Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Aligned Expression of IFI16 and STING Genes in RRMS Patients’ Blood

Author(s): Sobhan Helbi, Behnam Ravanbakhsh, Mohammad Karimi, Wesam Kooti* and Nahid Jivad*

Volume 20, Issue 6, 2020

Page: [878 - 886] Pages: 9

DOI: 10.2174/1871530319666190729112246

Price: $65

Abstract

Objective: Multiple sclerosis (MS) is a chronic neurodegenerative disease of the central nervous system. The most common disease phenotype is Relapsing-Remitting MS (RRMS). Beta interferons are the first line of RRMS patients’ treatment. Interferon-inducible protein 16 (IFI16) as a DNA sensing molecule and its downstream complex stimulator of interferon genes (STING) play a critical role in the activation of type I interferons. Hence we aimed to evaluate the expression rate of IFI16 and STING in RRMS patients’ blood under a different type of IFNβ treatment.

Methods: In the present study, 99 individuals participated. The participants were divided into 4 groups: 28 control subjects, 25 new cases of RRMS patients, 25 RRMS patients treated with IFNβ-1a (B1a), 21 RRMS patients treated with IFNβ-1b (B1b). The EDTA-treated blood samples were taken and transferred at standard conditions to the Cellular and Molecular Research Center of Shahrekord University of Medical Sciences, RNA was extracted and converted into cDNA. To evaluate the expression of IFI16 and STING, the Real-Time PCR method using SYBR Green/ROX qPCR master mix was performed done. The level of genes expression was measured using 2–ΔΔCt method. The obtained data were analyzed using SPSS v22 software.

Results: Comparison of the IFI and STING mRNA expression in blood samples in association with gender and age showed no significant differences (p>0.05). Also, the evaluation of IFI16 mRNA level revealed that the IFI16 genes’ expressions were remarkably higher in the new case group compared to the control group, however, STING expression did not show any significant difference. The mRNA levels of IFI16 and STING in IFNβ-treated groups were significantly lower than the new case group (p<0.001). Also, the genes’ expressions in both the IFNβ-treated groups were significantly lower compared to the control group (p<0.001). In the assessment of the correlation of IFI16 and STING expressions with age and sex in different research groups, no statistically significant differences were seen (p>0.05).

Conclusion: Perhaps the IFNβ therapy decreases the IFI16 and STING expression in a STINGdependent pathway as a negative feedback mechanism for regulation of the immune system and suppression of pro-inflammatory cytokines production. The important role of DNA sensing molecules and STING-dependent pathway in MS gives a new insight into future treatment based on STING-direct therapies.

Keywords: Multiple sclerosis, IFI16, IFNβ, STING, chronic disease, beta Interferons.

Graphical Abstract

[1]
Filippi, M.; Bar-Or, A.; Piehl, F.; Preziosa, P.; Solari, A.; Vukusic, S.; Rocca, M.A. Multiple sclerosis. Nat. Rev. Dis. Primers, 2018, 4(1), 43.
[http://dx.doi.org/10.1038/s41572-018-0041-4] [PMID: 30410033]
[2]
Pugliatti, M.; Rosati, G.; Carton, H.; Riise, T.; Drulovic, J.; Vécsei, L.; Milanov, I. The epidemiology of multiple sclerosis in Europe. Eur. J. Neurol., 2006, 13(7), 700-722.
[http://dx.doi.org/10.1111/j.1468-1331.2006.01342.x] [PMID: 16834700]
[3]
Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol., 2017, 13(1), 25-36.
[http://dx.doi.org/10.1038/nrneurol.2016.187] [PMID: 27934854]
[4]
Jelcic, I.; Al Nimer, F.; Wang, J.; Lentsch, V.; Planas, R.; Jelcic, I.; Madjovski, A.; Ruhrmann, S.; Faigle, W.; Frauenknecht, K.; Pinilla, C.; Santos, R.; Hammer, C.; Ortiz, Y.; Opitz, L.; Grönlund, H.; Rogler, G.; Boyman, O.; Reynolds, R.; Lutterotti, A.; Khademi, M.; Olsson, T.; Piehl, F.; Sospedra, M.; Martin, R. Memory B cells activate brain-homing, autoreactive CD4+ T cells in multiple sclerosis. Cell, 2018, 175(1), 85-100.e23.
[http://dx.doi.org/10.1016/j.cell.2018.08.011] [PMID: 30173916]
[5]
Salou, M.; Nicol, B.; Garcia, A.; Laplaud, D-A. Involvement of CD8(+) t cells in multiple sclerosis. Front. Immunol., 2015, 6, 604.
[http://dx.doi.org/10.3389/fimmu.2015.00604] [PMID: 26635816]
[6]
Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; Bebo, B., Jr; Calabresi, P.A.; Clanet, M.; Comi, G.; Fox, R.J.; Freedman, M.S.; Goodman, A.D.; Inglese, M.; Kappos, L.; Kieseier, B.C.; Lincoln, J.A.; Lubetzki, C.; Miller, A.E.; Montalban, X.; O’Connor, P.W.; Petkau, J.; Pozzilli, C.; Rudick, R.A.; Sormani, M.P.; Stüve, O.; Waubant, E.; Polman, C.H. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology, 2014, 83(3), 278-286.
[http://dx.doi.org/10.1212/WNL.0000000000000560] [PMID: 24871874]
[7]
Lublin, F.D. New multiple sclerosis phenotypic classification. Eur. Neurol., 2014, 72(Suppl. 1), 1-5.
[http://dx.doi.org/10.1159/000367614] [PMID: 25278115]
[8]
Wallin, M.T.; Culpepper, W.J.; Nichols, E.; Bhutta, Z.A.; Gebrehiwot, T.T.; Hay, S.I.; Khalil, I.A.; Krohn, K.J.; Liang, X.; Naghavi, M.; Mokdad, A.H.; Nixon, M.R.; Reiner, R.C.; Sartorius, B.; Smith, M.; Topor-Madry, R.; Werdecker, A.; Vos, T.; Feigin, V.L.; Murray, C.J.L. Global, regional, and national burden of multiple sclerosis 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol., 2019, 269-285.
[9]
Etemadifar, M.; Sajjadi, S.; Nasr, Z.; Firoozeei, T.S.; Abtahi, S.H.; Akbari, M.; Fereidan-Esfahani, M. Epidemiology of multiple sclerosis in Iran: A systematic review. Eur. Neurol., 2013, 70(5-6), 356-363.
[http://dx.doi.org/10.1159/000355140] [PMID: 24192707]
[10]
Castro-Borrero, W.; Graves, D.; Frohman, T.C.; Flores, A.B.; Hardeman, P.; Logan, D.; Orchard, M.; Greenberg, B.; Frohman, E.M. Current and emerging therapies in multiple sclerosis: A systematic review. Ther. Adv. Neurol. Disorder., 2012, 5(4), 205-220.
[http://dx.doi.org/10.1177/1756285612450936] [PMID: 22783370]
[11]
Galligan, C.L.; Pennell, L.M.; Murooka, T.T.; Baig, E.; Majchrzak-Kita, B.; Rahbar, R. Interferon-beta is a key regulator of proinflammatory events in experimental autoimmune encephalomyelitis. Mult. Scler., 2010, 16(12), 1458-1473.
[12]
Hurtado-Guerrero, I.; Pinto-Medel, M.J.; Urbaneja, P.; Rodriguez-Bada, J.L.; León, A.; Guerrero, M. Activation of the JAK-STAT signaling pathway after in vitro Stimulation with IFNß in multiple sclerosis patients according to the therapeutic response to IFNß. PloS One, 2017, 12(1),e0170031.
[http://dx.doi.org/10.1371/journal.pone.0170031]
[13]
Zhao, H.; Gonzalezgugel, E.; Cheng, L.; Richbourgh, B.; Nie, L.; Liu, C. The roles of interferon-inducible p200 family members IFI16 and p204 in innate immune responses, cell differentiation and proliferation. Genes Dis., 2015, 2(1), 46-56.
[http://dx.doi.org/10.1016/j.gendis.2014.10.003] [PMID: 25815367]
[14]
Unterholzner, L.; Keating, S.E.; Baran, M.; Horan, K.A.; Jensen, S.B.; Sharma, S.; Sirois, C.M.; Jin, T.; Latz, E.; Xiao, T.S.; Fitzgerald, K.A.; Paludan, S.R.; Bowie, A.G. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol., 2010, 11(11), 997-1004.
[http://dx.doi.org/10.1038/ni.1932] [PMID: 20890285]
[15]
Liang, P.; Le, W. Role of autophagy in the pathogenesis of multiple sclerosis. Neurosci. Bull., 2015, 31(4), 435-444.
[http://dx.doi.org/10.1007/s12264-015-1545-5] [PMID: 26254059]
[16]
Mondini, M.; Costa, S.; Sponza, S.; Gugliesi, F.; Gariglio, M.; Landolfo, S. The interferon-inducible HIN-200 gene family in apoptosis and inflammation: Implication for autoimmunity. Autoimmunity, 2010, 43(3), 226-231.
[http://dx.doi.org/10.3109/08916930903510922] [PMID: 20187706]
[17]
Piccaluga, P.P.; Agostinelli, C.; Fuligni, F.; Righi, S.; Tripodo, C.; Re, M.C.; Clò, A.; Miserocchi, A.; Morini, S.; Gariglio, M.; Ferri, G.G.; Rinaldi-Ceroni, A.; Piccin, O.; De Andrea, M.; Pileri, S.A.; Landolfo, S.; Gibellini, D. IFI16 expression is related to selected transcription factors during b-cell differentiation. J. Immunol. Res., 2015, 2015747645
[http://dx.doi.org/10.1155/2015/747645] [PMID: 26185770]
[18]
Takaoka, A.; Shinohara, S. DNA sensors in innate immune system. Uirusu, 2008, 58(1), 37-46.
[http://dx.doi.org/10.2222/jsv.58.37] [PMID: 19122387]
[19]
Tan, F.K.; Zhou, X.; Mayes, M.D.; Gourh, P.; Guo, X.; Marcum, C.; Jin, L.; Arnett, F.C., Jr Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology (Oxford), 2006, 45(6), 694-702.
[http://dx.doi.org/10.1093/rheumatology/kei244] [PMID: 16418202]
[20]
Gugliesi, F.; De Andrea, M.; Mondini, M.; Cappello, P.; Giovarelli, M.; Shoenfeld, Y.; Meroni, P.; Gariglio, M.; Landolfo, S. The proapoptotic activity of the Interferon-inducible gene IFI16 provides new insights into its etiopathogenetic role in autoimmunity. J. Autoimmun., 2010, 35(2), 114-123.
[http://dx.doi.org/10.1016/j.jaut.2010.04.001] [PMID: 20488664]
[21]
Li, Y.; Wilson, H.L.; Kiss-Toth, E. Regulating STING in health and disease. J. Inflamm. (Lond.), 2017, 14, 11.
[http://dx.doi.org/10.1186/s12950-017-0159-2] [PMID: 28596706]
[22]
Lemos, H.; Huang, L.; Chandler, P.R.; Mohamed, E.; Souza, G.R.; Li, L. Activation of the STING adaptor attenuates experimental autoimmune encephalitis. J. Immunol., 2014, 192(12), 5571-5578.
[http://dx.doi.org/10.4049/jimmunol.1303258]
[23]
Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; Fujihara, K.; Galetta, S.L.; Hartung, H.P.; Kappos, L.; Lublin, F.D.; Marrie, R.A.; Miller, A.E.; Miller, D.H.; Montalban, X.; Mowry, E.M.; Sorensen, P.S.; Tintoré, M.; Traboulsee, A.L.; Trojano, M.; Uitdehaag, B.M.J.; Vukusic, S.; Waubant, E.; Weinshenker, B.G.; Reingold, S.C.; Cohen, J.A. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol., 2018, 17(2), 162-173.
[http://dx.doi.org/10.1016/S1474-4422(17)30470-2] [PMID: 29275977]
[24]
Podbielska, M.; Banik, N.L.; Kurowska, E.; Hogan, E.L. Myelin recovery in multiple sclerosis: The challenge of remyelination. Brain Sci., 2013, 3(3), 1282-1324.
[http://dx.doi.org/10.3390/brainsci3031282] [PMID: 24961530]
[25]
Libbey, J.E.; Cusick, M.F.; Fujinami, R.S. Role of pathogens in multiple sclerosis. Int. Rev. Immunol., 2014, 33(4), 266-283.
[http://dx.doi.org/10.3109/08830185.2013.823422] [PMID: 24266364]
[26]
Baranzini, S.E.; Oksenberg, J.R. The genetics of multiple sclerosis: From 0 to 200 in 50 years. Trends Genet., 2017, 33(12), 960-970.
[http://dx.doi.org/10.1016/j.tig.2017.09.004] [PMID: 28987266]
[27]
Mondini, M.; Vidali, M.; Airò, P.; De Andrea, M.; Riboldi, P.; Meroni, P.L.; Gariglio, M.; Landolfo, S. Role of the interferon-inducible gene IFI16 in the etiopathogenesis of systemic autoimmune disorders. Ann. N. Y. Acad. Sci., 2007, 1110, 47-56.
[http://dx.doi.org/10.1196/annals.1423.006] [PMID: 17911419]
[28]
Cagliani, R.; Forni, D.; Biasin, M.; Comabella, M.; Guerini, F.R.; Riva, S.; Pozzoli, U.; Agliardi, C.; Caputo, D.; Malhotra, S.; Montalban, X.; Bresolin, N.; Clerici, M.; Sironi, M. Ancient and recent selective pressures shaped genetic diversity at AIM2-like nucleic acid sensors. Genome Biol. Evol., 2014, 6(4), 830-845.
[http://dx.doi.org/10.1093/gbe/evu066] [PMID: 24682156]
[29]
Guerini, F.R.; Clerici, M.; Cagliani, R.; Malhotra, S.; Montalban, X.; Forni, D.; Agliardi, C.; Riva, S.; Caputo, D.; Galimberti, D.; Asselta, R.; Fenoglio, C.; Scarpini, E.; Comi, G.P.; Bresolin, N.; Comabella, M.; Sironi, M. No association of IFI16 (interferon-inducible protein 16) variants with susceptibility to multiple sclerosis. J. Neuroimmunol., 2014, 271(1-2), 49-52.
[http://dx.doi.org/10.1016/j.jneuroim.2014.04.006] [PMID: 24794504]
[30]
Arthur, A.T.; Armati, P.J.; Bye, C.; Heard, R.N.; Stewart, G.J.; Pollard, J.D.; Booth, D.R.; Southern, MS. Genetics Consortium. Genes implicated in multiple sclerosis pathogenesis from consilience of genotyping and expression profiles in relapse and remission. BMC Med. Genet., 2008, 9, 17.
[http://dx.doi.org/10.1186/1471-2350-9-17] [PMID: 18366677]
[31]
Choubey, D. Interferon-inducible Ifi200-family genes as modifiers of lupus susceptibility. Immunol. Lett., 2012, 147(1-2), 10-17.
[http://dx.doi.org/10.1016/j.imlet.2012.07.003] [PMID: 22841963]
[32]
Gugliesi, F.; Bawadekar, M.; De Andrea, M.; Dell’Oste, V.; Caneparo, V.; Tincani, A.; Gariglio, M.; Landolfo, S. Nuclear DNA sensor IFI16 as circulating protein in autoimmune diseases is a signal of damage that impairs endothelial cells through high-affinity membrane binding. PLoS One, 2013, 8(5),e63045.
[http://dx.doi.org/10.1371/journal.pone.0063045] [PMID: 23690979]
[33]
Malhotra, S.; Bustamante, M.F.; Pérez-Miralles, F.; Rio, J.; Ruiz de Villa, M.C.; Vegas, E.; Nonell, L.; Deisenhammer, F.; Fissolo, N.; Nurtdinov, R.N.; Montalban, X.; Comabella, M. Search for specific biomarkers of IFNβ bioactivity in patients with multiple sclerosis. PLoS One, 2011, 6(8),e23634.
[http://dx.doi.org/10.1371/journal.pone.0023634] [PMID: 21886806]
[34]
Hu, X.; Ho, H.H.; Lou, O.; Hidaka, C.; Ivashkiv, L.B. Homeostatic role of interferons conferred by inhibition of IL-1-mediated inflammation and tissue destruction. J. Immunol., 2005, 175(1), 131-138.
[35]
Dinarello, C.A.; Simon, A.; van der Meer, J.W.M. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov., 2012, 11(8), 633-652.
[http://dx.doi.org/10.1038/nrd3800] [PMID: 22850787]
[36]
Lucas, S-M.; Rothwell, N.J.; Gibson, R.M. The role of inflammation in CNS injury and disease. British. J. Pharmacol., 2006, 147(Suppl. 1), S232-S40.
[http://dx.doi.org/10.1038/sj.bjp.0706400]
[37]
Guarda, G.; Braun, M.; Staehli, F.; Tardivel, A.; Mattmann, C.; Förster, I.; Farlik, M.; Decker, T.; Du Pasquier, R.A.; Romero, P.; Tschopp, J. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity, 2011, 34(2), 213-223.
[http://dx.doi.org/10.1016/j.immuni.2011.02.006] [PMID: 21349431]
[38]
Veeranki, S.; Choubey, D. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol. Immunol., 2012, 49(4), 567-571.
[http://dx.doi.org/10.1016/j.molimm.2011.11.004] [PMID: 22137500]
[39]
Dempsey, A.; Bowie, A.G. Innate immune recognition of DNA: A recent history. Virology, 2015, 479-480, 146-152.
[http://dx.doi.org/10.1016/j.virol.2015.03.013] [PMID: 25816762]
[40]
Chen, H.; Jiang, Z. The essential adaptors of innate immune signaling. Protein Cell, 2013, 4(1), 27-39.
[http://dx.doi.org/10.1007/s13238-012-2063-0] [PMID: 22996173]
[41]
Surpris, G.; Chan, J.; Thompson, M.; Ilyukha, V.; Liu, B.C.; Atianand, M. Cutting edge: Novel Tmem173 allele reveals importance of sting n terminus in trafficking and type I IFN production. J. Immunol., 2016, 196(2), 547-552.
[42]
Dong, G.; You, M.; Ding, L.; Fan, H.; Liu, F.; Ren, D.; Hou, Y. STING negatively regulates double-stranded DNA-activated JAK1-STAT1 signaling via SHP-1/2 in B Cells. Mol. Cells, 2015, 38(5), 441-451.
[http://dx.doi.org/10.14348/molcells.2015.2359] [PMID: 25947293]
[43]
Sharma, S.; Schattgen, S.; Chan, J.; Huyler, A.; Rothstein, A.; Fitzgerald, K. The role of innate immune adaptor STING in suppressinglupus (P4070). J. Immunol.,, 2013,. 190(Suppl. 1), 51.1.
[44]
Papinska, J.; Bagavant, H.; Gmyrek, G.B.; Sroka, M.; Tummala, S.; Fitzgerald, K.A.; Deshmukh, U.S. Activation of stimulator of interferon genes (STING) and sjögren syndrome. J. Dent. Res., 2018, 97(8), 893-900.
[http://dx.doi.org/10.1177/0022034518760855] [PMID: 29505322]
[45]
Diner, B.A.; Lum, K.K.; Toettcher, J.E.; Cristea, I.M. Viral DNA sensors IFI16 and cyclic GMP-AMP synthase possess distinct functions in regulating viral gene expression, immune defenses, and apoptotic responses during herpesvirus infection. MBio, 2016, 7(6), e01553-16.
[http://dx.doi.org/10.1128/mBio.01553-16] [PMID: 27935834]
[46]
Yan, N. Immune diseases associated with TREX1 and STING dysfunction. J. Interferon Cytokine Res., 2017, 37(5), 198-206.
[http://dx.doi.org/10.1089/jir.2016.0086]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy