitrectomy and combined phacoemulsification-vitrectomy surgeries. Can. J. Ophthalmol., 2017, 52(1), 4-8.
[http://dx.doi.org/10.1016/j.jcjo.2016.06.001] [PMID: 28237147]
[9]
Yeniad, B.; Corum, I.; Ozgun, C. The effects of blunt trauma and cataract surgery on corneal endothelial cell density. Middle East Afr. J. Ophthalmol., 2010, 17(4), 354-358.
[http://dx.doi.org/10.4103/0974-9233.71604] [PMID: 21180438]
[10]
Gagnon, M.M.; Boisjoly, H.M.; Brunette, I.; Charest, M.; Amyot, M. Corneal endothelial cell density in glaucoma. Cornea, 1997, 16(3), 314-318.
[http://dx.doi.org/10.1097/00003226-199705000-00010] [PMID: 9143804]
[11]
Bang, S.P.; Yoo, Y.S.; Jun, J.H.; Joo, C.K. Effects of residual anterior lens epithelial cell removal on axial position of intraocular lens after cataract surgery. J. Ophthalmol., 2018.20189704892
[http://dx.doi.org/10.1155/2018/9704892] [PMID: 30210870]
[12]
Choi, J.Y.; Han, Y.K. Long-Term (≥10 Years) Results of corneal endothelial cell loss after cataract surgery. Can. J. Ophthalmol., 2018. Epub Ahead of Print
[PMID: 31358141]
[13]
Inoue, K.; Kato, S.; Inoue, Y.; Amano, S.; Oshika, T. The corneal endothelium and thickness in type II diabetes mellitus. Jpn. J. Ophthalmol., 2002, 46(1), 65-69.
[http://dx.doi.org/10.1016/S0021-5155(01)00458-0] [PMID: 11853716]
[14]
Salahuddin, P.; Rabbani, G.; Khan, R.H. The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach. Cell. Mol. Biol. Lett., 2014, 19(3), 407-437.
[http://dx.doi.org/10.2478/s11658-014-0205-5] [PMID: 25141979]
[15]
Rabbani, G.; Choi, I. Roles of osmolytes in protein folding and aggregation in cells and their biotechnological applications. Int. J. Biol. Macromol., 2018, 109, 483-491.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.100] [PMID: 29274422]
[16]
Rabbani, G.; Ahn, S.N. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int. J. Biol. Macromol., 2019, 123, 979-990.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.053] [PMID: 30439428]
[17]
Schultz, R.O.; Matsuda, M.; Yee, R.W.; Edelhauser, H.F.; Schultz, K.J. Corneal endothelial changes in type I and type II diabetes mellitus. Am. J. Ophthalmol., 1984, 98(4), 401-410.
[http://dx.doi.org/10.1016/0002-9394(84)90120-X] [PMID: 6486211]
[18]
dell’Omo, R.; Cifariello, F.; De Turris, S.; Romano, V.; Di Renzo, F.; Di Taranto, D.; Coclite, G.; Agnifili, L.; Mastropasqua, L.; Costagliola, C. Confocal microscopy of corneal nerve plexus as an early marker of eye involvement in patients with type 2 diabetes. Diabetes Res. Clin. Pract., 2018, 142, 393-400.
[http://dx.doi.org/10.1016/j.diabres.2018.06.010] [PMID: 29935212]
[19]
Sahu, P.K.; Das, G.K.; Agrawal, S.; Kumar, S. Comparative evaluation of corneal edothelium in patients with diabetes undergoing phacoemulsification. Middle East Afr. J. Ophthalmol., 2017, 24(2), 74-80.
[http://dx.doi.org/10.4103/meajo.MEAJO_242_15] [PMID: 28936050]
[20]
Tang, Y.; Chen, X.; Zhang, X.; Tang, Q.; Liu, S.; Yao, K. Clinical evaluation of corneal changes after phacoemulsification in diabetic and non-diabetic cataract patients, a systematic review and meta-analysis. Sci. Rep., 2017, 7(1), 14128.
[http://dx.doi.org/10.1038/s41598-017-14656-7] [PMID: 29074989]
[21]
Nagaraj, G.; Desai, A.S.; Jayaram, N. Corneal thickness and endothelial cell density in diabetic and non- diabetic patients: A hospital based comparative study. Int. J. Adv. Med., 2018, 5(3), 694-699.
[http://dx.doi.org/10.18203/2349-3933.ijam20182125]
[22]
Chen, X.; Yu, J.; Shi, J. Management of diabetes mellitus with puerarin, a natural isoflavone from Pueraria lobate. Am. J. Chin. Med., 2018, 10, 1-19.
[PMID: 30284468]
[23]
Ashraf, J.M.; Ahmad, S.; Rabbani, G.; Jan, A.T.; Lee, E.J.; Khan, R.H.; Choi, I. Physicochemical analysis of structural alteration and advanced glycation end products generation during glycation of H2A histone by 3-deoxyglucosone. IUBMB Life, 2014, 66(10), 686-693.
[http://dx.doi.org/10.1002/iub.1318] [PMID: 25380060]
[24]
Ashraf, J.M.; Ahmad, S.; Rabbani, G.; Hasan, Q.; Jan, A.T.; Lee, E.J.; Khan, R.H.; Alam, K.; Choi, I. 3-Deoxyglucosone: A potential glycating agent accountable for structural alteration in H3 histone protein through generation of different AGEs. PLoS One, 2015, 10(2)e0116804
[http://dx.doi.org/10.1371/journal.pone.0116804] [PMID: 25689368]
[25]
Marzette, L.; Herndon, L.W.A. A comparison of the Ex-PRESS™ mini glaucoma shunt with standard trabeculectomy in the surgical treatment of glaucoma. Ophthalmic Surg. Lasers Imaging, 2011, 42(6), 453-459.
[http://dx.doi.org/10.3928/15428877-20111017-03] [PMID: 22074705]
[26]
Sarkisian, S.R., Jr The Ex-PRESS miniature glaucoma device and the glaucoma surgery treatment algorithm. Clin. Exp. Ophthalmol., 2011, 39(5), 381-382.
[http://dx.doi.org/10.1111/j.1442-9071.2011.02603.x] [PMID: 21749592]
[27]
Dahan, E.; Ben Simon, G.J.; Lafuma, A. Comparison of trabeculectomy and Ex-PRESS implantation in fellow eyes of the same patient: A prospective, randomised study. Eye (Lond.), 2012, 26(5), 703-710.
[http://dx.doi.org/10.1038/eye.2012.13] [PMID: 22344189]
[28]
Yu, T.C.; Tseng, G.L.; Chen, C.C.; Liou, S.W. Surgical treatment of neovascular glaucoma with Ex-PRESS glaucoma shunt: Case report. Medicine (Baltimore), 2017, 96(35)e7845
[http://dx.doi.org/10.1097/MD.0000000000007845] [PMID: 28858093]
[29]
Hanna, R.; Tiosano, B.; Graffi, S.; Gaton, D. Clinical efficacy and safety of the EX-PRESS filtration device in patients with advanced neovascular glaucoma and proliferative diabetic retinopathy. Case Rep. Ophthalmol., 2018, 9(1), 61-69.
[http://dx.doi.org/10.1159/000479363] [PMID: 29643784]
[30]
Konopińska, J.; Deniziak, M.; Saeed, E.; Bartczak, A.; Zalewska, R.; Mariak, Z.; Rękas, M. Prospective randomized study comparing combined phaco-Ex-PRESS and phacotrabeculectomy in open angle glaucoma treatment: 12-month follow-up. J. Ophthalmol., 2015.2015720109
[http://dx.doi.org/10.1155/2015/720109] [PMID: 26137318]
[31]
Sumit, S. Ahuja, C. Bammigatti, Kumar, P. Corneal endothelial changes in patients of type 2 diabetes mellitus using specular microscopy. ECOP, 2017, 6(4), 100-117.
[32]
Wykoff, C.C. Impact of intravitreal pharmacotherapies including antivascular endothelial growth factor and corticosteroid agents on diabetic retinopathy. Curr. Opin. Ophthalmol., 2017, 28(3), 213-218.
[http://dx.doi.org/10.1097/ICU.0000000000000364] [PMID: 28376510]
[33]
Patel, J.; Sutariya, V.; Kanwar, J.; Pathak, Y. Drug delivery for the retina and posterior segment disease; Springer: Cham, 2018.
[http://dx.doi.org/10.1007/978-3-319-95807-1]
[34]
Gupta, V.; Arevalo, J.F. Surgical management of diabetic retinopathy. Middle East Afr. J. Ophthalmol., 2013, 20(4), 283-292.
[http://dx.doi.org/10.4103/0974-9233.120003] [PMID: 24339677]
[35]
Arnavielle, S.; Lafontaine, P.O.; Bidot, S.; Creuzot-Garcher, C.; D’Athis, P.; Bron, A.M. Corneal endothelial cell changes after trabeculectomy and deep sclerectomy. J. Glaucoma, 2007, 16(3), 324-328.
[http://dx.doi.org/10.1097/IJG.0b013e3180391a04] [PMID: 17438428]
[36]
Kim, C.S.; Yim, J.H.; Lee, E.K.; Lee, N.H. Changes in corneal endothelial cell density and morphology after Ahmed glaucoma valve implantation during the first year of follow up. Clin. Exp. Ophthalmol., 2008, 36(2), 142-147.
[http://dx.doi.org/10.1111/j.1442-9071.2008.01683.x] [PMID: 18352870]
[37]
Liaboe, C.A.; Aldrich, B.T.; Carter, P.C.; Skeie, J.M.; Burckart, K.A.; Schmidt, G.A.; Reed, C.R.; Zimmerman, M.B.; Greiner, M.A. Assessing the impact of diabetes mellitus on donor corneal endothelial cell density. Cornea, 2017, 36(5), 561-566.
[http://dx.doi.org/10.1097/ICO.0000000000001174] [PMID: 28306601]
[38]
Zhong, J.; Jia, J.; Yu, J.; Zhang, L.; Xiang, Y. Preoperative photocoagulation reduces corneal endothelial cell damage after vitrectomy in patients with proliferative diabetic retinopathy. Medicine (Baltimore), 2017, 96(40)e7971
[http://dx.doi.org/10.1097/MD.0000000000007971] [PMID: 28984756]
[39]
Sudhir, R.R.; Raman, R.; Sharma, T. Changes in the corneal endothelial cell density and morphology in patients with type 2 diabetes mellitus: A population-based study, Sankara Nethralaya Diabetic Retinopathy and Molecular Genetics Study (SN-DREAMS, Report 23). Cornea, 2012, 31(10), 1119-1122.
[http://dx.doi.org/10.1097/ICO.0b013e31823f8e00] [PMID: 22357387]
[40]
Abu Samra, K.; Fernando Sieminski, S.; Sarup, V. Decompression retinopathy after Ex-PRESS shunt implantation for steroid-induced ocular hypertension: A case Report. Case Rep. Ophthalmol. Med., 2011.2011303287
[http://dx.doi.org/10.1155/2011/303287] [PMID: 22611508]
[41]
Puerto, B.; López-Caballero, C.; Sánchez-Sánchez, C.; Oblanca, N.; Blázquez, V.; Contreras, I. Clinical outcomes after Ex-PRESS glaucoma shunt versus non-penetrating deep sclerectomy: Two-year follow-up. Int. Ophthalmol., 2018, 38(6), 2575-2584.
[http://dx.doi.org/10.1007/s10792-017-0771-4] [PMID: 29177946]

© 2024 Bentham Science Publishers | Privacy Policy