Review Article

用中药靶向蛋白激酶抑制剂

卷 20, 期 15, 2019

页: [1505 - 1516] 页: 12

弟呕挨: 10.2174/1389450120666190802125959

价格: $65

摘要

蛋白激酶通过其催化活性在控制细胞生长,增殖,迁移和血管生成中起关键作用。在过去的几年中,已经发现了许多蛋白激酶抑制剂,并已在临床上成功使用。中药(TCM)代表了一大类生物活性物质,其中一些通过抑制蛋白激酶信号通路表现出抗癌活性。在中国,一些中医已被用于临床治疗肿瘤多年。 p38丝裂原活化蛋白激酶(MAPK),磷酸肌醇3激酶,丝氨酸/苏氨酸特异性蛋白激酶(PI3K / AKT / mTOR)和细胞外信号调节激酶(ERK)途径被认为是癌细胞发展中的重要信号。在本文中,讨论了对多种蛋白激酶具有显着抑制活性的中药的最新进展。还提出了对蛋白激酶具有抑制作用的中药在治疗肿瘤中的临床疗效。本文还讨论了中药开发抗癌药物的前景和问题。

关键词: 中药,蛋白激酶抑制剂,抗癌活性,PI3K / AKT / mTOR,MAPK,ERK。

Next »
图形摘要

[1]
Sharma PS, Sharma R, Tyagi R. Inhibitors of cyclin dependent kinases: useful targets for cancer treatment. Curr Cancer Drug Targets 2008; 8(1): 53-75.
[http://dx.doi.org/10.2174/156800908783497131] [PMID: 18288944]
[2]
Ferrè F, Palmeri A, Helmer-Citterich M. Computational methods for analysis and inference of kinase/inhibitor relationships. Front Genet 2014; 5: 196-6.
[http://dx.doi.org/10.3389/fgene.2014.00196] [PMID: 25071826]
[3]
Sun ZJ, Chen G, Hu X, et al. Activation of PI3K/Akt/IKK-alpha/NF-kappaB signaling pathway is required for the apoptosis-evasion in human salivary adenoid cystic carcinoma: its inhibition by quercetin. Apoptosis 2010; 15(7): 850-63.
[http://dx.doi.org/10.1007/s10495-010-0497-5] [PMID: 20386985]
[4]
Kannan-Thulasiraman P, Katsoulidis E, Tallman MS, Arthur JS, Platanias LC. Activation of the mitogen- and stress-activated kinase 1 by arsenic trioxide. J Biol Chem 2006; 281(32): 22446-52.
[http://dx.doi.org/10.1074/jbc.M603111200] [PMID: 16762916]
[5]
Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001; 410(6824): 37-40.
[http://dx.doi.org/10.1038/35065000] [PMID: 11242034]
[6]
Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene 2008; 27(48): 6245-51.
[http://dx.doi.org/10.1038/onc.2008.301] [PMID: 18931691]
[7]
Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 2009; 9(8): 537-49.
[http://dx.doi.org/10.1038/nrc2694] [PMID: 19629069]
[8]
Sui X, Kong N, Ye L, et al. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett 2014; 344(2): 174-9.
[http://dx.doi.org/10.1016/j.canlet.2013.11.019] [PMID: 24333738]
[9]
Olson JM, Hallahan AR. p38 MAP kinase: a convergence point in cancer therapy. Trends Mol Med 2004; 10(3): 125-9.
[http://dx.doi.org/10.1016/j.molmed.2004.01.007] [PMID: 15102355]
[10]
Eblen ST. Extracellular-regulated kinases: Signaling from ras to erk substrates to control biological outcomes. Adv Cancer Res 2018; 138: 99-142.
[http://dx.doi.org/10.1016/bs. acr.2018.02.004]
[11]
Nakao Y, Fusetani N. Enzyme inhibitors from marine invertebrates. J Nat Prod 2007; 70(4): 689-710.
[http://dx.doi.org/10.1021/np060600x] [PMID: 17362037]
[12]
Tomeh MA, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci 2019; 20(5)E1033
[http://dx.doi.org/10.3390/ijms20051033] [PMID: 30818786]
[13]
Lim W, Jeong M, Bazer FW, Song G. Curcumin suppresses proliferation and migration and induces apoptosis on human placental choriocarcinoma cells via erk1/2 and sapk/jnk mapk signaling pathways. Biol Reprod 2016; 95(4): 83.
[http://dx.doi.org/10.1095/biolreprod.116.141630] [PMID: 27580989]
[14]
Yu X, Zhong J, Yan L, et al. Curcumin exerts antitumor effects in retinoblastoma cells by regulating the JNK and p38 MAPK pathways. Int J Mol Med 2016; 38(3): 861-8.
[http://dx.doi.org/10.3892/ijmm.2016.2676] [PMID: 27432244]
[15]
Kanai M, World J J. Therapeutic applications of curcumin for patients with pancreatic cance Gastroenterol 2014; 20(28): 9384-91.
[http://dx.doi.org/10.3748/wjg.v20.i28.9384]
[16]
Yu R, Mandlekar S, Tan TH, Kong AN. Activation of p38 and c-Jun N-terminal kinase pathways and induction of apoptosis by chelerythrine do not require inhibition of protein kinase C. J Biol Chem 2000; 275(13): 9612-9.
[http://dx.doi.org/10.1074/jbc.275.13.9612] [PMID: 10734112]
[17]
Yang R, Piperdi S, Gorlick R. Activation of the RAF/mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway mediates apoptosis induced by chelerythrine in osteosarcoma. Clin Cancer Res 2008; 14(20): 6396-404.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-5113] [PMID: 18927278]
[18]
Zhu Y, Pan Y, Zhang G, et al. Chelerythrine inhibits human hepatocellular carcinoma metastasis in vitro. Biol Pharm Bull 2018; 41(1): 36-48.
[19]
Jana J, Mondal S, Bhatttacharjee P, et al. Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-Quadruplex structures at their promoter regions. Sci Rep 2017; 7: 40706-11.
[20]
Hao W, Wang S, and Zhou Z. Tubeimoside-1 (TBMS1) inhibits lung cancer cell growth and induces cells apoptosis through activation of MAPK-JNK pathway. Int J Clin Exp Pathol 2015; 8(10): 12075-83.
[PMID: 26722392]
[21]
Chen L, Weng Q, Li F, Liu J, Zhang X, Zhou Y. Pharmacokinetics and bioavailability study of tubeimoside-I in ICR mice by UPLC-MS/MS. J Anal Methods Chem 2018; 20189074893
[http://dx.doi.org/10.1155/2018/9074893] [PMID: 30116651]
[22]
Peng B, Xu L, Cao F, et al. HSP90 inhibitor, celastrol, arrests human monocytic leukemia cell U937 at G0/G1 in thiol-containing agents reversible way. Mol Cancer 2010; 9: 79.
[http://dx.doi.org/10.1186/1476-4598-9-79] [PMID: 20398364]
[23]
Kannaiyan R, Manu KA, Chen L, et al. Celastrol inhibits tumor cell proliferation and promotes apoptosis through the activation of c-Jun N-terminal kinase and suppression of PI3 K/Akt signaling pathways. Apoptosis 2011; 16(10): 1028-41.
[http://dx.doi.org/10.1007/s10495-011-0629-6] [PMID: 21786165]
[24]
Sethi G, Ahn KS, Pandey MK, Aggarwal BB. Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB activation. Blood 2007; 109(7): 2727-35.
[PMID: 17110449]
[25]
Yang H, Chen D, Cui QC, Yuan X, Dou QP. Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res 2006; 66(9): 4758-65.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4529] [PMID: 16651429]
[26]
Rajendran P, Li F, Shanmugam MK, et al. Celastrol suppresses growth and induces apoptosis of human hepatocellular carcinoma through the modulation of STAT3/JAK2 signaling cascade in vitro and in vivo. Cancer Prev Res (Phila) 2012; 5(4): 631-43.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0420] [PMID: 22369852]
[27]
Huang Y, Zhou Y, Fan Y, Zhou D. Celastrol inhibits the growth of human glioma xenografts in nude mice through suppressing VEGFR expression. Cancer Lett 2008; 264(1): 101-6.
[http://dx.doi.org/10.1016/j.canlet.2008.01.043] [PMID: 18343027]
[28]
Lee JH, Won YS, Park KH, et al. Celastrol inhibits growth and induces apoptotic cell death in melanoma cells via the activation ROS-dependent mitochondrial pathway and the suppression of PI3K/AKT signaling. Apoptosis 2012; 17(12): 1275-86.
[http://dx.doi.org/10.1007/s10495-012-0767-5] [PMID: 23065091]
[29]
Li HY, Zhang J, Sun LL, et al. Celastrol induces apoptosis and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells: an in vitro and in vivo study. Cell Death Dis 2015; 6e: 1604.
[http://dx.doi.org/10.1038/cddis.2014.543] [PMID: 25611379]
[30]
Lin FZ, Wang SC, Hsi YT, et al. Celastrol induces vincristine multidrug resistance oral cancer cell apoptosis by targeting JNK1/2 signaling pathway. Phytomedicine 2019; 54(54): 1-8.
[http://dx.doi.org/10.1016/j.phymed.2018.09.181] [PMID: 30668359]
[31]
Li X, Zhu G, Yao X, et al. Celastrol induces ubiquitin-dependent degradation of mTOR in breast cancer cells. OncoTargets Ther 2018; 11(11): 8977-85.
[http://dx.doi.org/10.2147/OTT.S187315] [PMID: 30588010]
[32]
Pang X, Yi Z, Zhang J, et al. Correction: Celastrol suppresses Angiogenesis-mediated tumor growth through inhibition of AKT/Mammalian target of rapamycin pathway. Cancer Res 2019; 79(3): 685.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3859] [PMID: 30709873]
[33]
Wang G, Xiao Q, Wu Y, et al. Design and synthesis of novel celastrol derivative and its antitumor activity in hepatoma cells and antiangiogenic activity in zebrafish. J Cell Physiol 2019; 15.
[http://dx.doi.org/10.1002/jcp.28312] [PMID: 30770566]
[34]
Qu W, Wang Y, Wu Q, Liu J, Hao D. Emodin inhibits HMGB1-induced tumor angiogenesis in human osteosarcoma by regulating SIRT1. Int J Clin Exp Med 2015; 8(9): 15054-64.
[PMID: 26628989]
[35]
Ma L, Li W. Emodin inhibits LOVO colorectal cancer cell proliferation via the regulation of the Bcl-2/Bax ratio and cytochrome c. Exp Ther Med 2014; 8(4): 1225-8.
[http://dx.doi.org/10.3892/etm.2014.1900] [PMID: 25187829]
[36]
Lin W, Zhong M, Yin H, et al. Emodin induces hepatocellular carcinoma cell apoptosis through MAPK and PI3K/AKT signaling pathways in vitro and in vivo. Oncol Rep 2016; 36(2): 961-7.
[http://dx.doi.org/10.3892/or.2016.4861] [PMID: 27278720]
[37]
Lin W, Zhong M, Yin H, et al. Emodin induces hepatocellular carcinoma cell apoptosis through MAPK and PI3K/AKT signaling pathways in vitro and in vivo. Oncol Rep 2016; 36(2): 961-7.
[http://dx.doi.org/10.3892/or.2016.4861] [PMID: 27278720]
[38]
Yu J, Guo X, Zhang Q, Peng Y, Zheng J. Metabolite profile analysis and pharmacokinetic study of emodin, baicalin and geniposide in rats. Xenobiotica 2018; 48(9): 927-37.
[http://dx.doi.org/10.1080/00498254.2017.1382748] [PMID: 28967290]
[39]
Song Y, Sheng Z, Xu Y, et al. Magnetic liposomal emodin composite with enhanced killing efficiency against breast cancer. Biomater Sci 2019; 7(3): 867-75.
[http://dx.doi.org/dx.doi: 10.1039/c8bm01530a] [PMID: 30648710]
[40]
Song Y, Sheng Z, Xu Y, et al. Magnetic liposomal emodin composite with enhanced killing efficiency against breast cancer. Biomater Sci 2019.
[http://dx.doi.org/10.1039/C8BM01530A]
[41]
Zhang J, Wang F, Wang H, et al. Paeoniflorin inhibits proliferation of endometrial cancer cells via activating MAPK and NF-κB signaling pathways. Exp Ther Med 2017; 14(6): 5445-51.
[http://dx.doi.org/10.3892/etm.2017.5250] [PMID: 29285074]
[42]
Zheng F, Tang Q, Wu J, et al. p38α MAPK-mediated induction and interaction of FOXO3a and p53 contribute to the inhibited-growth and induced-apoptosis of human lung adenocarcinoma cells by berberine. J Exp Clin Cancer Res 2014; 33(1): 36.
[http://dx.doi.org/10.1186/1756-9966-33-36] [PMID: 24766860]
[43]
Yu L, Wang L, Chen S. Dual character of Toll-like receptor signaling: pro-tumorigenic effects and anti-tumor functions. Biochim Biophys Acta 2013; 1835(2): 144-54.
[PMID: 23232186]
[44]
LoPiccolo J, Granville CA, Gills JJ, Dennis PA. Targeting Akt in cancer therapy. Anticancer Drugs 2007; 18(8): 861-74.
[PMID: 17667591]
[45]
Crowell JA, Steele VE, Fay JR. Targeting the AKT protein kinase for cancer chemoprevention. Mol Cancer Ther 2007; 6(8): 2139-48.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0120] [PMID: 17699713]
[46]
Brown VI, Fang J, Alcorn K, et al. Rapamycin is active against B-precursor leukemia in vitro and in vivo, an effect that is modulated by IL-7-mediated signaling. Proc Natl Acad Sci USA 2003; 100(25): 15113-8.
[http://dx.doi.org/10.1073/pnas.2436348100] [PMID: 14657335]
[47]
Wei X, Si N, Zhang Y, et al. Evaluation of bufadienolides as the main antitumor components in cinobufacin injection for liver and gastraic cancer therapy. Plos one eCollection 2017 2017; 12(1) eo169141
[http://dx.doi.org/101371/journal.pone. 0169141]
[48]
Xie RF, Li ZC, Gao B, Shi ZN, Zhou X. Bufothionine, a possible effective component in cinobufocini injection for hepatocellular carcinoma. J Ethnopharmacol 2012; 141(2): 692-700.
[http://dx.doi.org/10.1016/j.jep.2011.12.018] [PMID: 22210051]
[49]
Teachey DT, Obzut DA, Cooperman J, et al. The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood 2006; 107(3): 1149-55.
[http://dx.doi.org/10.1182/blood-2005-05-1935] [PMID: 16195324]
[50]
Chen G, Hu X, Zhang W, et al. Mammalian target of rapamycin regulates isoliquiritigenin-induced autophagic and apoptotic cell death in adenoid cystic carcinoma cells. Apoptosis 2012; 17(1): 90-101.
[http://dx.doi.org/10.1007/s10495-011-0658-1] [PMID: 21956714]
[51]
Zhang X, Yuan Y, Xi Y, et al. Cinobufacini injection improves the efficancy of chemotherapy on advanced stage gastric cancer:a systemic review and meta-analysis. Evid Based Complement Alternat Med eCollection 2018; 7362340.
[http://dx.doi.org/10.1155/2018/7362340]
[52]
Li QQ, Wang G, Zhang M, Cuff CF, Huang L, Reed E. beta-Elemene, a novel plant-derived antineoplastic agent, increases cisplatin chemosensitivity of lung tumor cells by triggering apoptosis. Oncol Rep 2009; 22(1): 161-70.
[http://dx.doi.org/10.3892/or_00000420] [PMID: 19513519]
[53]
Xia J, Inagaki Y, Gao J, et al. Combination of Cinobufacini and Doxorubicin Increases Apoptosis of Hepatocellular Carcinoma Cells through the Fas- and Mitochondria-Mediated Pathways. Am J Chin Med 2017; 45(7): 1537-56.
[http://dx.doi.org/10.1142/S0192415X17500835] [PMID: 28946772]
[54]
Li QQ, Wang G, Zhang M, Cuff CF, Huang L, Reed E. beta-Elemene, a novel plant-derived antineoplastic agent, increases cisplatin chemosensitivity of lung tumor cells by triggering apoptosis. Oncol Rep 2009; 22(1): 161-70.
[http://dx.doi.org/10.3892/or_00000420] [PMID: 19513519]
[55]
Wang G, Li X, Huang F, et al. Antitumor effect of beta-elemene in non-small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death. Cell Mol Life Sci 2005; 62(7-8): 881-93.
[http://dx.doi.org/10.1007/s00018-005-5017-3] [PMID: 15868411]
[56]
Xie CY, Yang W, Li M, et al. Cell apoptosis induced by delta-elemene in colorectal adenocarcinoma cells via a mitochondrial-mediated pathway. Yakugaku Zasshi 2009; 129(11): 1403-13.
[http://dx.doi.org/10.1248/yakushi.129.1403] [PMID: 19881213]
[57]
Yao YQ, Ding X, Jia YC, Huang CX, Wang YZ, Xu YH. Anti-tumor effect of beta-elemene in glioblastoma cells depends on p38 MAPK activation. Cancer Lett 2008; 264(1): 127-34.
[http://dx.doi.org/10.1016/j.canlet.2008.01.049] [PMID: 18442668]
[58]
Tan P, Zhong W, Cai W. Clinical study on treatment of 40 cases of malignant brain tumor by elemene emulsion injection. Zhongguo Zhong Xi Yi Jie He Za Zhi 2000; 20(9): 645-8.
[PMID: 11789165]
[59]
Liu J, Zhang Y, Qu J, et al. β-Elemene-induced autophagy protects human gastric cancer cells from undergoing apoptosis. BMC Cancer 2011; 11: 183-3.
[http://dx.doi.org/10.1186/1471-2407-11-183] [PMID: 21595977]
[60]
Zhang W, Chen L, Geng J, Liu L, Xu L. β-elemene inhibits oxygen-induced retinal neovascularization via promoting miR-27a and reducing VEGF expression. Mol Med Rep 2019; 19(3): 2307-16.
[http://dx.doi.org/10.3892/mmr.2019.9863] [PMID: 30664207]
[61]
Cheng H, Ge X, Zhuo S, et al. β-Elemene synergizes with gefitinib to inhibit stem-like phenotypes and progression of lung cancer via down-regulating EZH2. Front Pharmacol 2018; 9(9): 1413.
[http://dx.doi.org/10.3389/fphar.2018.01413] [PMID: 30555330]
[62]
Guo Z, Liu Z, Yue H, Wang J. Beta-elemene increases chemosensitivity to 5-fluorouracil through down-regulating microRNA-191 expression in colorectal carcinoma cells. J Cell Biochem 2018; 119(8): 7032-9.
[http://dx.doi.org/10.1002/jcb.26914] [PMID: 29737579]
[63]
Zhang J, Wang F, Wang H, et al. Paeoniflorin inhibits proliferation of endometrial cancer cells via activating MAPK and NF-κB signaling pathways. Exp Ther Med 2017; 14(6): 5445-51.
[http://dx.doi.org/10.3892/etm.2017.5250] [PMID: 29285074]
[64]
Piotrowska H, Kucinska M, Murias M. Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res 2012; 750(1): 60-82.
[http://dx.doi.org/10.1016/j.mrrev.2011.11.001] [PMID: 22108298]
[65]
Kucinska M, Piotrowska H, Luczak MW, et al. Effects of hydroxylated resveratrol analogs on oxidative stress and cancer cells death in human acute T cell leukemia cell line: prooxidative potential of hydroxylated resveratrol analogs. Chem Biol Interact 2014; 209: 96-110.
[http://dx.doi.org/10.1016/j.cbi.2013.12.009] [PMID: 24398169]
[66]
Jing X, Cheng W, Wang S, Li P, He L. Resveratrol induces cell cycle arrest in human gastric cancer MGC803 cells via the PTEN-regulated PI3K/Akt signaling pathway. Oncol Rep 2016; 35(1): 472-8.
[http://dx.doi.org/10.3892/or.2015.4384] [PMID: 26530632]
[67]
Mineda A, Nishimura M, Kagawa T, et al. Resveratrol suppresses proliferation and induces apoptosis of uterine sarcoma cells by inhibiting the Wnt signaling pathway. Exp Ther Med 2019; 17(3): 2242-6.
[http://dx.doi.org/10.3892/etm.2019.7209] [PMID: 30867708]
[68]
Berman AY, Motechin RA, Wiesenfeld MY, HolZ MK. The therapeutic potentical of resveratrol: a review of clinical trails Npj Precisiononcol 2017; 35.
[http://dx.doi.org/101038/s41698-017-0038-6]
[69]
Kjaer TN, Ornstrup MJ, Poulsen MM, et al. Resveratrol reduces the levels of circulating androgen precursors but has no effect on, testosterone, dihydrotestosterone, PSA levels or prostate volume. A 4-month randomised trial in middle-aged men. Prostate 2015; 75(12): 1255-63.
[http://dx.doi.org/10.1002/pros.23006] [PMID: 25939591]
[70]
Lian B, Wu M, Feng Z, Deng Y, Zhong C, Zhao X. Folate-conjugated human serum albumin-encapsulated resveratrol nanoparticles: preparation, characterization, bioavailability and targeting of liver tumors. Artif Cells Nanomed Biotechnol 2019; 47(1): 154-65.
[http://dx.doi.org/10.1080/21691401.2018.1548468] [PMID: 30686050]
[71]
Moradzadeh M, Sadeghnia HR, Tabarraei A, Sahebkar A. Anti-tumor effects of crocetin and related molecular targets. J Cell Physiol 2018; 233(3): 2170-82.
[http://dx.doi.org/10.1002/jcp.25953] [PMID: 28407293]
[72]
Li S, Qu Y, Shen XY, et al. Multiple signal pathways involved in crocetin-induced apoptosis in KYSE-150 cells. Pharmacol 2019; 103(5-6): 263-72.
[http://dx.doi.org/10.1159/000487956] [PMID: 30783055]
[73]
Moradzadeh M, Sadeghnia HR, Tabarraei A, Sahebkar A. Anti-tumor effects of crocetin and related molecular targets. J Cell Physiol 2017; 233(3): 2170-82.
[74]
Arzi L, Riazi G, Sadeghizadeh M, Hoshyar R, Jafarzadeh N. A comparative study on Anti-invasion, antimigration, and antiadhesion effects of the bioactive carotenoids of saffron on 4T1 breast cancer cells through their effects on Wnt/β-catenin pathway genes. DNA Cell Biol 2018; 37(8): 697-707.
[PMID: 29969282]
[75]
Wang CZ, McEntee E, Wicks S, Wu JA, Yuan CS. Phytochemical and analytical studies of Panax notoginseng(Burk.) F.H. Chen. J Nat Med 2006; 60: 97-106.
[http://dx.doi.org/10.1007/s11418-005-0027-x]
[76]
Li L, Sun JX, Wang XQ, et al. Notoginsenoside R7 suppresses cervical cancer via PI3K/PTEN/Akt/mTOR signaling. Oncotarget 2017; 8(65): 109487-96.
[http://dx.doi.org/10.18632/oncotarget.22721] [PMID: 29312623]
[77]
Jang HS, Kook SH, Son YO, et al. Flavonoids purified from Rhus verniciflua Stokes actively inhibit cell growth and induce apoptosis in human osteosarcoma cells. Biochim Biophys Acta 2005; 1726(3): 309-16.
[http://dx.doi.org/10.1016/j.bbagen.2005.08.010] [PMID: 16213662]
[78]
Sun X, Ma X, Li Q, et al. Anti-cancer effects of fisetin on mammary carcinoma cells via regulation of the PI3K/Akt/mTOR pathway: In vitro and in vivo studies. Int J Mol Med 2018; 42(2): 811-20.
[http://dx.doi.org/10.3892/ijmm.2018.3654] [PMID: 29749427]
[79]
Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018; 12(1): 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[80]
He BC, Gao JL, Luo X, et al. Ginsenoside Rg3 inhibits colorectal tumor growth through the down-regulation of Wnt/ß-catenin signaling. Int J Oncol 2011; 38(2): 437-45.
[http://dx.doi.org/10.3892/ijo.2010.858] [PMID: 21152855]
[81]
Lu P, Su W, Miao ZH, Niu HR, Liu J, Hua QL. Effect and mechanism of ginsenoside Rg3 on postoperative life span of patients with non-small cell lung cancer. Chin J Integr Med 2008; 14(1): 33-6.
[http://dx.doi.org/10.1007/s11655-007-9002-6] [PMID: 18219455]
[82]
Nakhjavani M, Hardingham JE, Palethorpe HM, et al. Ginsenoside Rg3: potential molecular targets and therapeutic indication in metastatic breast cancer. Medicines (Basel) 2019; 6(1)E17
[http://dx.doi.org/10.3390/medicines6010017] [PMID: 30678106]
[83]
Shan X, Aziz F, Tian LL, Wang XQ, Yan Q, Liu JW. Ginsenoside Rg3-induced EGFR/MAPK pathway deactivation inhibits melanoma cell proliferation by decreasing FUT4/LeY expression. Int J Oncol 2015; 46(4): 1667-76.
[http://dx.doi.org/10.3892/ijo.2015.2886] [PMID: 25672851]
[84]
Peng Y, Zhang R, Yang X, et al. Ginsenoside Rg3 suppresses the proliferation of prostate cancer cell line PC3 through ROS-induced cell cycle arrest. Oncol Lett 2019; 17(1): 1139-45.
[PMID: 30655875]
[85]
Cao Y, Ye Q, Zhuang M, et al. Ginsenoside Rg3 inhibits angiogenesis in a rat model of endometriosis through the VEGFR-2-mediated PI3K/Akt/mTOR signaling pathway. PLoS One 2017; 12(11)e0186520
[http://dx.doi.org/10.1371/journal.pone.0186520] [PMID: 29140979]
[86]
Zhao Q, Li P, Jiang J, Hu P. Pharmacokinetics of single ascending doses and multiple doses of 20 (S)-ginsenoside Rg3 in Chinese healthy volunteers. Eur J Drug Metab Pharmacokinet 2016; 41(6): 845-53.
[http://dx.doi.org/10.1007/s13318-015-0304-3] [PMID: 26470874]
[87]
Park EJ, Min HY, Chung HJ, et al. Down-regulation of c-Src/EGFR-mediated signaling activation is involved in the honokiol-induced cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells. Cancer Lett 2009; 277(2): 133-40.
[http://dx.doi.org/10.1016/j.canlet.2008.11.029] [PMID: 19135778]
[88]
Tang H, Zhang Y, Li D, et al. Discovery and synthesis of novel magnolol derivatives with potent anticancer activity in non-small cell lung cancer. Eur J Med Chem 2018; 156(156): 190-205.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.048] [PMID: 30006164]
[89]
Huang K, Chen Y, Zhang R, et al. Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis 2018; 9(2): 157.
[http://dx.doi.org/10.1038/s41419-017-0166-5] [PMID: 29410403]
[90]
Yang J, Zou Y, Jiang D. Honokiol suppresses proliferation and induces apoptosis via regulation of the miR-21/PTEN/PI3K/AKT signaling pathway in human osteosarcoma cells. Int J Mol Med 2018; 41(4): 1845-54.
[http://dx.doi.org/10.3892/ijmm.2018.3433] [PMID: 29393336]
[91]
Li Z, Dong H, Li M, et al. Honokiol induces autophagy and apoptosis of osteosarcoma through PI3K/Akt/mTOR signaling pathway. Mol Med Rep 2018; 17(2): 2719-23.
[PMID: 29207060]
[92]
Fan Y, Mao Y, Cao S, et al. S5, a whithanolide isolated from physalis pubescens L., induces G2/M cell cycle arrest via the EGFR/p38 pathway in human melanoma A375 cells. Molecules 2018; 23(12)e3175
[http://dx.doi.org/10.3390/molecules23123175] [PMID: 30513793]
[93]
Lu MK, Lin TY, Chang CC. Chemical identification of a sulfated glucan from Antrodia cinnamomea and its anti-cancer functions via inhibition of EGFR and mTOR activity. Carbohydr Polym 2018; 202(202): 536-44.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.009] [PMID: 30287033]
[94]
Yin JH, Zhu XY, Shi WD, Liu LM. Huachansu injection inhibits metastasis of pancreatic cancer in mice model of human tumor xenograft. BMC Complement Altern Med 2014; 14(14): 483.
[http://dx.doi.org/10.1186/1472-6882-14-483] [PMID: 25496480]
[95]
Wang Y, Zhang C1, Zhang S, et al. Kanglaite sensitizes colorectal cancer cells to Taxol via NF-κB inhibition and connexin 43 upregulation. Sci Rep 2017; 7(1): 1280.
[http://dx.doi.org/10.1038/s41598-017-01480-2] [PMID: 28455529]
[96]
Bing Z, Cheng Z, Shi D, et al. Investigate the mechanisms of Chinese medicine Fuzhengkangai towards EGFR mutation-positive lung adenocarcinomas by network pharmacology. BMC Complement Altern Med 2018; 18(1): 293.
[http://dx.doi.org/10.1186/s12906-018-2347-x] [PMID: 30400936]
[97]
Liu X, Yang Q, Xi Y, et al. Kanglaite injection combined with chemotherapy versus chemotherapy alone in the treatment of advanced non-small cell lung carcinoma. J Cancer Res Ther 2014; 10(Suppl. 1): 46-51.
[http://dx.doi.org/10.4103/0973-1482.139758] [PMID: 25207891]
[98]
Zhang D, Wu J, Wang K, Duan X, Liu S, Zhang B. Which are the best Chinese herbal injections combined with XEIOX regimen for gastric cancer:A PRISMA-compliant network meta-analysis. Medicine 2018; 97(12)e0127
[http://dx.doi.org/10.1097/MD. 0000000000010127]
[99]
Liu M, Zhao G, Zhang D, et al. Active fraction of clove induces apoptosis via PI3K/Akt/mTOR-mediated autophagy in human colorectal cancer HCT-116 cells. Int J Oncol 2018; 53(3): 1363-73.
[http://dx.doi.org/10.3892/ijo.2018.4465] [PMID: 30015913]
[100]
Liu H, Schmitz JC, Wei J, et al. Clove extract inhibits tumor growth and promotes cell cycle arrest and apoptosis. Oncol Res 2014; 21(5): 247-59.
[http://dx.doi.org/10.3727/096504014X13946388748910] [PMID: 24854101]
[101]
Cao Y, Ye Q, Zhuang M, et al. Ginsenoside Rg3 inhibits angiogenesis in a rat model of endometriosis through the VEGFR-2-mediated PI3K/Akt/mTOR signaling pathway. PLoS One 2017; 12(11)e0186520
[http://dx.doi.org/10.1371/journal.pone.0186520] [PMID: 29140979]
[102]
An SY, Youn GS, Kim H, Choi SY, Park J. Celastrol suppresses expression of adhesion molecules and chemokines by inhibiting JNK-STAT1/NF-κB activation in poly(I:C)-stimulated astrocytes. BMB Rep 2017; 50(1): 25-30.
[http://dx.doi.org/10.5483/BMBRep.2017.50.1.114] [PMID: 28027722]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy