Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Therapeutic Potentials of Scavenger Receptor CD36 Mediated Innate Immune Responses Against Infectious and Non-Infectious Diseases

Author(s): Sooram Banesh and Vishal Trivedi*

Volume 17, Issue 3, 2020

Page: [299 - 317] Pages: 19

DOI: 10.2174/1570163816666190802153319

Price: $65

Abstract

CD36 is a multifunctional glycoprotein, expressed in different types of cells and known to play a significant role in the pathophysiology of the host. The structural studies revealed that the scavenger receptor consists of short cytosolic domains, two transmembrane domains, and a large ectodomain. The ectodomain serves as a receptor for a diverse number of endogenous and exogenous ligands. The CD36-specific ligands are involved in regulating the immune response during infectious and non-infectious diseases in the host. The role of CD36 in regulating the innate immune response during Pneumonia, Tuberculosis, Malaria, Leishmaniasis, HIV, and Sepsis in a ligand- mediated fashion. Apart from infectious diseases, it is also considered to be involved in metabolic disorders such as Atherosclerosis, Alzheimer’s, cancer, and Diabetes. The ligand binding to scavenger receptor modulates the CD36 down-stream innate immune response, and it can be exploited to design suitable immuno-modulators. Hence, the current review focused on the role of the CD36 in innate immune response and therapeutic potentials of novel heterocyclic compounds as CD36 ligands during infectious and non-infectious diseases.

Keywords: CD36, ligands, phagocytosis, ectodomain, immunostimulation, signaling.

Graphical Abstract

[1]
Bartsch RP, Liu KK, Bashan A, Ivanov PCh. Network physiology: how organ systems dynamically inter-act. PLoS One 2015; 10(11) e0142143
[http://dx.doi.org/10.1371/journal.pone.0142143] [PMID: 26555073]
[2]
Mowel WK, Kotzin JJ, McCright SJ, Neal VD, Henao-Mejia J. Control of immune cell homeostasis and function by lncRNAs. Trends Immunol 2018; 39(1): 55-69.
[http://dx.doi.org/10.1016/j.it.2017.08.009] [PMID: 28919048]
[3]
Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 2014; 14(6): 392-404.
[http://dx.doi.org/10.1038/nri3671] [PMID: 24854589]
[4]
Laskin DL, Weinberger B, Laskin JD. Functional heterogeneity in liver and lung macrophages. J Leukoc Biol 2001; 70(2): 163-70.
[PMID: 11493607]
[5]
Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity 2014; 41(1): 21-35.
[http://dx.doi.org/10.1016/j.immuni.2014.06.013] [PMID: 25035951]
[6]
Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity. Curr Opin Immunol 2002; 14(1): 123-8.
[http://dx.doi.org/10.1016/S0952-7915(01)00307-7] [PMID: 11790542]
[7]
Zani IA, Stephen SL, Mughal NA, et al. Scavenger receptor structure and function in health and disease. Cells 2015; 4(2): 178-201.
[http://dx.doi.org/10.3390/cells4020178] [PMID: 26010753]
[8]
Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 2001; 108(6): 785-91.
[http://dx.doi.org/10.1172/JCI14006] [PMID: 11560944]
[9]
Heit B, Kim H, Cosío G, et al. Multimolecular signaling complexes enable Syk-mediated signaling of CD36 internalization. Dev Cell 2013; 24(4): 372-83.
[http://dx.doi.org/10.1016/j.devcel.2013.01.007] [PMID: 23395392]
[10]
Fadok VA, Bratton DL, Henson PM. Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences. J Clin Invest 2001; 108(7): 957-62.
[http://dx.doi.org/10.1172/JCI200114122] [PMID: 11581295]
[11]
Penberthy KK, Ravichandran KS. Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev 2016; 269(1): 44-59.
[http://dx.doi.org/10.1111/imr.12376] [PMID: 26683144]
[12]
Pepino MY, Kuda O, Samovski D, Abumrad NA. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu Rev Nutr 2014; 34: 281-303.
[http://dx.doi.org/10.1146/annurev-nutr-071812-161220] [PMID: 24850384]
[13]
Greenberg ME, Sun M, Zhang R, Febbraio M, Silverstein R, Hazen SL. Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J Exp Med 2006; 203(12): 2613-25.
[http://dx.doi.org/10.1084/jem.20060370] [PMID: 17101731]
[14]
Banesh S, Ramakrishnan V, Trivedi V. Mapping of phosphatidylserine recognition region on CD36 ectodomain. Arch Biochem Biophys 2018; 660: 1-10.
[http://dx.doi.org/10.1016/j.abb.2018.10.005] [PMID: 30316763]
[15]
Ibrahimi A, Abumrad NA. Role of CD36 in membrane transport of long-chain fatty acids. Curr Opin Clin Nutr Metab Care 2002; 5(2): 139-45.
[http://dx.doi.org/10.1097/00075197-200203000-00004] [PMID: 11844979]
[16]
Palanisamy GS, Kirk NM, Ackart DF, et al. Uptake and accumulation of oxidized low-density lipoprotein during Mycobacterium tuberculosis infection in guinea pigs. PLoS One 2012; 7(3) e34148
[http://dx.doi.org/10.1371/journal.pone.0034148] [PMID: 22493658]
[17]
Baranova IN, Bocharov AV, Vishnyakova TG, et al. CD36 is a novel serum amyloid A (SAA) receptor mediating SAA binding and SAA-induced signaling in human and rodent cells. J Biol Chem 2010; 285(11): 8492-506.
[http://dx.doi.org/10.1074/jbc.M109.007526] [PMID: 20075072]
[18]
Demers A, McNicoll N, Febbraio M, et al. Identification of the growth hormone-releasing peptide binding site in CD36: a photoaffinity cross-linking study. Biochem J 2004; 382(Pt 2): 417-24.
[http://dx.doi.org/10.1042/BJ20040036] [PMID: 15176951]
[19]
Hsieh F-L, Turner L, Bolla JR, Robinson CV, Lavstsen T, Higgins MK. The structural basis for CD36 binding by the malaria parasite. Nat Commun 2016; 7: 12837.
[http://dx.doi.org/10.1038/ncomms12837] [PMID: 27667267]
[20]
Frieda S, Pearce A, Wu J, Silverstein RL. Recombinant GST/CD36 fusion proteins define a thrombospondin binding domain. Evidence for a single calcium-dependent binding site on CD36. J Biol Chem 1995; 270(7): 2981-6.
[http://dx.doi.org/10.1074/jbc.270.7.2981] [PMID: 7531696]
[21]
El Khoury JB, Moore KJ, Means TK, et al. CD36 mediates the innate host response to β-amyloid. J Exp Med 2003; 197(12): 1657-66.
[http://dx.doi.org/10.1084/jem.20021546] [PMID: 12796468]
[22]
Ockenhouse CF, Klotz FW, Tandon NN, Jamieson GA. Sequestrin, a CD36 recognition protein on Plasmodium falciparum malaria-infected erythrocytes identified by anti-idiotype antibodies. Proc Natl Acad Sci USA 1991; 88(8): 3175-9.
[http://dx.doi.org/10.1073/pnas.88.8.3175] [PMID: 1707534]
[23]
Dodd CE, Pyle CJ, Glowinski R, Rajaram MV, Schlesinger LS. CD36-mediated uptake of surfactant lipids by human macro-phages promotes intracellular growth of Mycobacterium tu-berculosis. J Immunol 2016; 197(12): 4727-35.
[http://dx.doi.org/10.4049/jimmunol.1600856] [PMID: 27913648]
[24]
Sharif O, Matt U, Saluzzo S, et al. The scavenger receptor CD36 downmodulates the early inflammatory response while enhancing bacterial phagocytosis during pneumococcal pneumonia. J Immunol 2013; 190(11): 5640-8.
[http://dx.doi.org/10.4049/jimmunol.1202270] [PMID: 23610144]
[25]
Woo M-S, Yang J, Beltran C, Cho S. Cell surface CD36 protein in monocyte/macrophage contrib-utes to phagocytosis during the resolution phase of ischemic stroke in mice. J Biol Chem 2016; 291(45): 23654-61.
[http://dx.doi.org/10.1074/jbc.M116.750018] [PMID: 27646002]
[26]
Martin CA, Longman E, Wooding C, et al. Cd36, a class B scavenger receptor, functions as a monomer to bind acetylated and oxidized low-density lipoproteins. Protein Sci 2007; 16(11): 2531-41.
[http://dx.doi.org/10.1110/ps.073007207] [PMID: 17905828]
[27]
Yesner LM, Huh HY, Pearce SF, Silverstein RL. Regulation of monocyte CD36 and thrombospondin-1 expression by soluble mediators. Arterioscler Thromb Vasc Biol 1996; 16(8): 1019-25.
[http://dx.doi.org/10.1161/01.ATV.16.8.1019] [PMID: 8696941]
[28]
Bodart V, Febbraio M, Demers A, et al. CD36 mediates the cardiovascular action of growth hormone-releasing peptides in the heart. Circ Res 2002; 90(8): 844-9.
[http://dx.doi.org/10.1161/01.RES.0000016164.02525.B4] [PMID: 11988484]
[29]
Sabatino D, Proulx C, Pohankova P, Ong H, Lubell WD. Structure-activity relationships of GHRP-6 azapeptide ligands of the CD36 scavenger receptor by solid-phase submonomer azapeptide synthesis. J Am Chem Soc 2011; 133(32): 12493-506.
[http://dx.doi.org/10.1021/ja203007u] [PMID: 21692501]
[30]
Lee S, Eguchi A, Sakamoto K, et al. A role of CD36 in the perception of an oxidised phospholipid species in mice. Biomed Res 2015; 36(5): 303-11.
[http://dx.doi.org/10.2220/biomedres.36.303] [PMID: 26522147]
[31]
Miller YI, Choi S-H, Wiesner P, et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res 2011; 108(2): 235-48.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223875]
[32]
Cabrera A, Neculai D, Kain KC. CD36 and malaria: friends or foes? A decade of data provides some answers. Trends Parasitol 2014; 30(9): 436-44.
[http://dx.doi.org/10.1016/j.pt.2014.07.006] [PMID: 25113859]
[33]
Smith TG, Serghides L, Patel SN, Febbraio M, Silverstein RL, Kain KC. CD36-mediated nonopsonic phagocytosis of erythrocytes infected with stage I and IIA gametocytes of Plasmodium falciparum. Infect Immun 2003; 71(1): 393-400.
[http://dx.doi.org/10.1128/IAI.71.1.393-400.2003]
[34]
Osz K, Ross M, Petrik J. The thrombospondin-1 receptor CD36 is an important mediator of ovarian angiogenesis and folliculogenesis. Reprod Biol Endocrinol 2014; 12(1): 21.
[http://dx.doi.org/10.1186/1477-7827-12-21]
[35]
Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009; 22(2): 240-73.
[http://dx.doi.org/10.1128/CMR.00046-08]
[36]
Palm NW, Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol Rev 2009; 227(1): 221-33.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00731.x]
[37]
Falkinham JO III. Mycobacterial aerosols and respiratory disease. Emerg Infect Dis 2003; 9(7): 763-7.
[http://dx.doi.org/10.3201/eid0907.020415]
[38]
Müller B, Borrell S, Rose G, Gagneux S. The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends Genet 2013; 29(3): 160-9.
[http://dx.doi.org/10.1016/j.tig.2012.11.005]
[39]
Ndlovu H, Marakalala MJ. Granulomas and inflammation: host-directed therapies for tuberculosis. Front Immunol 2016; 7: 434.
[http://dx.doi.org/10.3389/fimmu.2016.00434]
[40]
Zhu W, Li W, Silverstein RL. Advanced glycation end products induce a prothrombotic phenotype in mice via interaction with platelet CD36. Blood 2012; 119(25): 6136-44.
[http://dx.doi.org/10.1182/blood-2011-10-387506]
[41]
Ohgami N, Nagai R, Ikemoto M, et al. CD36, serves as a receptor for advanced glycation endproducts (AGE). J Diabetes Complications 2002; 16(1): 56-9.
[http://dx.doi.org/10.1016/S1056-8727(01)00208-2] [PMID: 11872368]
[42]
Hawkes M, Li X, Crockett M, et al. CD36 deficiency attenuates experimental mycobacterial infection. BMC Infect Dis 2010; 10(1): 299.
[http://dx.doi.org/10.1186/1471-2334-10-299]
[43]
Józefowski S, Sobota A, Pawłowski A, Kwiatkowska K, Kwiatkowska K. Mycobacterium tuberculosis lipoarabinomannan enhances LPS-induced TNF-α production and inhibits NO secretion by engaging scavenger receptors. Microb Pathog 2011; 50(6): 350-9.
[http://dx.doi.org/10.1016/j.micpath.2011.03.001] [PMID: 21419839]
[44]
Lao W, Kang H, Jin G, et al. Evaluation of the relationship between MARCO and CD36 single-nucleotide polymorphisms and susceptibility to pulmonary tuberculosis in a Chinese Han population. BMC Infect Dis 2017; 17(1): 488.
[http://dx.doi.org/10.1186/s12879-017-2595-2]
[45]
Han SH, Kim JH, Martin M, Michalek SM, Nahm MH. Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating Toll-like receptor 2. Infect Immun 2003; 71(10): 5541-8.
[http://dx.doi.org/10.1128/IAI.71.10.5541-5548.2003] [PMID: 14500472]
[46]
Cooper GE, Pounce ZC, Wallington JC, et al. Viral Inhibition of Bacterial Phagocytosis by Human Macrophages: Redundant Role of CD36. PLoS One 2016; 11(10) e0163889
[http://dx.doi.org/10.1371/journal.pone.0163889] [PMID: 27701435]
[47]
Stuart LM, Deng J, Silver JM, et al. Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J Cell Biol 2005; 170(3): 477-85.
[http://dx.doi.org/10.1083/jcb.200501113] [PMID: 16061696]
[48]
Soulard V, Bosson-Vanga H, Lorthiois A, et al. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice. Nat Commun 2015; 6: 7690.
[http://dx.doi.org/10.1038/ncomms8690]
[49]
Jenkins N, Wu Y, Chakravorty S, Kai O, Marsh K, Craig A. Plasmodium falciparum intercellular adhesion molecule-1-based cytoadherence-related signaling in human endothelial cells. J Infect Dis 2007; 196(2): 321-7.
[http://dx.doi.org/10.1086/518795] [PMID: 17570121]
[50]
Cooke BM, Mohandas N, Coppel RL. The malaria-infected red blood cell: structural and functional changes 2001.
[http://dx.doi.org/10.1016/S0065-308X(01)50029-9]
[51]
Hiller NL, Bhattacharjee S, van Ooij C, et al. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 2004; 306(5703): 1934-7.
[http://dx.doi.org/10.1126/science.1102737]
[52]
Cooke BM, Buckingham DW, Glenister FK, et al. A Maurer’s cleft-associated protein is essential for expression of the major malaria virulence antigen on the surface of infected red blood cells. J Cell Biol 2006; 172(6): 899-908.
[http://dx.doi.org/10.1083/jcb.200509122] [PMID: 16520384]
[53]
Patel SN, Serghides L, Smith TG, et al. CD36 mediates the phagocytosis of Plasmodium falciparum-infected erythrocytes by rodent macrophages. J Infect Dis 2004; 189(2): 204-13.
[http://dx.doi.org/10.1086/380764] [PMID: 14722884]
[54]
Deshmukh R, Trivedi V. Phagocytic uptake of oxidized heme polymer is highly cytotoxic to macrophages. PLoS One 2014; 9(7) e103706
[http://dx.doi.org/10.1371/journal.pone.0103706] [PMID: 25078090]
[55]
Fonager J, Pasini EM, Braks JA, et al. Reduced CD36-dependent tissue sequestration of Plasmodium-infected erythrocytes is detrimental to malaria parasite growth in vivo. J Exp Med 2012; 209(1): 93-107.
[http://dx.doi.org/10.1084/jem.20110762] [PMID: 22184632]
[56]
Gruarin P, Primo L, Ferrandi C, et al. Cytoadherence of Plasmodium falciparum-infected erythrocytes is mediated by a redox-dependent conformational fraction of CD36. J Immunol 2001; 167(11): 6510-7.
[http://dx.doi.org/10.4049/jimmunol.167.11.6510] [PMID: 11714819]
[57]
Erdman LK, Cosio G, Helmers AJ, Gowda DC, Grinstein S, Kain KC. 2009.
[58]
Zhou J, Ludlow LE, Hasang W, Rogerson SJ, Jaworowski A. Opsonization of malaria-infected erythrocytes activates the inflammasome and enhances inflammatory cytokine secretion by human macrophages. Malar J 2012; 11(1): 343.
[http://dx.doi.org/10.1186/1475-2875-11-343]
[59]
Thylur RP, Wu X, Gowda NM, et al. CD36 receptor regulates malaria-induced immune responses primarily at early blood stage infection contributing to parasitemia control and resistance to mortality. J Biol Chem 2017; 292(22): 9394-408.
[http://dx.doi.org/10.1074/jbc.M117.781294] [PMID: 28416609]
[60]
Clem A. A current perspective on leishmaniasis. J Glob Infect Dis 2010; 2(2): 124-6.
[http://dx.doi.org/10.4103/0974-777X.62863] [PMID: 20606967]
[61]
Gupta G, Oghumu S, Satoskar AR. Mechanisms of immune evasion in leishmaniasis.Advances in applied microbiology Elsevier 2013; 82: pp 155-84..
[http://dx.doi.org/10.1016/B978-0-12-407679-2.00005-3]
[62]
Okuda K, Tong M, Dempsey B, Moore KJ, Gazzinelli RT, Silverman N. Leishmania amazonensis engages CD36 to drive parasitoph-orous vacuole maturation. PLoS Pathog 2016; 12(6) e1005669
[http://dx.doi.org/10.1371/journal.ppat.1005669] [PMID: 27280707]
[63]
Cohen FS. How viruses invade cells. Biophys J 2016; 110(5): 1028-32.
[http://dx.doi.org/10.1016/j.bpj.2016.02.006]
[64]
Cherry S, Perrimon N. Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis. Nat Immunol 2004; 5(1): 81-7.
[http://dx.doi.org/10.1038/ni1019]
[65]
Shayakhmetov DM, Di Paolo NC, Mossman KL. Recognition of virus infection and innate host responses to viral gene therapy vectors. Mol Ther 2010; 18(8): 1422-9.
[http://dx.doi.org/10.1038/mt.2010.124]
[66]
Cliver DO. Capsid and infectivity in virus detection. Food Environ Virol 2009; 1(3-4): 123-8.
[http://dx.doi.org/10.1007/s12560-009-9020-y]
[67]
Baranowski E, Ruiz-Jarabo CM, Domingo E. Evolution of cell recognition by viruses. Science 2001; 292(5519): 1102-5.
[http://dx.doi.org/10.1126/science.1058613]
[68]
Carlquist JF, Muhlestein JB, Horne BD, et al. Cytomegalovirus stimulated mRNA accumulation and cell surface expression of the oxidized LDL scavenger receptor, CD36 Atherosclerosis 2004; 177(1): 53-9..
[http://dx.doi.org/10.1016/j.atherosclerosis.2004.07.010] [PMID: 15488865]
[69]
Staples KJ, Pounce Z, Wallington JC, Spalluto CM, Morris D, Nicholas B. Viral infection of macrophages reduces CD36 expression: Implications for phagocytosis of non-typeable haemophilus influenzae. Eur Respiratory Soc. 2015.
[70]
Meroni L, Riva A, Morelli P, et al. Increased CD36 expression on circulating monocytes during HIV infection. J Acquir Immune Defic Syndr 2005; 38(3): 310-3.
[PMID: 15735450]
[71]
Shalygina NB, Kanshina OA, Kanshin NN. [Involvement of the appendix in the inflammatory process in severe nonspecific chronic ulcerative colitis in children]. Arkh Patol 1989; 51(5): 24-6.
[PMID: 2774992]
[72]
Gearhart TL, Bouchard MJ. Replication of the hepatitis B virus requires a calcium-dependent HBx-induced G1 phase arrest of hepatocytes. Virology 2010; 407(1): 14-25.
[http://dx.doi.org/10.1016/j.virol.2010.07.042]
[73]
Casciano JC, Duchemin NJ, Lamontagne RJ, Steel LF, Bouchard MJ. Hepatitis B virus modulates store-operated calcium entry to enhance viral replication in primary hepatocytes. PLoS One 2017; 12(2) e0168328
[http://dx.doi.org/10.1371/journal.pone.0168328] [PMID: 28151934]
[74]
Huang J, Zhao L, Yang P, et al. Fatty acid translocase promoted hepatitis B virus replication by upregulating the levels of hepatic cytosolic calcium. Exp Cell Res 2017; 358(2): 360-8.
[http://dx.doi.org/10.1016/j.yexcr.2017.07.012]
[75]
Shiratsuchi A, Kaido M, Takizawa T, Nakanishi Y. Phosphatidylserine-mediated phagocytosis of influenza A virus-infected cells by mouse peritoneal macrophages. J Virol 2000; 74(19): 9240-4.
[http://dx.doi.org/10.1128/JVI.74.19.9240-9244.2000] [PMID: 10982371]
[76]
Berre S, Gaudin R, de Alencar BC, Desdouits M, Chabaud M, Naffakh N. CD36-specific antibodies block release of HIV-1 from infect-ed primary macrophages and its transmission to T cells Journal of Experimental Medicine 2013. jem.20130566..
[77]
Olivetta E, Tirelli V, Chiozzini C, et al. HIV-1 Nef impairs key functional activities in human macrophages through CD36 downregulation. PLoS One 2014; 9(4) e93699
[http://dx.doi.org/10.1371/journal.pone.0093699] [PMID: 24705461]
[78]
Bali J, Halima SB, Felmy B, Goodger Z, Zurbriggen S, Rajendran L. Cellular basis of Alzheimer’s disease. Ann Indian Acad Neurol 2010; 13(Suppl. 2): S89-93.
[http://dx.doi.org/10.4103/0972-2327.74251] [PMID: 21369424]
[79]
St George-Hyslop PH, Petit A. Molecular biology and genetics of Alzheimer’s disease. C R Biol 2005; 328(2): 119-30.
[http://dx.doi.org/10.1016/j.crvi.2004.10.013] [PMID: 15770998]
[80]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1) a006189
[http://dx.doi.org/10.1101/cshperspect.a006189]
[81]
Müller-Hill B, Beyreuther K. Molecular biology of Alzheimer’s disease. Annu Rev Biochem 1989; 58(1): 287-307.
[http://dx.doi.org/10.1146/annurev.bi.58.070189.001443]
[82]
Swerdlow RH. Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2007; 2(3): 347-59.
[PMID: 18044185]
[83]
Ho GJ, Drego R, Hakimian E, Masliah E. Mechanisms of cell signaling and inflammation in Alzheimer’s disease. Curr Drug Targets Inflamm Allergy 2005; 4(2): 247-56.
[http://dx.doi.org/10.2174/1568010053586237] [PMID: 15853747]
[84]
Ricciarelli R, D’Abramo C, Zingg J-M, et al. CD36 overexpression in human brain correlates with β-amyloid deposition but not with Alzheimer’s disease. Free Radic Biol Med 2004; 36(8): 1018-24.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.007]
[85]
Park L, Wang G, Zhou P, et al. Scavenger receptor CD36 is essential for the cerebrovascular oxidative stress and neurovascular dysfunction induced by amyloid-β 2011.
[http://dx.doi.org/10.1073/pnas.1015413108]
[86]
Coraci IS, Husemann J, Berman JW, et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to β-amyloid fibrils 2002..
[http://dx.doi.org/10.1016/S0002-9440(10)64354-4]
[87]
Giunta M, Rigamonti AE, Scarpini E, et al. The leukocyte expression of CD36 is low in patients with Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 2007; 28(4): 515-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.02.002]
[88]
Moore KJ, El Khoury J, Medeiros LA, et al. A CD36-initiated signaling cascade mediates inflammatory effects of β-amyloid. J Biol Chem 2002; 277(49): 47373-9.
[http://dx.doi.org/10.1074/jbc.M208788200] [PMID: 12239221]
[89]
Spence JD. Pathogenesis of atherosclerosis and its complications: effects of antihypertensive drugs. J Hum Hypertens 1989; 3(Suppl. 2): 63-8.
[PMID: 2691695]
[90]
van der Vorst EP, Döring Y, Weber C. Chemokines and their receptors in Atherosclerosis J Mol Med (Berl) 2015; 93(9): 963-71..
[http://dx.doi.org/10.1007/s00109-015-1317-8] [PMID: 26175090]
[91]
Vlassara H. Advanced glycation end-products and atherosclerosis 1996.
[http://dx.doi.org/10.3109/07853899608999102]
[92]
Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 2014; 18(1): 1-14.
[http://dx.doi.org/10.4196/kjpp.2014.18.1.1]
[93]
Vlassara H, Uribarri J. Advanced glycation end products (AGE) and diabetes: cause, effect, or both? Curr Diab Rep 2014; 14(1): 453.
[http://dx.doi.org/10.1007/s11892-013-0453-1] [PMID: 24292971]
[94]
Xu S, Li L, Yan J, et al. CML/CD36 accelerates atherosclerotic progression via inhibiting foam cell migration. Biomed Pharmacother 2018; 97: 1020-31.
[http://dx.doi.org/10.1016/j.biopha.2017.11.041] [PMID: 29136780]
[95]
Ahmed MU, Brinkmann Frye E, Degenhardt TP, Thorpe SR, Baynes JW. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J 1997; 324(Pt 2): 565-70.
[http://dx.doi.org/10.1042/bj3240565] [PMID: 9182719]
[96]
Geng J, Yang C, Wang B, et al. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother 2018; 97: 941-7.
[http://dx.doi.org/10.1016/j.biopha.2017.11.016] [PMID: 29136772]
[97]
Ackers I, Szymanski C, Duckett KJ, Consitt LA, Silver MJ, Malgor R. Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis. Cardiovasc Pathol 2018; 34: 1-8.
[http://dx.doi.org/10.1016/j.carpath.2018.01.008]
[98]
Cheng Z, Ning Y, Wang R. Effects of electroacupuncture on expression of CD36 in peritoneal macrophages of rabbits with atherosclerosis Zhongguo Zhenjiu 2018; 38(2): 179-84.
[PMID: 29473362]
[99]
Sudhakar A. History of cancer, ancient and modern treatment methods. J Cancer Sci Ther 2009; 1(2): 1-4.
[http://dx.doi.org/10.4172/1948-5956.100000e2] [PMID: 20740081]
[100]
Jia S, Zhou L, Shen T, Zhou S, Ding G, Cao L. Down-expression of CD36 in pancreatic adenocarcinoma and its correlation with clinicopathological features and prognosis. J Cancer 2018; 9(3): 578-83.
[http://dx.doi.org/10.7150/jca.21046] [PMID: 29483963]
[101]
Ladanyi A, Mukherjee A, Kenny HA, et al. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene 2018; 37(17): 2285-301.
[http://dx.doi.org/10.1038/s41388-017-0093-z]
[102]
Landberg N, von Palffy S, Askmyr M, Lilljebjörn H, Sandén C, Rissler M CD36 defines primitive chronic myeloid leukemia cells less responsive to imatinib but vulnerable to antibody-based therapeutic targeting. Haematologica 2018; 103(3): 447-55.
[103]
Newton JG, Horan JT, Newman S, Rossi MR, Ketterling RP, Park SI. CD36-positive B-lymphoblasts Predict Poor Outcome in Children With B-lymphoblastic Leukemia Pediatr Dev Pathol 2017; 20( 3): 224-31..
[http://dx.doi.org/10.1177/1093526616688753 ] [PMID: 28521628]
[104]
Dong L, Yuan Y, Opansky C, et al. Diet-induced obesity links to ER positive breast cancer pro-gression via LPA/PKD-1-CD36 signaling-mediated microvascular remodeling. Oncotarget 2017; 8(14): 22550-62.
[http://dx.doi.org/10.18632/oncotarget.15123] [PMID: 28186980]
[105]
Pascual G, Avgustinova A, Mejetta S, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36 2017.
[http://dx.doi.org/10.1038/nature20791]
[106]
Zhao J, Zhi Z, Wang C, et al. Exogenous lipids promote the growth of breast cancer cells via CD36. Oncol Rep 2017; 38(4): 2105-15.
[http://dx.doi.org/10.3892/or.2017.5864]
[107]
Bocharov AV, Wu T, Baranova IN, et al. Synthetic amphipathic helical peptides targeting cd36 attenuate lipopolysaccharide-induced inflammation and acute lung inju-ry. J Immunol 2016; 197(2): 611-9.
[http://dx.doi.org/10.4049/jimmunol.1401028] [PMID: 27316682]
[108]
Navab M, Anantharamaiah GM, Reddy ST, Fogelman AM. Apolipoprotein A-I mimetic peptides and their role in atherosclerosis prevention. Nat Clin Pract Cardiovasc Med 2006; 3(10): 540-7.
[http://dx.doi.org/10.1038/ncpcardio0661]
[109]
Bocharov AV, Baranova IN, Vishnyakova TG, et al. Targeting of scavenger receptor class B type I by synthetic amphipathic α-helical-containing peptides blocks lipopolysaccharide (LPS) uptake and LPS-induced pro-inflammatory cytokine responses in THP-1 monocyte cells. J Biol Chem 2004; 279(34): 36072-82.
[http://dx.doi.org/10.1074/jbc.M314264200] [PMID: 15199068]
[110]
Patel S, Di Bartolo BA, Nakhla S, et al. Anti-inflammatory effects of apolipoprotein A-I in the rabbit. Atherosclerosis 2010; 212(2): 392-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.05.035]
[111]
Souza ACP, Bocharov AV, Baranova IN, et al. Antagonism of scavenger receptor CD36 by 5A peptide prevents chronic kidney disease progression in mice independent of blood pressure regulation. Kidney Int 2016; 89(4): 809-22.
[http://dx.doi.org/10.1016/j.kint.2015.12.043] [PMID: 26994575]
[112]
Nowacki TM, Remaley AT, Bettenworth D, et al. The 5A apolipoprotein A-I (apoA-I) mimetic peptide ameliorates experimental colitis by regulating monocyte infiltration. Br J Pharmacol 2016; 173(18): 2780-92.
[http://dx.doi.org/10.1161/ATVBAHA.109.200196] [PMID: 27425846]
[113]
Tabet F, Remaley AT, Segaliny AI, et al. The 5A apolipoprotein A-I mimetic peptide displays antiinflammatory and antioxidant properties in vivo and in vitro. Arterioscler Thromb Vasc Biol 2010; 30(2): 246-52.
[114]
Amar MJ, D’Souza W, Turner S, et al. 5A apolipoprotein mimetic peptide promotes cholesterol efflux and reduces atherosclerosis in mice. J Pharmacol Exp Ther 2010; 334(2): 634-41.
[http://dx.doi.org/10.1124/jpet.110.167890] [PMID: 20484557]
[115]
Yokoi H, Yanagita M. Targeting the fatty acid transport protein CD36, a class B scavenger receptor, in the treatment of renal disease. Kidney Int 2016; 89(4): 740-2.
[http://dx.doi.org/10.1016/j.kint.2016.01.009]
[116]
Pennathur S, Pasichnyk K, Bahrami NM, et al. The macrophage phagocytic receptor CD36 promotes fibrogenic pathways on removal of apoptotic cells during chronic kidney injury. Am J Pathol 2015; 185(8): 2232-45.
[http://dx.doi.org/10.1016/j.ajpath.2015.04.016]
[117]
Cho S, Szeto HH, Kim E, Kim H, Tolhurst AT, Pinto JT. A novel cell-permeable antioxidant peptide, SS31, attenuates ischemic brain injury by down-regulating CD36. J Biol Chem 2007; 282(7): 4634-42.
[http://dx.doi.org/10.1074/jbc.M609388200] [PMID: 17178711]
[118]
Jia Y-L, Sun S-J, Chen J-H, et al Mitochondria-targeted antioxidant SS-31 is a potential novel ophthalmic medication for neuroprotection in glaucoma. Med Hypothesis Discov Innov Ophthalmol 2016; 4(3): 120-6.
[PMID: 27350953]
[119]
Pang Y, Wang C, Yu L. Mitochondria-targeted antioxidant SS-31 is a potential novel ophthalmic medication for neuroprotection in glaucoma. Med Hypothesis Discov Innov Ophthalmol 2015; 4(3): 120-6.
[PMID: 27350953]
[120]
Davis SP, Amrein M, Gillrie MR, Lee K, Muruve DA, Ho M. Plasmodium falciparum-induced CD36 clustering rapidly strengthens cytoadherence via p130CAS-mediated actin cytoskeletal rearrangement. FASEB J 2012; 26(3): 1119-30.
[http://dx.doi.org/10.1096/fj.11-196923]
[121]
Mehra A, Jerath G, Ramakrishnan V, Trivedi V. Characterization of ICAM-1 biophore to design cytoadherence blocking peptides. J Mol Graph Model 2015; 57: 27-35.
[http://dx.doi.org/10.1016/j.jmgm.2015.01.004] [PMID: 25625914]
[122]
Baruch DI, Ma XC, Pasloske B, Howard RJ, Miller LH. CD36 peptides that block cytoadherence define the CD36 binding region for Plasmodium falciparum-infected erythrocytes. Blood 1999; 94(6): 2121-7.
[http://dx.doi.org/10.1182/blood.V94.6.2121] [PMID: 10477742]
[123]
Yipp BG, Baruch DI, Brady C, et al. Recombinant PfEMP1 peptide inhibits and reverses cytoadherence of clinical Plasmodium falciparum isolates in vivo. Blood 2003; 101(1): 331-7.
[http://dx.doi.org/10.1182/blood-2002-06-1725]
[124]
Yipp BG, Robbins SM, Resek ME, Baruch DI, Looareesuwan S, Ho M. Src-family kinase signaling modulates the adhesion of Plasmodium falciparum on human microvascular endothelium under flow. Blood 2003; 101(7): 2850-7.
[125]
Serrano Rios M. Relationship between obesity and the increased risk of major complications in non-insulin-dependent diabetes mellitus. Eur J Clin Invest 1998; 28(Suppl. 2): 14-7. discussion 17-8
[http://dx.doi.org/10.1046/j.1365-2362.1998.0280s2014.x]
[126]
Bonen A, Tandon NN, Glatz JF, Luiken JJ, Heigenhauser GJ. The fatty acid transporter FAT/CD36 is upregulated in subcutaneous and visceral adipose tissues in human obesity and type 2 diabetes. Int J Obes 2006; 30(6): 877-83.
[http://dx.doi.org/10.1038/sj.ijo.0803212] [PMID: 16418758]
[127]
Hoang-Yen Tran D, Hoang-Ngoc Tran D, Mattai SA, et al. Cathelicidin suppresses lipid accumulation and hepatic steatosis by inhibition of the CD36 receptor. Int J Obes (Lond) 2016; 40(9): 1424-34.
[http://dx.doi.org/10.1038/ijo.2016.90]
[128]
Goodpaster BH, Wolf D. Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes 2004.
[http://dx.doi.org/10.1111/j.1399-543X.2004.00071.x]
[129]
Hara T, Kimura I, Inoue D, Ichimura A, Hirasawa A. Free fatty acid receptors and their role in regulation of energy metabolism. Rev Physiol Biochem Pharmacol 2013; 164: 77-116.
[http://dx.doi.org/10.1007/112_2013_13] [PMID: 23625068]
[130]
Turcotte LP, Raney MA, Todd MK. ERK1/2 inhibition prevents contraction-induced increase in plasma membrane FAT/CD36 content and FA uptake in rodent muscle. Acta Physiol Scand 2005; 184(2): 131-9.
[http://dx.doi.org/10.1111/j.1365-201X.2005.01445.x] [PMID: 15916673]
[131]
Wang Y, Yang R, Chen X, et al. Intermedin inhibits uptake of oxidized LDL via CD36 pathway in RAW264.7 cells. Pharmazie 2014; 69(6): 473-6.
[PMID: 24974585]
[132]
Zhao L, Varghese Z, Moorhead JF, Chen Y, Ruan XZ. CD36 and lipid metabolism in the evolution of atherosclerosis. Br Med Bull 2018; 126(1): 101-12.
[http://dx.doi.org/10.1093/bmb/ldy006]
[133]
Rodrigue-Way A, Caron V, Bilodeau S, et al. Scavenger receptor CD36 mediates inhibition of cholesterol synthesis via activation of the PPARγ/PGC-1α pathway and Insig1/2 expression in hepatocytes. FASEB J 2014; 28(4): 1910-23.
[http://dx.doi.org/10.1096/fj.13-240168] [PMID: 24371122]
[134]
Choromańska B, Myśliwiec P, Choromańska K, Dadan J, Chabowski A. The role of CD36 receptor in the pathogenesis of atherosclerosis. Advances in clinical and experimental medicine: official organ Wroclaw Medical University FASEB J 2017; 26(4): 717-22.
[http://dx.doi.org/10.17219/acem/62325]
[135]
Xu X, Ding F, Pang J, et al. Chronic administration of hexarelin attenuates cardiac fibrosis in the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 2012; 303(6): H703-11.
[http://dx.doi.org/10.1152/ajpheart.00257.2011]
[136]
Mao Y, Tokudome T, Kishimoto I, Otani K, Miyazato M, Kangawa K. One dose of oral hexarelin protects chronic cardiac function after myocardial infarction. Peptides 2014; 56: 156-62.
[http://dx.doi.org/10.1016/j.peptides.2014.04.004]
[137]
Zhang X, Qu L, Chen L, Chen C. Improvement of cardiomyocyte function by in vivo hexarelin treatment in streptozotocin-induced diabetic rats. Physiol Rep 2018; 6(4) e13612
[http://dx.doi.org/10.14814/phy2.13612] [PMID: 29446246]
[138]
Marleau S, Harb D, Bujold K, et al. EP 80317, a ligand of the CD36 scavenger receptor, protects apolipoprotein E-deficient mice from developing atherosclerotic lesions. FASEB J 2005; 19(13): 1869-71.
[http://dx.doi.org/10.1096/fj.04-3253fje] [PMID: 16123174]
[139]
Bulgarelli I, Tamiazzo L, Bresciani E, et al. Desacyl-ghrelin and synthetic GH-secretagogues modulate the production of inflammatory cytokines in mouse microglia cells stimulated by β-amyloid fibrils. J Neurosci Res 2009; 87(12): 2718-27.
[http://dx.doi.org/10.1002/jnr.22088] [PMID: 19382238]
[140]
Harb D, Bujold K, Febbraio M, Sirois MG, Ong H, Marleau S. The role of the scavenger receptor CD36 in regulating mononuclear phagocyte trafficking to atherosclerotic lesions and vascular inflammation. Cardiovasc Res 2009; 83(1): 42-51.
[http://dx.doi.org/10.1093/cvr/cvp081]
[141]
Insull W Jr. The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am J Med 2009; 122(1)(Suppl.): S3-S14.
[http://dx.doi.org/10.1016/j.amjmed.2008.10.013]
[142]
Park YM. CD36, a scavenger receptor implicated in atherosclerosis. Exp Mol Med 2014; 46(6) e99
[http://dx.doi.org/10.1038/emm.2014.38]
[143]
Kuda O, Pietka TA, Demianova Z, et al. Sulfo-N-succinimidyl oleate (SSO) inhibits fatty acid uptake and signaling for intracellular calcium via binding CD36 lysine 164: SSO also inhibits oxidized low density lipoprotein uptake by macrophages. J Biol Chem 2013; 288(22): 15547-55.
[http://dx.doi.org/10.1074/jbc.M113.473298] [PMID: 23603908]
[144]
Coort SL, Willems J, Coumans WA, et al. Sulfo-N-succinimidyl esters of long chain fatty acids specifically inhibit fatty acid translocase (FAT/CD36)-mediated cellular fatty acid uptake. Mol Cell Biochem 2002; 239(1-2): 213-9.
[http://dx.doi.org/10.1023/A:1020539932353] [PMID: 12479588]
[145]
Xu Y, Wang J, Bao Y, et al. Identification of two antagonists of the scavenger receptor CD36 using a high-throughput screening model. Anal Biochem 2010; 400(2): 207-12.
[http://dx.doi.org/10.1016/j.ab.2010.02.003]
[146]
Nath A, Li I, Roberts LR, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep 2015; 5: 14752.
[http://dx.doi.org/10.1038/srep14752]
[147]
Cheng J-J, Li J-R, Huang M-H, et al. CD36 is a co-receptor for hepatitis C virus E1 protein attachment. Sci Rep 2016; 6: 21808.
[http://dx.doi.org/10.1038/srep21808]
[148]
Mansor LS, Sousa Fialho MDL, Yea G, et al. Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation. Cardiovasc Res 2017; 113(7): 737-48.
[http://dx.doi.org/10.1093/cvr/cvx045] [PMID: 28419197]
[149]
Devaraj S, Hugou I, Jialal I. α-tocopherol decreases CD36 expression in human monocyte-derived macrophages. J Lipid Res 2001; 42(4): 521-7.
[PMID: 11290823]
[150]
Munteanu A, Taddei M, Tamburini I, Bergamini E, Azzi A, Zingg J-M. Antagonistic effects of oxidized low density lipoprotein and α-tocopherol on CD36 scavenger receptor expression in monocytes: involvement of protein kinase B and peroxisome proliferator-activated receptor-γ. J Biol Chem 2006; 281(10): 6489-97.
[http://dx.doi.org/10.1074/jbc.M508799200] [PMID: 16407258]
[151]
Ricciarelli R, Zingg J-M, Azzi A. Vitamin E reduces the uptake of oxidized LDL by inhibiting CD36 scavenger receptor expression in cultured aortic smooth muscle cells. Circulation 2000; 102(1): 82-7.
[http://dx.doi.org/10.1161/01.CIR.102.1.82] [PMID: 10880419]
[152]
Özer NK, Negis Y, Aytan N, et al. Vitamin E inhibits CD36 scavenger receptor expression in hypercholesterolemic rabbits. Atherosclerosis 2006; 184(1): 15-20.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.03.050] [PMID: 15979077]
[153]
Geloen A, Helin L, Geeraert B, Malaud E, Holvoet P, Marguerie G. CD36 inhibitors reduce postprandial hypertriglyceridemia and protect against diabetic dyslipidemia and atherosclerosis. PLoS One 2012; 7(5) e37633
[http://dx.doi.org/10.1371/journal.pone.0037633] [PMID: 22662181]
[154]
Doens D, Valiente PA, Mfuh AM, et al. Identification of Inhibitors of CD36-Amyloid Beta Binding as Potential Agents for Alzheimer’s Disease. ACS Chem Neurosci 2017; 86: 1232-41.
[http://dx.doi.org/10.1021/acschemneuro.6b00386]
[155]
Gkaliagkousi E, Passacquale G, Douma S, Zamboulis C, Ferro A. Platelet activation in essential hypertension: implications for antiplatelet treatment. Am J Hypertens 2010; 23(3): 229-36.
[http://dx.doi.org/10.1038/ajh.2009.247]
[156]
Rajagopalan S, Mckay I, Ford I, Bachoo P, Greaves M, Brittenden J. Platelet activation increases with the severity of peripheral arterial disease: implications for clinical management. J Vasc Surg 2007; 46(3)
[http://dx.doi.org/10.1016/j.jvs.2007.05.039] [PMID: 17826235]
[157]
Kehrel B, Wierwille S, Clemetson KJ, et al. Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood 1998; 91(2): 491-9.
[http://dx.doi.org/10.1182/blood.V91.2.491] [PMID: 9427702]
[158]
Ikenoya M, Doi T, Miura T, Sawanobori K, Nishio M, Hidaka H. Investigation of binding proteins for anti-platelet agent K-134 by Drug-Western method. Biochem Biophys Res Commun 2007; 353(4): 1111-4.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.172] [PMID: 17207464]
[159]
Isenberg JS, Yu C, Roberts DD. Differential effects of ABT-510 and a CD36-binding peptide derived from the type 1 repeats of thrombospondin-1 on fatty acid uptake, nitric oxide signaling, and caspase activation in vascular cells. Biochem Pharmacol 2008; 75(4): 875-82.
[http://dx.doi.org/10.1016/j.bcp.2007.10.025] [PMID: 18068687]
[160]
Wilkinson K, Boyd JD, Glicksman M, Moore KJ, El Khoury J. A high content drug screen identifies ursolic acid as an inhibitor of amyloid β protein interactions with its receptor CD36. J Biol Chem 2011; 286(40): 34914-22.
[http://dx.doi.org/10.1074/jbc.M111.232116] [PMID: 21835916]
[161]
Ikeda Y, Murakami A, Fujimura Y, et al. Aggregated ursolic acid, a natural triterpenoid, induces IL-1β release from murine peritoneal macrophages: role of CD36. J Immunol 2007; 178(8): 4854-64.
[http://dx.doi.org/10.4049/jimmunol.178.8.4854] [PMID: 17404266]
[162]
Ikeda Y, Murakami A, Ohigashi H. Ursolic acid: an anti- and pro-inflammatory triterpenoid. Mol Nutr Food Res 2008; 52(1): 26-42.
[http://dx.doi.org/10.1002/mnfr.200700389] [PMID: 18203131]
[163]
Li S, Liao X, Meng F, et al. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats. PLoS One 2014; 9(1) e86724
[http://dx.doi.org/10.1371/journal.pone.0086724] [PMID: 24489777]
[164]
Sharma G, She ZG, Valenta DT, Stallcup WB, Smith JW. SHE Z-G, VALENTA DT, STALLCUP WB, SMITH JW Tar-geting of macrophage foam cells in atherosclerotic plaque us-ing oligonucleotide-functionalized nanoparticles. Nano Life 2010; 1(3-4): 207-14.
[http://dx.doi.org/10.1142/S1793984410000183] [PMID: 23125876]
[165]
Wang L, Bao Y, Yang Y, et al. Discovery of antagonists for human scavenger receptor CD36 via an ELISA-like high-throughput screening assay. J Biomol Screen 2010; 15(3): 239-50.
[http://dx.doi.org/10.1177/1087057109359686] [PMID: 20150587]
[166]
Yang J, Park KW, Cho S. Inhibition of the CD36 receptor reduces visceral fat accumulation and improves insulin resistance in obese mice carrying the BDNF-Val66Met variant. J Biol Chem 2018; 293(34): 13338-48.
[http://dx.doi.org/10.1074/jbc.RA118.002405] [PMID: 29914985]
[167]
Cho S, Bao Y, Kim E. CD36 inhibition to control obesity and insulin sensitivity. US Patent US9283243B2 2016.
[168]
Sp N, Kang DY, Kim DH, et al. Nobiletin Inhibits CD36-Dependent Tumor Angiogenesis, Mi-gration, Invasion, and Sphere Formation Through the Cd36/Stat3/Nf-Κb Signaling Axis Nutrients 2018; 10(6): 772.
[http://dx.doi.org/10.3390/nu10060772] [PMID: 29914089]
[169]
Bruni F, Pasqui AL, Pastorelli M, et al. Different effect of statins on platelet oxidized-LDL receptor (CD36 and LOX-1) expression in hypercholesterolemic subjects. Clin Appl Thromb Hemost 2005; 11(4): 417-28.
[http://dx.doi.org/10.1177/107602960501100408] [PMID: 16244767]
[170]
Patel SS, Siddiqui MS. Current and Emerging Therapies for Non-alcoholic Fatty Liver Disease. Drugs 2018; 1-10.
[PMID: 30588564]
[171]
Zingg JM, Hasan ST, Nakagawa K, et al. Modulation of cAMP levels by high-fat diet and curcumin and regulatory effects on CD36/FAT scavenger receptor/fatty acids transporter gene expression. Biofactors 2017; 43(1): 42-53.
[http://dx.doi.org/10.1002/biof.1307] [PMID: 27355903]
[172]
Liu Y, Cheng F, Luo Y, et al. PEGylated Curcumin Derivative Attenuates Hepatic Steatosis via CREB/PPAR-γ/CD36 Pathway. BioMed Res Int 2017; 2017(1) 8234507
[http://dx.doi.org/10.1155/2017/8234507] [PMID: 28770225]
[173]
Wang J, Wang S, Zhang X, Hu L, Shi P. Artemisinin Reduces Lipid Accumulation in Hepatocytes by Inhibition of CD36 Expression. IJPER 2017; 51(3): 393-400.
[http://dx.doi.org/10.5530/ijper.51.3.66]
[174]
Yun MR, Park HM, Seo KW, Kim CE, Yoon JW, Kim CD. Cilostazol attenuates 4-hydroxynonenal-enhanced CD36 ex-pression on murine macrophages via inhibition of NADPH oxidase-derived reactive oxygen species production. Korean J Physiol Pharmacol 2009; 13(2): 99-106.
[http://dx.doi.org/10.4196/kjpp.2009.13.2.99] [PMID: 19885004]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy