Review Article

眼肿瘤的分子病理学:2019年常规临床实践的主要兴趣

卷 19, 期 9, 2019

页: [632 - 664] 页: 33

弟呕挨: 10.2174/1566524019666190726161044

价格: $65

摘要

在过去的几年中,我们已经看到了用于治疗癌症患者的分子病理学的不断发展。 从分子数据获得的信息已经改变了我们对癌症生物学多样性的思考,特别是在眼科肿瘤学领域。 它已改变了在横纹肌肉瘤和视网膜母细胞瘤等小儿癌症以及葡萄膜黑色素瘤和淋巴瘤等成年癌症领域中作出治疗决定和有关患者监护的决定的方式。 更好地定义这些癌症的分子分类以及所涉及的不同生物学途径,对于病理学家和眼科医师的理解都是至关重要的。 基于基因组的靶向或扩展分析的分子测试现已上市。 可以使用肿瘤组织或生物流体(尤其是血液)进行这些测试,以预测肿瘤的预后,尤其是靶向疗法,免疫疗法甚至化学疗法的益处。 由于相关的转移风险,在葡萄膜黑色素瘤中寻找BAP1突变至关重要。 在治疗视网膜母细胞瘤时,必须评估RB1的遗传状况。 对于局部晚期肿瘤,结膜黑色素瘤需要对BRAF突变进行调查。 对基因组改变,分子测试和/或其他生物学测试的结果可预测治疗反应的理解,以及对这些测试相对于可用生物资源的局限性的理解,对眼科肿瘤学的最佳患者管理提出了重大挑战 。 在这篇综述中,我们介绍了眼科肿瘤学中有关不同分子改变和感兴趣的治疗靶点的最新研究进展。

关键词: 分子病理学,眼肿瘤,常规临床实践,眼科肿瘤学,成视网膜细胞瘤,BRAF

[1]
Prescher G, Bornfeld N, Hirche H, Horsthemke B, Jöckel KH, Becher R. Prognostic implications of monosomy 3 in uveal melanoma. Lancet 1996; 347(9010): 1222-5.
[http://dx.doi.org/10.1016/S0140-6736(96)90736-9] [PMID: 8622452]
[2]
Tschentscher F, Hüsing J, Hölter T, et al. Tumor classification based on gene expression profiling shows that uveal melanomas with and without monosomy 3 represent two distinct entities. Cancer Res 2003; 63(10): 2578-84.
[PMID: 12750282]
[3]
Onken MD, Worley LA, Ehlers JP, Harbour JW. Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death. Cancer Res 2004; 64(20): 7205-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1750] [PMID: 15492234]
[4]
Kilic E, van Gils W, Lodder E, et al. Clinical and cytogenetic analyses in uveal melanoma. Invest Ophthalmol Vis Sci 2006; 47(9): 3703-7.
[http://dx.doi.org/10.1167/iovs.06-0101] [PMID: 16936076]
[5]
Harbour JW, Onken MD, Roberson EDO, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 2010; 330(6009): 1410-3.
[http://dx.doi.org/10.1126/science.1194472] [PMID: 21051595]
[6]
Damato B, Dopierala JA, Coupland SE. Genotypic profiling of 452 choroidal melanomas with multiplex ligation-dependent probe amplification. Clin Cancer Res 2010; 16(24): 6083-92.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2076] [PMID: 20975103]
[7]
Harbour JW, Roberson EDO, Anbunathan H, Onken MD, Worley LA, Bowcock AM. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat Genet 2013; 45(2): 133-5.
[http://dx.doi.org/10.1038/ng.2523] [PMID: 23313955]
[8]
Yavuzyigitoglu S, Koopmans AE, Verdijk RM, et al. Uveal Melanomas with SF3B1 Mutations: A Distinct Subclass Associated with Late-Onset Metastases. Ophthalmology 2016; 123(5): 1118-28.
[http://dx.doi.org/10.1016/j.ophtha.2016.01.023] [PMID: 26923342]
[9]
Cassoux N, Giron A, Bodaghi B, et al. IL-10 measurement in aqueous humor for screening patients with suspicion of primary intraocular lymphoma. Invest Ophthalmol Vis Sci 2007; 48(7): 3253-9.
[http://dx.doi.org/10.1167/iovs.06-0031] [PMID: 17591896]
[10]
Fisson S, Ouakrim H, Touitou V, et al. Cytokine profile in human eyes: contribution of a new cytokine combination for differential diagnosis between intraocular lymphoma or uveitis. PLoS One 2013; 8(2)e52385
[http://dx.doi.org/10.1371/journal.pone.0052385] [PMID: 23405064]
[11]
Mehta M, Rasheed RA, Duker J, et al. Vitreous evaluation: a diagnostic challenge. Ophthalmology 2015; 122(3): 531-7.
[http://dx.doi.org/10.1016/j.ophtha.2014.09.016] [PMID: 25439597]
[12]
Pochat-Cotilloux C, Bienvenu J, Nguyen A-M, et al. Use of a threshold of interleukin-10 and IL-10/IL-6 ratio in ocular samples for the screening of vitreoretinal lymphoma. Retina 2018; 38(4): 773-81.
[http://dx.doi.org/10.1097/IAE.0000000000001922] [PMID: 29135797]
[13]
Lee J, Kim SW, Kim H, Lee CS, Kim M, Lee SC. Differential diagnosis for vitreoretinal lymphoma with vitreoretinal findings, immunoglobulin clonality tests, and interleukin levels. Retina Phila Pa 2019; 39(6): 1165-76.
[http://dx.doi.org/10.1097/IAE.0000000000002127] [PMID: 29474309]
[14]
Missiaglia E, Williamson D, Chisholm J, et al. PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol 2012; 30(14): 1670-7.
[http://dx.doi.org/10.1200/JCO.2011.38.5591] [PMID: 22454413]
[15]
Shendure J, Lieberman Aiden E. The expanding scope of DNA sequencing. Nat Biotechnol 2012; 30(11): 1084-94.
[http://dx.doi.org/10.1038/nbt.2421] [PMID: 23138308]
[16]
Shendure J, Balasubramanian S, Church GM, et al. DNA sequencing at 40: past, present and future. Nature 2017; 550(7676): 345-53.
[http://dx.doi.org/10.1038/nature24286] [PMID: 29019985]
[17]
Larsen A-C, Dahl C, Dahmcke CM, et al. BRAF mutations in conjunctival melanoma: investigation of incidence, clinicopathological features, prognosis and paired premalignant lesions. Acta Ophthalmol 2016; 94(5): 463-70.
[http://dx.doi.org/10.1111/aos.13007] [PMID: 27009410]
[18]
Cao J, Heijkants RC, Jochemsen AG, et al. Targeting of the MAPK and AKT pathways in conjunctival melanoma shows potential synergy. Oncotarget 2016; 8(35): 58021-36.
[http://dx.doi.org/10.18632/oncotarget.10770] [PMID: 28938534]
[19]
Kujala E, Mäkitie T, Kivelä T. Very long-term prognosis of patients with malignant uveal melanoma. Invest Ophthalmol Vis Sci 2003; 44(11): 4651-9.
[http://dx.doi.org/10.1167/iovs.03-0538] [PMID: 14578381]
[20]
Collaborative Ocular Melanoma Study Group. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma: V Twelve-year mortality rates and prognostic factors: COMS report No 28 Arch Ophthalmol Chic Ill 1960; 124(12): 1684-93.1960.
[21]
Sellam A, Desjardins L, Barnhill R, et al. Fine Needle Aspiration Biopsy in Uveal Melanoma: Technique, Complications, and Outcomes. Am J Ophthalmol 2016; 162: 28-34.e1.
[http://dx.doi.org/10.1016/j.ajo.2015.11.005] [PMID: 26556006]
[22]
Finn AP, Materin MA, Mruthyunjaya P. CHOROIDAL TUMOR BIOPSY: A Review of the Current State and a Glance Into Future Techniques. Retina 2018; 38(Suppl. 1): S79-87.
[http://dx.doi.org/10.1097/IAE.0000000000001997] [PMID: 29280938]
[23]
Angi M, Kalirai H, Taktak A, et al. Prognostic biopsy of choroidal melanoma: an optimised surgical and laboratory approach. Br J Ophthalmol 2017; 101(8): 1143-6.
[http://dx.doi.org/10.1136/bjophthalmol-2017-310361] [PMID: 28596284]
[24]
Chang MY, McCannel TA. Comparison of uveal melanoma cytopathologic sample retrieval in trans-scleral versus vitrectomy-assisted transvitreal fine needle aspiration biopsy. Br J Ophthalmol 2014; 98(12): 1654-8.
[http://dx.doi.org/10.1136/bjophthalmol-2014-305181] [PMID: 24997179]
[25]
Singh AD, Medina CA, Singh N, Aronow ME, Biscotti CV, Triozzi PL. Fine-needle aspiration biopsy of uveal melanoma: outcomes and complications. Br J Ophthalmol 2016; 100(4): 456-62.
[http://dx.doi.org/10.1136/bjophthalmol-2015-306921] [PMID: 26231747]
[26]
Correa ZM, Augsburger JJ. Sufficiency of FNAB aspirates of posterior uveal melanoma for cytologic versus GEP classification in 159 patients, and relative prognostic significance of these classifications. Graefes Arch Clin Exp Ophthalmol 2014; 252(1): 131-5.
[http://dx.doi.org/10.1007/s00417-013-2515-0] [PMID: 24270974]
[27]
Kim RS, Chevez-Barrios P, Divatia M, Bretana ME, Teh B, Schefler AC. Yield, Techniques, and Complications of Transvitreal and Transscleral Biopsies in Small Uveal Melanoma. JAMA Ophthalmol 2018; 136(5): 482-8.
[http://dx.doi.org/10.1001/jamaophthalmol.2018.0561] [PMID: 29596552]
[28]
Mensink HW, Vaarwater J, Kiliç E, et al. Chromosome 3 intratumor heterogeneity in uveal melanoma. Invest Ophthalmol Vis Sci 2009; 50(2): 500-4.
[http://dx.doi.org/10.1167/iovs.08-2279] [PMID: 18824727]
[29]
Karma A, von Willebrand EO, Tommila PV, Paetau AE, Oskala PS, Immonen IJ. Primary intraocular lymphoma: improving the diagnostic procedure. Ophthalmology 2007; 114(7): 1372-7.
[http://dx.doi.org/10.1016/j.ophtha.2006.11.009] [PMID: 17324466]
[30]
Coupland SE, Perez-Canto A, Hummel M, Stein H, Heimann H. Assessment of HOPE fixation in vitrectomy specimens in patients with chronic bilateral uveitis (masquerade syndrome). Graefes Arch Clin Exp Ophthalmol 2005; 243(9): 847-52.
[http://dx.doi.org/10.1007/s00417-005-1166-1] [PMID: 15909161]
[31]
Gonzales JA, Chan C-C. Biopsy techniques and yields in diagnosing primary intraocular lymphoma. Int Ophthalmol 2007; 27(4): 241-50.
[http://dx.doi.org/10.1007/s10792-007-9065-6] [PMID: 17440686]
[32]
Rajagopal R, Harbour JW. Diagnostic testing and treatment choices in primary vitreoretinal lymphoma. Retina 2011; 31(3): 435-40.
[http://dx.doi.org/10.1097/IAE.0b013e31820a6743] [PMID: 21336066]
[33]
Schuster R, Bechrakis NE, Stroux A, et al. Circulating tumor cells as prognostic factor for distant metastases and survival in patients with primary uveal melanoma. Clin Cancer Res 2007; 13(4): 1171-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2329] [PMID: 17317826]
[34]
Mazzini C, Pinzani P, Salvianti F, et al. Circulating tumor cells detection and counting in uveal melanomas by a filtration-based method. Cancers (Basel) 2014; 6(1): 323-32.
[http://dx.doi.org/10.3390/cancers6010323] [PMID: 24514165]
[35]
Bidard F-C, Madic J, Mariani P, et al. Detection rate and prognostic value of circulating tumor cells and circulating tumor DNA in metastatic uveal melanoma. Int J Cancer 2014; 134(5): 1207-13.
[http://dx.doi.org/10.1002/ijc.28436] [PMID: 23934701]
[36]
Tura A, Merz H, Reinsberg M, et al. Analysis of monosomy-3 in immunomagnetically isolated circulating melanoma cells in uveal melanoma patients. Pigment Cell Melanoma Res 2016; 29(5): 583-9.
[http://dx.doi.org/10.1111/pcmr.12507] [PMID: 27390171]
[37]
Berry JL, Xu L, Murphree AL, et al. Potential of Aqueous Humor as a Surrogate Tumor Biopsy for Retinoblastoma. JAMA Ophthalmol 2017; 135(11): 1221-30.
[http://dx.doi.org/10.1001/jamaophthalmol.2017.4097] [PMID: 29049475]
[38]
Shields CL, Chien JL, Surakiatchanukul T, Sioufi K, Lally SE, Shields JA. Conjunctival Tumors: Review of Clinical Features, Risks, Biomarkers, and Outcomes--The 2017 J. Donald M. Gass Lecture. Asia Pac J Ophthalmol (Phila) 2017; 6(2): 109-20.
[PMID: 28399347]
[39]
Conway RM, Graue GF, Pelayes D, Pe’er J, Wilson MW, Wittekind CW, et al. Conjunctival carcinoma. In: Amin MB, American Joint Committee on Cancer, American Cancer Society, editors AJCC cancer staging manual Eight edition Chicago IL: American Joint Committee on Cancer. 2017.
[http://dx.doi.org/10.1007/978-3-319-40618-3_65]
[40]
Meel R, Dhiman R. Proposal for a new classification for ocular surface squamous neoplasia. Eye Lond Engl 2018.
[http://dx.doi.org/10.1038/s41433-018-0058-7]
[41]
Li AS, Shih CY, Rosen L, Steiner A, Milman T, Udell IJ. Recurrence of Ocular Surface Squamous Neoplasia Treated With Excisional Biopsy and Cryotherapy. Am J Ophthalmol 2015; 160(2): 213-219.e1.
[http://dx.doi.org/10.1016/j.ajo.2015.04.027] [PMID: 25914042]
[42]
Santoni A, Thariat J, Maschi C, Herault J, Baillif S, Lassalle S, et al. Management of invasive squamous cell carcinomas of the conjunctiva Treatment of invasive conjunctival carcinoma. Am J Ophthalmol 2018.
[43]
Galor A, Karp CL, Sant D, et al. Whole Exome Profiling of Ocular Surface Squamous Neoplasia. Ophthalmology 2016; 123(1): 216-217.e1.
[http://dx.doi.org/10.1016/j.ophtha.2015.06.049] [PMID: 26271840]
[44]
Scholz SL, Thomasen H, Reis H, et al. Frequent TERT Promoter Mutations in Ocular Surface Squamous Neoplasia. Invest Ophthalmol Vis Sci 2015; 56(10): 5854-61.
[http://dx.doi.org/10.1167/iovs.15-17469] [PMID: 26348634]
[45]
Chauhan S, Sen S, Sharma A, et al. p16INK4a overexpression as a predictor of survival in ocular surface squamous neoplasia. Br J Ophthalmol 2018; 102(6): 840-7.
[http://dx.doi.org/10.1136/bjophthalmol-2017-311276] [PMID: 29511060]
[46]
Chauhan S, Sen S, Sharma A, Kashyap S, Tandon R, Pushker N, et al. Loss of pRB in Conjunctival Squamous Cell Carcinoma: A Predictor of Poor Prognosis. Appl Immunohistochem Mol Morphol AIMM 2018.
[http://dx.doi.org/10.1097/PAI.0000000000000592]
[47]
Mahale A, Alkatan H, Alwadani S, et al. Altered gene expression in conjunctival squamous cell carcinoma. Mod Pathol 2016; 29(5): 452-60.
[http://dx.doi.org/10.1038/modpathol.2016.41] [PMID: 26916071]
[48]
Shields DJA, Shields DCL. Eyelid, Conjunctival, and Orbital Tumors: An Atlas and Textbook. In: LWW. 3rd ed. Philadelphia 2015.
[49]
Scholz SL, Cosgarea I, Süßkind D, et al. NF1 mutations in conjunctival melanoma. Br J Cancer 2018; 118(9): 1243-7.
[http://dx.doi.org/10.1038/s41416-018-0046-5] [PMID: 29559732]
[50]
Jain P, Finger PT, Damato B, Coupland SE, Heimann H, Kenawy N, et al. Multicenter, International Assessment of the Eighth Edition of the American Joint Committee on Cancer Cancer Staging Manual for Conjunctival Melanoma. JAMA Ophthalmol . 2019. [Epub ahead of print]
[51]
Gear H, Williams H, Kemp EG, Roberts F. BRAF mutations in conjunctival melanoma. Invest Ophthalmol Vis Sci 2004; 45(8): 2484-8.
[http://dx.doi.org/10.1167/iovs.04-0093] [PMID: 15277467]
[52]
Spendlove HE, Damato BE, Humphreys J, Barker KT, Hiscott PS, Houlston RS. BRAF mutations are detectable in conjunctival but not uveal melanomas. Melanoma Res 2004; 14(6): 449-52.
[http://dx.doi.org/10.1097/00008390-200412000-00003] [PMID: 15577314]
[53]
Griewank KG, Westekemper H, Murali R, et al. Conjunctival melanomas harbor BRAF and NRAS mutations and copy number changes similar to cutaneous and mucosal melanomas. Clin Cancer Res 2013; 19(12): 3143-52.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0163] [PMID: 23633454]
[54]
Lake SL, Jmor F, Dopierala J, Taktak AFG, Coupland SE, Damato BE. Multiplex ligation-dependent probe amplification of conjunctival melanoma reveals common BRAF V600E gene mutation and gene copy number changes. Invest Ophthalmol Vis Sci 2011; 52(8): 5598-604.
[http://dx.doi.org/10.1167/iovs.10-6934] [PMID: 21693616]
[55]
Goldenberg-Cohen N, Cohen Y, Rosenbaum E, et al. T1799A BRAF mutations in conjunctival melanocytic lesions. Invest Ophthalmol Vis Sci 2005; 46(9): 3027-30.
[http://dx.doi.org/10.1167/iovs.04-1449] [PMID: 16123397]
[56]
Genomic Classification of Cutaneous Melanoma Cell 2015; 161(7): 1681-96.
[http://dx.doi.org/10.1016/j.cell.2015.05.044] [PMID: 26091043]
[57]
Robert C, Karaszewska B, Schachter J, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 2015; 372(1): 30-9.
[http://dx.doi.org/10.1056/NEJMoa1412690] [PMID: 25399551]
[58]
Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 2015; 372(26): 2521-32.
[http://dx.doi.org/10.1056/NEJMoa1503093] [PMID: 25891173]
[59]
Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med 2015; 373(1): 23-34.
[http://dx.doi.org/10.1056/NEJMoa1504030] [PMID: 26027431]
[60]
Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 2015; 33(17): 1889-94.
[http://dx.doi.org/10.1200/JCO.2014.56.2736] [PMID: 25667295]
[61]
Larsen A-C, Dahmcke CM, Dahl C, et al. A retrospective review of conjunctival melanoma presentation, treatment, and outcome and an investigation of features associated with BRAF mutations. JAMA Ophthalmol 2015; 133(11): 1295-303.
[http://dx.doi.org/10.1001/jamaophthalmol.2015.3200] [PMID: 26425792]
[62]
Weber JL, Smalley KSM, Sondak VK, Gibney GT. Conjunctival melanomas harbor BRAF and NRAS mutations--Letter. Clin Cancer Res 2013; 19(22): 6329-30.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2007] [PMID: 24166902]
[64]
Maleka A, Åström G, Byström P, Ullenhag GJ. A case report of a patient with metastatic ocular melanoma who experienced a response to treatment with the BRAF inhibitor vemurafenib. BMC Cancer 2016; 16: 634.
[http://dx.doi.org/10.1186/s12885-016-2657-7]
[65]
Dagi Glass LR, Lawrence DP, Jakobiec FA, Freitag SK. Conjunctival melanoma responsive to combined systemic BRAF/MEK inhibitors. Ophthal Plast Reconstr Surg 2017; 33(5): e114-6.
[http://dx.doi.org/10.1097/IOP.0000000000000833] [PMID: 27893585]
[66]
Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene 2007; 26(22): 3279-90.
[http://dx.doi.org/10.1038/sj.onc.1210421] [PMID: 17496922]
[67]
Krauthammer M, Kong Y, Bacchiocchi A, et al. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet 2015; 47(9): 996-1002.
[http://dx.doi.org/10.1038/ng.3361] [PMID: 26214590]
[68]
Nissan MH, Pratilas CA, Jones AM, et al. Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence. Cancer Res 2014; 74(8): 2340-50.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2625] [PMID: 24576830]
[69]
Wiesner T, Kiuru M, Scott SN, et al. NF1 mutations are common in desmoplastic melanoma. Am J Surg Pathol 2015; 39(10): 1357-62.
[http://dx.doi.org/10.1097/PAS.0000000000000451] [PMID: 26076063]
[70]
Cosgarea I, Ugurel S, Sucker A, et al. Targeted next generation sequencing of mucosal melanomas identifies frequent NF1 and RAS mutations. Oncotarget 2017; 8(25): 40683-92.
[http://dx.doi.org/10.18632/oncotarget.16542] [PMID: 28380455]
[71]
Rivolta C, Royer-Bertrand B, Rimoldi D, et al. UV light signature in conjunctival melanoma; not only skin should be protected from solar radiation. J Hum Genet 2016; 61(4): 361-2.
[http://dx.doi.org/10.1038/jhg.2015.152] [PMID: 26657935]
[72]
Swaminathan SS, Field MG, Sant D, Wang G, Galor A, Dubovy SR, et al. Molecular Characteristics of Conjunctival Melanoma Using Whole-Exome Sequencing. JAMA Ophthalmol 135(12): 1434-7.2017.
[http://dx.doi.org/10.1001/jamaophthalmol.2017.4837]
[73]
Johnson DB, Frampton GM, Rioth MJ, et al. Targeted Next Generation Sequencing Identifies Markers of Response to PD-1 Blockade. Cancer Immunol Res 2016; 4(11): 959-67.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0143] [PMID: 27671167]
[74]
Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8(8): 793-800.
[http://dx.doi.org/10.1038/nm730] [PMID: 12091876]
[75]
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366(26): 2443-54.
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
[76]
Thierauf J, Veit JA, Affolter A, et al. Identification and clinical relevance of PD-L1 expression in primary mucosal malignant melanoma of the head and neck. Melanoma Res 2015; 25(6): 503-9.
[http://dx.doi.org/10.1097/CMR.0000000000000197] [PMID: 26352784]
[77]
Cao J, Brouwer NJ, Jordanova ES, et al. HLA class I antigen expression in conjunctival melanoma is not associated with PD-L1/PD-1 status. Invest Ophthalmol Vis Sci 2018; 59(2): 1005-15.
[http://dx.doi.org/10.1167/iovs.17-23209] [PMID: 29450544]
[78]
Kini A, Fu R, Compton C, Miller DM, Ramasubramanian A. Pembrolizumab for recurrent conjunctival melanoma. JAMA Ophthalmol 2017; 135(8): 891-2.
[http://dx.doi.org/10.1001/jamaophthalmol.2017.2279] [PMID: 28715523]
[79]
Ford J, Thuro BA, Thakar S, Hwu W-J, Richani K, Esmaeli B. Immune checkpoint inhibitors for treatment of metastatic melanoma of the orbit and ocular adnexa. Ophthal Plast Reconstr Surg 2017; 33(4): e82-5.
[http://dx.doi.org/10.1097/IOP.0000000000000790] [PMID: 27662198]
[80]
Westekemper H, Karimi S, Süsskind D, et al. Expression of HSP 90, PTEN and Bcl-2 in conjunctival melanoma. Br J Ophthalmol 2011; 95(6): 853-8.
[http://dx.doi.org/10.1136/bjo.2010.183939] [PMID: 20956280]
[81]
Koopmans AE, Ober K, Dubbink HJ, et al. Prevalence and implications of TERT promoter mutation in uveal and conjunctival melanoma and in benign and premalignant conjunctival melanocytic lesions. Invest Ophthalmol Vis Sci 2014; 55(9): 6024-30.
[http://dx.doi.org/10.1167/iovs.14-14901] [PMID: 25159205]
[82]
Sheng X, Li S, Chi Z, et al. Prognostic factors for conjunctival melanoma: a study in ethnic Chinese patients. Br J Ophthalmol 2015; 99(7): 990-6.
[http://dx.doi.org/10.1136/bjophthalmol-2014-305730] [PMID: 25595173]
[83]
Larsen A-C. Conjunctival malignant melanoma in Denmark: epidemiology, treatment and prognosis with special emphasis on tumorigenesis and genetic profile. Acta Ophthalmol 2016; 94(8): 842.
[http://dx.doi.org/10.1111/aos.13207] [PMID: 27869370]
[84]
Edward DP, Alkatan H, Rafiq Q, et al. MicroRNA profiling in intraocular medulloepitheliomas. PLoS One 2015; 10(3)e0121706
[http://dx.doi.org/10.1371/journal.pone.0121706] [PMID: 25807141]
[85]
Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 2006; 66(15): 7390-4.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0800] [PMID: 16885332]
[86]
Larsen A-C, Mikkelsen LH, Borup R, et al. MicroRNA Expression Profile in Conjunctival Melanoma. Invest Ophthalmol Vis Sci 2016; 57(10): 4205-12.
[http://dx.doi.org/10.1167/iovs.16-19862] [PMID: 27548891]
[87]
Mikkelsen LH, Andersen MK, Andreasen S, et al. Global microRNA profiling of metastatic conjunctival melanoma. Melanoma Res 2019; 29(5): 465-73.
[http://dx.doi.org/10.1097/CMR.0000000000000606] [PMID: 30932942]
[88]
Pinto-Proença R, Santos M, Fonseca C, et al. Conjunctival melanoma: association of cyclooxygenase-2 tumor expression to prognosis. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol 2018; 256(5): 989-95.
[http://dx.doi.org/10.1007/s00417-017-3864-x] [PMID: 29297092]
[89]
Cao J, Pontes KCS, Heijkants RC, et al. Overexpression of EZH2 in conjunctival melanoma offers a new therapeutic target. J Pathol 2018; 245(4): 433-44.
[http://dx.doi.org/10.1002/path.5094] [PMID: 29732557]
[90]
Kenawy N, Kalirai H, Sacco JJ, et al. Conjunctival melanoma copy number alterations and correlation with mutation status, tumor features, and clinical outcome. Pigment Cell Melanoma Res 2019; 32(4): 564-75.
[http://dx.doi.org/10.1111/pcmr.12767] [PMID: 30672666]
[91]
Shang Q, Li Y, Wang H, Ge S, Jia R. Altered expression profile of circular RNAs in conjunctival melanoma. Epigenomics 2019; 11(7): 787-804.
[http://dx.doi.org/10.2217/epi-2019-0029] [PMID: 30892069]
[92]
Verdijk RM. Lymphoproliferative tumors of the ocular adnexa. Asia Pac J Ophthalmol (Phila) 2017; 6(2): 132-42.
[http://dx.doi.org/10.22608/APO.2016209] [PMID: 28399341]
[93]
Kirkegaard MM, Rasmussen PK, Coupland SE, et al. Conjunctival lymphoma--an international multicenter retrospective study. JAMA Ophthalmol 2016; 134(4): 406-14.
[http://dx.doi.org/10.1001/jamaophthalmol.2015.6122] [PMID: 26891973]
[94]
Ferry JA, Fung CY, Zukerberg L, et al. Lymphoma of the ocular adnexa: A study of 353 cases. Am J Surg Pathol 2007; 31(2): 170-84.
[http://dx.doi.org/10.1097/01.pas.0000213350.49767.46] [PMID: 17255761]
[95]
Streubel B, Huber D, Wöhrer S, Chott A, Raderer M. Frequency of chromosomal aberrations involving MALT1 in mucosa-associated lymphoid tissue lymphoma in patients with Sjögren’s syndrome. Clin Cancer Res 2004; 10(2): 476-80.
[http://dx.doi.org/10.1158/1078-0432.CCR-0873-03] [PMID: 14760068]
[96]
Remstein ED, Dogan A, Einerson RR, et al. The incidence and anatomic site specificity of chromosomal translocations in primary extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) in North America. Am J Surg Pathol 2006; 30(12): 1546-53.
[http://dx.doi.org/10.1097/01.pas.0000213275.60962.2a] [PMID: 17122510]
[97]
Schreuder MI, van den Brand M, Hebeda KM, Groenen PJTA, van Krieken JH, Scheijen B. Novel developments in the pathogenesis and diagnosis of extranodal marginal zone lymphoma. J Hematop 2017; 10(3-4): 91-107.
[http://dx.doi.org/10.1007/s12308-017-0302-2] [PMID: 29225710]
[98]
Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011; 470(7332): 115-9.
[http://dx.doi.org/10.1038/nature09671] [PMID: 21179087]
[99]
Li Z-M, Rinaldi A, Cavalli A, et al. MYD88 somatic mutations in MALT lymphomas. Br J Haematol 2012; 158(5): 662-4.
[http://dx.doi.org/10.1111/j.1365-2141.2012.09176.x] [PMID: 22640364]
[100]
Johansson P, Klein-Hitpass L, Grabellus F, et al. Recurrent mutations in NF-κB pathway components, KMT2D, and NOTCH1/2 in ocular adnexal MALT-type marginal zone lymphomas. Oncotarget 2016; 7(38): 62627-39.
[http://dx.doi.org/10.18632/oncotarget.11548] [PMID: 27566587]
[101]
Hother C, Rasmussen PK, Joshi T, et al. MicroRNA profiling in ocular adnexal lymphoma: a role for MYC and NFKB1 mediated dysregulation of microRNA expression in aggressive disease. Invest Ophthalmol Vis Sci 2013; 54(8): 5169-75.
[http://dx.doi.org/10.1167/iovs.13-12272] [PMID: 23821202]
[102]
Cook JR, Isaacson PG, Chott A, et al. Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma)WHO classification of tumours of haematopoietic and lymphoid tissues Revised 4th. Lyon: IARC 2017; pp. 259-62.
[103]
Dimaras H, Corson TW, Cobrinik D, et al. Retinoblastoma. Nat Rev Dis Primers 2015; 1: 15021.
[104]
Thériault BL, Dimaras H, Gallie BL, Corson TW. The genomic landscape of retinoblastoma: a review. Clin Exp Ophthalmol 2014; 42(1): 33-52.
[http://dx.doi.org/10.1111/ceo.12132] [PMID: 24433356]
[105]
Lohmann DR, Gallie BL. RetinoblastomaGeneReviews® Seattle, WA. University of Washington: Seattle 1993.http://www.ncbi.nlm.nih.gov/books/NBK1452/ [Internet] [cited 2018 Jan 17.
[106]
Soliman SE, Racher H, Zhang C, MacDonald H, Gallie BL. Genetics and Molecular Diagnostics in Retinoblastoma--An Update. Asia Pac J Ophthalmol (Phila) 2017; 6(2): 197-207.
[http://dx.doi.org/10.22608/APO.201711] [PMID: 28399338]
[107]
Rushlow DE, Mol BM, Kennett JY, et al. Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol 2013; 14(4): 327-34.
[http://dx.doi.org/10.1016/S1470-2045(13)70045-7] [PMID: 23498719]
[108]
Ewens KG, Bhatti TR, Moran KA, et al. Phosphorylation of pRb: mechanism for RB pathway inactivation in MYCN-amplified retinoblastoma. Cancer Med 2017; 6(3): 619-30.
[http://dx.doi.org/10.1002/cam4.1010] [PMID: 28211617]
[109]
Munier FL, Soliman S, Moulin AP, Gaillard M-C, Balmer A, Beck-Popovic M. Profiling safety of intravitreal injections for retinoblastoma using an anti-reflux procedure and sterilisation of the needle track. Br J Ophthalmol 2012; 96(8): 1084-7.
[http://dx.doi.org/10.1136/bjophthalmol-2011-301016] [PMID: 22368262]
[110]
Mallipatna A, Gallie BL, Chéves-Barrios P, Lumbroso-Le Rouic L, Chantada GL, Doz F. Retinoblastoma AJCC cancer staging manual. 8th ed. New York: Springer 2017.
[http://dx.doi.org/10.1007/978-3-319-40618-3_68]
[111]
Skalet AH, Gombos DS, Gallie BL, et al. Screening children at risk for retinoblastoma: Consensus report from the american association of ophthalmic oncologists and pathologists. Ophthalmology 2018; 125(3): 453-8.
[http://dx.doi.org/10.1016/j.ophtha.2017.09.001] [PMID: 29056300]
[112]
Friend SH, Bernards R, Rogelj S, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986; 323(6089): 643-6.
[http://dx.doi.org/10.1038/323643a0] [PMID: 2877398]
[113]
Knudsen ES, Knudsen KE. Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer 2008; 8(9): 714-24.
[http://dx.doi.org/10.1038/nrc2401] [PMID: 19143056]
[114]
Xu XL, Singh HP, Wang L, et al. Rb suppresses human cone-precursor-derived retinoblastoma tumours. Nature 2014; 514(7522): 385-8.
[http://dx.doi.org/10.1038/nature13813] [PMID: 25252974]
[115]
Corson TW, Gallie BL. One hit, two hits, three hits, more? Genomic changes in the development of retinoblastoma. Genes Chromosomes Cancer 2007; 46(7): 617-34.
[http://dx.doi.org/10.1002/gcc.20457] [PMID: 17437278]
[116]
Huang JC, Babak T, Corson TW, et al. Using expression profiling data to identify human microRNA targets. Nat Methods 2007; 4(12): 1045-9.
[http://dx.doi.org/10.1038/nmeth1130] [PMID: 18026111]
[117]
Kooi IE, Mol BM, Massink MPG, Ameziane N, Meijers-Heijboer H, Dommering CJ, et al. Somatic genomic alterations in retinoblastoma beyond RB1 are rare and limited to copy number changes. Sci Rep 2016; 6: 25264.
[http://dx.doi.org/10.1038/srep25264] [PMID: 27126562]
[118]
Lyu X, Wang L, Lu J, Zhang H, Wang L. microRNA485 inhibits the malignant behaviors of retinoblastoma by directly targeting Wnt3a. Oncol Rep 2019; 41(5): 3137-47.
[http://dx.doi.org/10.3892/or.2019.7061] [PMID: 30896857]
[119]
Guo L, Bai Y, Ji S, Ma H. MicroRNA98 suppresses cell growth and invasion of retinoblastoma via targeting the IGF1R/kRas/Raf/MEK/ERK signaling pathway. Int J Oncol 2019; 54(3): 807-20.
[http://dx.doi.org/10.3892/ijo.2019.4689] [PMID: 30664191]
[120]
Zhao D, Cui Z. MicroRNA-361-3p regulates retinoblastoma cell proliferation and stemness by targeting hedgehog signaling. Exp Ther Med 2019; 17(2): 1154-62.
[PMID: 30679988]
[121]
Sun Z, Zhang A, Zhang L. Inhibition of microRNA492 attenuates cell proliferation and invasion in retinoblastoma via directly targeting LATS2. Mol Med Rep 2019; 19(3): 1965-71.
[PMID: 30592270]
[122]
Zhang J, Benavente CA, McEvoy J, et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 2012; 481(7381): 329-34.
[http://dx.doi.org/10.1038/nature10733] [PMID: 22237022]
[123]
El Sabaa BM, Soliman SE, Fadel S, ElManhaly M. Evaluation of SYK protein expression in treated versus untreated retinoblastoma. Egypt J Pathol 2016; 36(2): 289.
[http://dx.doi.org/10.1097/01.XEJ.0000511204.52699.f6]
[124]
Danda R, Ganapathy K, Sathe G, Madugundu AK, Ramachandran S, Krishnan UM, et al. Proteomic profiling of retinoblastoma by high resolution mass spectrometry. Clin Proteomics 2016.Oct 26 [cited 2017 Nov 9]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080735/.
[http://dx.doi.org/10.1186/s12014-016-9128-7]
[125]
Wang X, Abraham S, McKenzie JAG, et al. LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling. Nature 2013; 499(7458): 306-11.
[http://dx.doi.org/10.1038/nature12345] [PMID: 23868260]
[126]
Amer R, Tiosano L, Pe’er J. Leucine-Rich α-2-Glycoprotein-1 (LRG-1) Expression in Retinoblastoma. Invest Ophthalmol Vis Sci 2018; 59(2): 685-92.
[http://dx.doi.org/10.1167/iovs.17-22785] [PMID: 29392314]
[127]
Guo N, Liu X-F, Pant OP, Zhou D-D, Hao J-L, Lu C-W. Circular RNAs: Novel Promising Biomarkers in Ocular Diseases. Int J Med Sci 2019; 16(4): 513-8.
[http://dx.doi.org/10.7150/ijms.29750] [PMID: 31171902]
[128]
Lyu J, Wang Y, Zheng Q, et al. Reduction of circular RNA expression associated with human retinoblastoma. Exp Eye Res 2019; 184: 278-85.
[http://dx.doi.org/10.1016/j.exer.2019.03.017] [PMID: 30917906]
[129]
Yang M, Wei W. Long non-coding RNAs in retinoblastoma. Pathol Res Pract 2019; 20152435
[http://dx.doi.org/10.1016/j.prp.2019.152435] [PMID: 31202519]
[130]
Chen Z, Moran K, Richards-Yutz J, et al. Enhanced sensitivity for detection of low-level germline mosaic RB1 mutations in sporadic retinoblastoma cases using deep semiconductor sequencing. Hum Mutat 2014; 35(3): 384-91.
[http://dx.doi.org/10.1002/humu.22488] [PMID: 24282159]
[131]
Li WL, Buckley J, Sanchez-Lara PA, et al. A rapid and sensitive next-generation sequencing method to detect RB1 mutations improves care for retinoblastoma patients and their families. J Mol Diagn 2016; 18(4): 480-93.
[http://dx.doi.org/10.1016/j.jmoldx.2016.02.006] [PMID: 27155049]
[132]
Mitter D, Ullmann R, Muradyan A, et al. Genotype-phenotype correlations in patients with retinoblastoma and interstitial 13q deletions. Eur J Hum Genet 2011; 19(9): 947-58.
[http://dx.doi.org/10.1038/ejhg.2011.58] [PMID: 21505449]
[133]
Smit KN, van Poppelen NM, Vaarwater J, et al. Combined mutation and copy-number variation detection by targeted next-generation sequencing in uveal melanoma. Mod Pathol 2018; 31(5): 763-71.
[http://dx.doi.org/10.1038/modpathol.2017.187] [PMID: 29327717]
[134]
Rushlow D, Piovesan B, Zhang K, et al. Detection of mosaic RB1 mutations in families with retinoblastoma. Hum Mutat 2009; 30(5): 842-51.
[http://dx.doi.org/10.1002/humu.20940] [PMID: 19280657]
[135]
Devarajan B, Prakash L, Kannan TR, et al. Targeted next generation sequencing of RB1 gene for the molecular diagnosis of Retinoblastoma. BMC Cancer 2015; 15: 320.
[http://dx.doi.org/10.1186/s12885-015-1340-8] [PMID: 25928201]
[136]
Richter S, Vandezande K, Chen N, et al. Sensitive and efficient detection of RB1 gene mutations enhances care for families with retinoblastoma. Am J Hum Genet 2003; 72(2): 253-69.
[http://dx.doi.org/10.1086/345651] [PMID: 12541220]
[137]
Quiñonez-Silva G, Dávalos-Salas M, Recillas-Targa F, Ostrosky-Wegman P, Aranda DA, Benítez-Bribiesca L. Monoallelic germline methylation and sequence variant in the promoter of the RB1 gene: a possible constitutive epimutation in hereditary retinoblastoma. Clin Epigenetics 2016; 8: 1.
[http://dx.doi.org/10.1186/s13148-015-0167-0] [PMID: 26753011]
[138]
Dehainault C, Michaux D, Pagès-Berhouet S, et al. A deep intronic mutation in the RB1 gene leads to intronic sequence exonisation. Eur J Hum Genet 2007; 15(4): 473-7.
[http://dx.doi.org/10.1038/sj.ejhg.5201787] [PMID: 17299438]
[139]
Zhang K, Nowak I, Rushlow D, Gallie BL, Lohmann DR. Patterns of missplicing caused by RB1 gene mutations in patients with retinoblastoma and association with phenotypic expression. Hum Mutat 2008; 29(4): 475-84.
[http://dx.doi.org/10.1002/humu.20664] [PMID: 18181215]
[140]
Ghiam BK, Xu L, Berry JL. Aqueous Humor Markers in Retinoblastoma, a Review. Transl Vis Sci Technol 2019; 8(2): 13.
[http://dx.doi.org/10.1167/tvst.8.2.13] [PMID: 31019846]
[141]
Shields JA, Eagle RC Jr, Ferguson K, Shields CL. TUMORS OF THE NONPIGMENTED EPITHELIUM OF THE CILIARY BODY: The Lorenz E. Zimmerman Tribute Lecture. Retina 2015; 35(5): 957-65.
[http://dx.doi.org/10.1097/IAE.0000000000000445] [PMID: 25545484]
[142]
Broughton WL, Zimmerman LE. A clinicopathologic study of 56 cases of intraocular medulloepitheliomas. Am J Ophthalmol 1978; 85(3): 407-18.
[http://dx.doi.org/10.1016/S0002-9394(14)77739-6] [PMID: 655220]
[143]
Kaliki S, Shields CL, Eagle RC Jr, et al. Ciliary body medulloepithelioma: analysis of 41 cases. Ophthalmology 2013; 120(12): 2552-9.
[http://dx.doi.org/10.1016/j.ophtha.2013.05.015] [PMID: 23796765]
[144]
Jakobiec FA, Trief D, Rashid A, et al. New insights into the development of infantile intraocular medulloepithelioma. Am J Ophthalmol 2014; 158(6): 1275-1296.e1.
[http://dx.doi.org/10.1016/j.ajo.2014.08.036] [PMID: 25174896]
[145]
Korshunov A, Sturm D, Ryzhova M, et al. Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol 2014; 128(2): 279-89.
[http://dx.doi.org/10.1007/s00401-013-1228-0] [PMID: 24337497]
[146]
Korshunov A, Jakobiec FA, Eberhart CG, et al. Comparative integrated molecular analysis of intraocular medulloepitheliomas and central nervous system embryonal tumors with multilayered rosettes confirms that they are distinct nosologic entities. Neuropathology 2015; 35(6): 538-44.
[http://dx.doi.org/10.1111/neup.12227] [PMID: 26183384]
[147]
Zimmerman LE. The remarkable polymorphism of tumours of the ciliary epithelium. Trans Aust Coll Ophthalmol 1970; 2: 114-25.
[PMID: 5525160]
[148]
Verdijk RM. On the Classification and Grading of Medulloepithelioma of the Eye. Ocul Oncol Pathol 2016; 2(3): 190-3.
[http://dx.doi.org/10.1159/000443963] [PMID: 27239464]
[149]
Foulkes WD, Priest JR, Duchaine TF. DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer 2014; 14(10): 662-72.
[http://dx.doi.org/10.1038/nrc3802] [PMID: 25176334]
[150]
Durieux E, Descotes F, Nguyen A-M, Grange JD, Devouassoux-Shisheboran M. Somatic DICER1 gene mutation in sporadic intraocular medulloepithelioma without pleuropulmonary blastoma syndrome. Hum Pathol 2015; 46(5): 783-7.
[http://dx.doi.org/10.1016/j.humpath.2015.01.020] [PMID: 25791583]
[151]
Stagner AM, Jakobiec FA. Updates on the molecular pathology of selected ocular and ocular adnexal tumors: potential targets for future therapy. Semin Ophthalmol 2016; 31(1-2): 188-96.
[http://dx.doi.org/10.3109/08820538.2015.1115257] [PMID: 26959146]
[152]
Sahm F, Jakobiec FA, Meyer J, et al. Somatic mutations of DICER1 and KMT2D are frequent in intraocular medulloepitheliomas. Genes Chromosomes Cancer 2016; 55(5): 418-27.
[http://dx.doi.org/10.1002/gcc.22344] [PMID: 26841698]
[153]
Mao XG, Hütt-Cabezas M, Orr BA, et al. LIN28A facilitates the transformation of human neural stem cells and promotes glioblastoma tumorigenesis through a pro-invasive genetic program. Oncotarget 2013; 4(7): 1050-64.
[http://dx.doi.org/10.18632/oncotarget.1131] [PMID: 23846349]
[154]
Jakobiec FA, Kool M, Stagner AM, et al. Intraocular Medulloepitheliomas and Embryonal Tumors With Multilayered Rosettes of the Brain: Comparative Roles of LIN28A and C19MC. Am J Ophthalmol 2015; 159(6): 1065-1074.e1.
[http://dx.doi.org/10.1016/j.ajo.2015.03.002] [PMID: 25748578]
[155]
Avedschmidt SE, Stagner AM, Eagle RC Jr, Harocopos GJ, Dou Y, Rao RC. The targetable epigenetic tumor protein EZH2 is enriched in intraocular medulloepithelioma. Invest Ophthalmol Vis Sci 2016; 57(14): 6242-6.
[http://dx.doi.org/10.1167/iovs.16-20463] [PMID: 27842164]
[156]
Mori T, Sukeda A, Sekine S, et al. SOX10 Expression as well as BRAF and GNAQ/11 mutations distinguish pigmented ciliary epithelium neoplasms from uveal melanomas. Invest Ophthalmol Vis Sci 2017; 58(12): 5445-51.
[http://dx.doi.org/10.1167/iovs.17-22362] [PMID: 29059311]
[157]
Coupland SE, Damato B. Understanding intraocular lymphomas. Clin Exp Ophthalmol 2008; 36(6): 564-78.
[http://dx.doi.org/10.1111/j.1442-9071.2008.01843.x] [PMID: 18954321]
[158]
Royer-Perron L, Hoang-Xuan K, Alentorn A. Primary central nervous system lymphoma: time for diagnostic biomarkers and biotherapies? Curr Opin Neurol 2017; 30(6): 669-76.
[http://dx.doi.org/10.1097/WCO.0000000000000492] [PMID: 28922238]
[159]
Coupland SE. Molecular pathology of lymphoma. Eye (Lond) 2013; 27(2): 180-9.
[http://dx.doi.org/10.1038/eye.2012.247] [PMID: 23222560]
[160]
Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403(6769): 503-11.
[http://dx.doi.org/10.1038/35000501] [PMID: 10676951]
[161]
Gascoyne RD, Campo E, Jaffe ES, et al. Diffuse large B-cell lymphoma, NOSWHO classification of tumours of haematopoietic and lymphoid tissues Revised 4th. Lyon: IARC 2017; pp. 291-7.
[162]
Kluin PM, Harris NL, Stein H, et al. High-grade B-cell lymphomaWHO classification of tumours of haematopoietic and lymphoid tissues Revised 4th. Lyon: IARC 2017; pp. 335-41.
[163]
Kluin PM, Deckert M, Ferry JA. Primary diffuse large B-cell lymphoma of the CNSWHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th edition. Lyon: IARC 2017; pp. 300-2.
[164]
Grommes C, Pastore A, Palaskas N, et al. Ibrutinib Unmasks Critical Role of Bruton Tyrosine Kinase in Primary CNS Lymphoma. Cancer Discov 2017; 7(9): 1018-29.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0613] [PMID: 28619981]
[165]
Nussenblatt RB, Chan C-C, Wilson WH, Hochman J, Gottesman M. International Central Nervous System and Ocular Lymphoma Workshop: recommendations for the future. Ocul Immunol Inflamm 2006; 14(3): 139-44.
[http://dx.doi.org/10.1080/09273940600630170] [PMID: 16827214]
[166]
Missotten T, Tielemans D, Bromberg JE, et al. Multicolor flowcytometric immunophenotyping is a valuable tool for detection of intraocular lymphoma. Ophthalmology 2013; 120(5): 991-6.
[http://dx.doi.org/10.1016/j.ophtha.2012.11.007] [PMID: 23380473]
[167]
Coupland SE, Heimann H, Bechrakis NE. Primary intraocular lymphoma: a review of the clinical, histopathological and molecular biological features. Graefes Arch Clin Exp Ophthalmol 2004; 242(11): 901-13.
[http://dx.doi.org/10.1007/s00417-004-0973-0] [PMID: 15565454]
[168]
Kimura K, Usui Y, Goto H. Clinical features and diagnostic significance of the intraocular fluid of 217 patients with intraocular lymphoma. Jpn J Ophthalmol 2012; 56(4): 383-9.
[http://dx.doi.org/10.1007/s10384-012-0150-7] [PMID: 22661396]
[169]
Rodriguez EF, Sepah YJ, Jang HS, et al. Cytologic features in vitreous preparations of patients with suspicion of intraocular lymphoma. Diagn Cytopathol 2014; 42(1): 37-44.
[http://dx.doi.org/10.1002/dc.23059] [PMID: 24167062]
[170]
Coupland SE, Hummel M, Stein H, Willerding G, Jahnke K, Stoltenburg-Didinger G. Demonstration of identical clonal derivation in a case of “oculocerebral” lymphoma. Br J Ophthalmol 2005; 89(2): 238-9.
[http://dx.doi.org/10.1136/bjo.2004.047001] [PMID: 15665359]
[171]
Chan CC, Whitcup SM, Solomon D, Nussenblatt RB. Interleukin-10 in the vitreous of patients with primary intraocular lymphoma. Am J Ophthalmol 1995; 120(5): 671-3.
[http://dx.doi.org/10.1016/S0002-9394(14)72217-2] [PMID: 7485372]
[172]
Nguyen-Them L, Costopoulos M, Tanguy M-L, et al. The CSF IL-10 concentration is an effective diagnostic marker in immunocompetent primary CNS lymphoma and a potential prognostic biomarker in treatment-responsive patients. Eur J Cancer 2016; 61(61): 69-76.
[http://dx.doi.org/10.1016/j.ejca.2016.03.080] [PMID: 27156226]
[173]
Cani AK, Hovelson DH, Demirci H, Johnson MW, Tomlins SA, Rao RC. Next generation sequencing of vitreoretinal lymphomas from small-volume intraocular liquid biopsies: new routes to targeted therapies. Oncotarget 2017; 8(5): 7989-98.
[http://dx.doi.org/10.18632/oncotarget.14008] [PMID: 28002793]
[174]
Coupland SE, Hummel M, Müller H-H, Stein H. Molecular analysis of immunoglobulin genes in primary intraocular lymphoma. Invest Ophthalmol Vis Sci 2005; 46(10): 3507-14.
[http://dx.doi.org/10.1167/iovs.05-0401] [PMID: 16186327]
[175]
Fend F, Ferreri AJM, Coupland SE. How we diagnose and treat vitreoretinal lymphoma. Br J Haematol 2016; 173(5): 680-92.
[http://dx.doi.org/10.1111/bjh.14025] [PMID: 27133587]
[176]
Coupland SE, Bechrakis NE, Anastassiou G, et al. Evaluation of vitrectomy specimens and chorioretinal biopsies in the diagnosis of primary intraocular lymphoma in patients with Masquerade syndrome. Graefes Arch Clin Exp Ophthalmol 2003; 241(10): 860-70.
[http://dx.doi.org/10.1007/s00417-003-0749-y] [PMID: 14605902]
[177]
Merle-Béral H, Davi F, Cassoux N, et al. Biological diagnosis of primary intraocular lymphoma. Br J Haematol 2004; 124(4): 469-73.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04800.x] [PMID: 14984496]
[178]
Baehring JM, Androudi S, Longtine JJ, et al. Analysis of clonal immunoglobulin heavy chain rearrangements in ocular lymphoma. Cancer 2005; 104(3): 591-7.
[http://dx.doi.org/10.1002/cncr.21191] [PMID: 15973665]
[179]
Wang Y, Shen D, Wang VM, Sen HN, Chan C-C. Molecular biomarkers for the diagnosis of primary vitreoretinal lymphoma. Int J Mol Sci 2011; 12(9): 5684-97.
[http://dx.doi.org/10.3390/ijms12095684] [PMID: 22016619]
[180]
Gameiro P, Sebastião M, Spetalen S, da Silva MG, Cabeçadas J. The added value of immunoglobulin Kappa light chain gene (IGK) rearrangement analysis in suspected B-cell lymphomas: three illustrative cases. J Hematop 2012; 5(1–2): 45-56.
[http://dx.doi.org/10.1007/s12308-011-0132-6]
[181]
Diss TC, Liu HX, Du MQ, Isaacson PG. Improvements to B cell clonality analysis using PCR amplification of immunoglobulin light chain genes. MP. Mol Pathol 2002; 55(2): 98-101.
[http://dx.doi.org/10.1136/mp.55.2.98] [PMID: 11950958]
[182]
Pai RK, Chakerian AE, Binder JM, Amin M, Viswanatha DS. B-cell clonality determination using an immunoglobulin kappa light chain polymerase chain reaction method. J Mol Diagn 2005; 7(2): 300-7.
[http://dx.doi.org/10.1016/S1525-1578(10)60558-2] [PMID: 15858155]
[183]
Evans PA, Pott Ch, Groenen PJ, et al. Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia 2007; 21(2): 207-14.
[http://dx.doi.org/10.1038/sj.leu.2404479] [PMID: 17170731]
[184]
Wang L, Sato-Otsubo A, Sugita S, et al. High-resolution genomic copy number profiling of primary intraocular lymphoma by single nucleotide polymorphism microarrays. Cancer Sci 2014; 105(5): 592-9.
[http://dx.doi.org/10.1111/cas.12388] [PMID: 24612100]
[185]
Bonzheim I, Giese S, Deuter C, et al. High frequency of MYD88 mutations in vitreoretinal B-cell lymphoma: a valuable tool to improve diagnostic yield of vitreous aspirates. Blood 2015; 126(1): 76-9.
[http://dx.doi.org/10.1182/blood-2015-01-620518] [PMID: 25900979]
[186]
Basso K, Dalla-Favera R. Germinal centres and B cell lymphomagenesis. Nat Rev Immunol 2015; 15(3): 172-84.
[http://dx.doi.org/10.1038/nri3814] [PMID: 25712152]
[187]
Hiemcke-Jiwa LS, Ten Dam-van Loon NH, Leguit RJ, et al. Potential diagnosis of vitreoretinal lymphoma by detection of MYD88 mutation in aqueous humor with ultrasensitive droplet digital polymerase chain reaction. JAMA Ophthalmol 2018; 136(10): 1098-104.
[http://dx.doi.org/10.1001/jamaophthalmol.2018.2887] [PMID: 30027272]
[188]
Miserocchi E, Ferreri AJM, Giuffrè C, et al. MYD88 L265P mutation detection in the aqueous humor of patients with vitreoretinal lymphoma. Retina 2019; 39(4): 679-84.
[http://dx.doi.org/10.1097/IAE.0000000000002319] [PMID: 30204732]
[189]
Carreno E, Clench T, Steeples LR, et al. Clinical spectrum of vitreoretinal lymphoma and its association with MyD88 L265P mutation. Acta Ophthalmol 2019; 97(1): e138-9.
[http://dx.doi.org/10.1111/aos.13808] [PMID: 30113125]
[190]
Yonese I, Takase H, Yoshimori M, et al. CD79B mutations in primary vitreoretinal lymphoma: Diagnostic and prognostic potential. Eur J Haematol 2019; 102(2): 191-6.
[http://dx.doi.org/10.1111/ejh.13191] [PMID: 30390359]
[191]
Choquet S, Houillier C, Bijou F, Houot R, Boyle E, Gressin R, et al. Ibrutinib monotherapy in relapse or refractory Primary CNS Lymphoma (PCNSL) and Primary Vitreo-Retinal Lymphoma (PVRL). Result of the interim analysis of the iLOC phase II study from the lysa and the french LOC network. Blood 2016; 128(22): 784-4.
[192]
Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N Engl J Med 2018; 378(15): 1396-407.
[193]
Chapuy B, Stewart C, Dunford AJ, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med 2018; 24(5): 679-90.
[http://dx.doi.org/10.1038/s41591-018-0016-8] [PMID: 29713087]
[194]
Strehlow F, Bauer S, Martus P, et al. Osteopontin in cerebrospinal fluid as diagnostic biomarker for central nervous system lymphoma. J Neurooncol 2016; 129(1): 165-71.
[http://dx.doi.org/10.1007/s11060-016-2162-5] [PMID: 27294357]
[195]
Hu D-N, Yu G-P, McCormick SA, Schneider S, Finger PT. Population-based incidence of uveal melanoma in various races and ethnic groups. Am J Ophthalmol 2005; 140(4): 612-7.
[http://dx.doi.org/10.1016/j.ajo.2005.05.034] [PMID: 16226513]
[196]
Shields JA, Shields CL. Management of posterior uveal melanoma: past, present, and future: the 2014 Charles L. Schepens lecture. Ophthalmology 2015; 122(2): 414-28.
[http://dx.doi.org/10.1016/j.ophtha.2014.08.046] [PMID: 25439609]
[197]
Nathan P, Cohen V, Coupland S, et al. Uveal melanoma UK national guidelines. Eur J Cancer 2015; 51(16): 2404-12.
[http://dx.doi.org/10.1016/j.ejca.2015.07.013] [PMID: 26278648]
[198]
Seibel I, Cordini D, Rehak M, et al. Local recurrence after primary proton beam therapy in uveal melanoma: Risk factors, retreatment approaches, and outcome. Am J Ophthalmol 2015; 160(4): 628-36.
[http://dx.doi.org/10.1016/j.ajo.2015.06.017] [PMID: 26133249]
[199]
Gallie BL, Simpson ER, Saakyan S, Amiryan A, Valskiy V, Finger PT, et al. Local recurrence significantly increases the risk of metastatic uveal melanoma. Ophthalmology 2016; 123(1): 86-91.
[http://dx.doi.org/10.1016/j.ophtha.2015.09.014] [PMID: 26505803]
[200]
Chattopadhyay C, Kim DW, Gombos DS, et al. Uveal melanoma: From diagnosis to treatment and the science in between. Cancer 2016; 122(15): 2299-312.
[http://dx.doi.org/10.1002/cncr.29727] [PMID: 26991400]
[201]
Lane AM, Kim IK, Gragoudas ES. Long-term risk of melanoma-related mortality for patients with uveal melanoma treated with proton beam therapy. JAMA Ophthalmol 2015; 133(7): 792-6.
[http://dx.doi.org/10.1001/jamaophthalmol.2015.0887] [PMID: 25905597]
[202]
Nichols EE, Richmond A, Daniels AB. Tumor characteristics, genetics, management, and the risk of metastasis in uveal melanoma. Semin Ophthalmol 2016; 31(4): 304-9.
[http://dx.doi.org/10.3109/08820538.2016.1154175] [PMID: 27128983]
[203]
Yang J, Hamid O, Carvajal RD. The need for neddylation: A key to achieving NED in uveal melanoma. Clin Cancer Res Off J Am Assoc Cancer Res 2018; 24(15): 3477-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0020] [PMID: 29610291]
[204]
Singh AD. Uveal melanoma: implications of tumor doubling time. Ophthalmology 2001; 108(5): 829-31.
[http://dx.doi.org/10.1016/S0161-6420(00)00607-2] [PMID: 11319992]
[205]
Callejo SA, Antecka E, Blanco PL, Edelstein C, Burnier MN Jr. Identification of circulating malignant cells and its correlation with prognostic factors and treatment in uveal melanoma. A prospective longitudinal study. Eye (Lond) 2007; 21(6): 752-9.
[http://dx.doi.org/10.1038/sj.eye.6702322] [PMID: 16575415]
[206]
Lane AM, Kim IK, Gragoudas ES. Survival rates in patients after treatment for metastasis from uveal melanoma. JAMA Ophthalmol 2018; 136(9): 981-6.
[http://dx.doi.org/10.1001/jamaophthalmol.2018.2466] [PMID: 29955797]
[207]
Rantala ES, Hernberg M, Kivelä TT. Overall survival after treatment for metastatic uveal melanoma: a systematic review and meta-analysis. Melanoma Res 2019. Epub ahead of print
[http://dx.doi.org/10.1097/CMR.0000000000000575] [PMID: 30664106]
[208]
van Poppelen NM, Vaarwater J, Mudhar HS, et al. Genetic Background of Iris Melanomas and Iris Melanocytic Tumors of Uncertain Malignant Potential. Ophthalmology 2018; 125(6): 904-12.
[http://dx.doi.org/10.1016/j.ophtha.2017.12.022] [PMID: 29371009]
[209]
Robertson AG, Shih J, Yau C, et al. Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell 2017; 32(2): 204-220.e15.
[http://dx.doi.org/10.1016/j.ccell.2017.07.003] [PMID: 28810145]
[210]
Van Raamsdonk CD, Bezrookove V, Green G, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 2009; 457(7229): 599-602.
[http://dx.doi.org/10.1038/nature07586] [PMID: 19078957]
[211]
Van Raamsdonk CD, Griewank KG, Crosby MB, et al. Mutations in GNA11 in uveal melanoma. N Engl J Med 2010; 363(23): 2191-9.
[http://dx.doi.org/10.1056/NEJMoa1000584] [PMID: 21083380]
[212]
Martin M, Maßhöfer L, Temming P, et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat Genet 2013; 45(8): 933-6.
[http://dx.doi.org/10.1038/ng.2674] [PMID: 23793026]
[213]
Damato B, Duke C, Coupland SE, et al. Cytogenetics of uveal melanoma: a 7-year clinical experience. Ophthalmology 2007; 114(10): 1925-31.
[http://dx.doi.org/10.1016/j.ophtha.2007.06.012] [PMID: 17719643]
[214]
Shields CL, Ganguly A, Bianciotto CG, et al. Prognosis of uveal melanoma in 500 cases using genetic testing of fine-needle aspiration biopsy specimens. Ophthalmology 2011; 118(2): 396-401.
[http://dx.doi.org/10.1016/j.ophtha.2010.05.023] [PMID: 20869116]
[215]
Thomas S, Pütter C, Weber S, Bornfeld N, Lohmann DR, Zeschnigk M. Prognostic significance of chromosome 3 alterations determined by microsatellite analysis in uveal melanoma: a long-term follow-up study. Br J Cancer 2012; 106(6): 1171-6.
[http://dx.doi.org/10.1038/bjc.2012.54] [PMID: 22353812]
[216]
van den Bosch T, van Beek JGM, Vaarwater J, et al. Higher percentage of FISH-determined monosomy 3 and 8q amplification in uveal melanoma cells relate to poor patient prognosis. Invest Ophthalmol Vis Sci 2012; 53(6): 2668-74.
[http://dx.doi.org/10.1167/iovs.11-8697] [PMID: 22427574]
[217]
Ewens KG, Kanetsky PA, Richards-Yutz J, et al. Genomic profile of 320 uveal melanoma cases: chromosome 8p-loss and metastatic outcome. Invest Ophthalmol Vis Sci 2013; 54(8): 5721-9.
[http://dx.doi.org/10.1167/iovs.13-12195] [PMID: 23821189]
[218]
Minca EC, Tubbs RR, Portier BP, et al. Genomic microarray analysis on formalin-fixed paraffin-embedded material for uveal melanoma prognostication. Cancer Genet 2014; 207(7-8): 306-15.
[http://dx.doi.org/10.1016/j.cancergen.2014.08.005] [PMID: 25442074]
[219]
Onken MD, Worley LA, Char DH, et al. Collaborative Ocular Oncology Group report number 1: prospective validation of a multi-gene prognostic assay in uveal melanoma. Ophthalmology 2012; 119(8): 1596-603.
[http://dx.doi.org/10.1016/j.ophtha.2012.02.017] [PMID: 22521086]
[220]
Trolet J, Hupé P, Huon I, et al. Genomic profiling and identification of high-risk uveal melanoma by array CGH analysis of primary tumors and liver metastases. Invest Ophthalmol Vis Sci 2009; 50(6): 2572-80.
[http://dx.doi.org/10.1167/iovs.08-2296] [PMID: 19151381]
[221]
Cassoux N, Rodrigues MJ, Plancher C, et al. Genome-wide profiling is a clinically relevant and affordable prognostic test in posterior uveal melanoma. Br J Ophthalmol 2014; 98(6): 769-74.
[http://dx.doi.org/10.1136/bjophthalmol-2013-303867] [PMID: 24169649]
[222]
Krishna Y, Kalirai H, Thornton S, Damato BE, Heimann H, Coupland SE. Genetic findings in treatment-naïve and proton-beam-radiated iris melanomas. Br J Ophthalmol 2016; 100(7): 1012-6.
[http://dx.doi.org/10.1136/bjophthalmol-2015-308301] [PMID: 27098748]
[223]
Moore AR, Ceraudo E, Sher JJ, et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat Genet 2016; 48(6): 675-80.
[http://dx.doi.org/10.1038/ng.3549] [PMID: 27089179]
[224]
Shields CL, Furuta M, Thangappan A, Nagori S, Mashayekhi A, Lally DR, et al. Metastasis of uveal melanoma millimeter-by-millimeter in 8033 consecutive eyes. Arch Ophthalmol 2009; 127(8): 989-98.
[http://dx.doi.org/10.1001/archophthalmol.2009.208] [PMID: 19667335]
[225]
Damato BE, Heimann H, Kalirai H, Coupland SE. Age, survival predictors, and metastatic death in patients with choroidal melanoma: tentative evidence of a therapeutic effect on survival. JAMA Ophthalmol 2014; 132(5): 605-13.
[http://dx.doi.org/10.1001/jamaophthalmol.2014.77] [PMID: 24626610]
[226]
Smit KN, van Poppelen NM, Vaarwater J, Verdijk R, van Marion R, Kalirai H, et al. Combined mutation and copy-number variation detection by targeted next-generation sequencing in uveal melanoma. Mod Pathol 2018; 31(5): 763-71.
[http://dx.doi.org/10.1038/modpathol.2017.187] [PMID: 29327717]
[227]
Amaro A, Gangemi R, Piaggio F, et al. The biology of uveal melanoma. Cancer Metastasis Rev 2017; 36(1): 109-40.
[http://dx.doi.org/10.1007/s10555-017-9663-3] [PMID: 28229253]
[228]
Coupland SE, Lake SL, Zeschnigk M, Damato BE. Molecular pathology of uveal melanoma. Eye (Lond) 2013; 27(2): 230-42.
[http://dx.doi.org/10.1038/eye.2012.255] [PMID: 23222563]
[229]
Versluis M, de Lange MJ, van Pelt SI, et al. Digital PCR validates 8q dosage as prognostic tool in uveal melanoma. PLoS One 2015; 10(3)e0116371
[http://dx.doi.org/10.1371/journal.pone.0116371] [PMID: 25764247]
[230]
Cai L, Paez-Escamilla M, Walter SD, et al. Gene expression profiling and PRAME status versus tumor-node-metastasis staging for prognostication in uveal melanoma. Am J Ophthalmol 2018; 195: 154-60.
[http://dx.doi.org/10.1016/j.ajo.2018.07.045] [PMID: 30092184]
[231]
Walter SD, Chao DL, Feuer W, Schiffman J, Char DH, Harbour JW. Prognostic implications of tumor diameter in association with gene expression profile for uveal melanoma. JAMA Ophthalmol 2016; 134(7): 734-40.
[http://dx.doi.org/10.1001/jamaophthalmol.2016.0913] [PMID: 27123792]
[232]
Kivelä TT, Finger PT. Prognostic implications of the largest basal tumor diameter vs the tnm staging system in association with the gene expression profile for uveal melanoma. JAMA Ophthalmol 2017; 135(2): 175.
[http://dx.doi.org/10.1001/jamaophthalmol.2016.5102] [PMID: 28056132]
[233]
Berry D, Seider M, Stinnett S, Mruthyunjaya P, Schefler AC. Ocular oncology study consortium Relationship of clinical features and baseline tumor size with gene expression profile status in uveal melanoma: A multi-institutional study. Retina Phila Pa 2018.
[234]
Field MG, Decatur CL, Kurtenbach S, et al. PRAME as an independent biomarker for metastasis in uveal melanoma. Clin Cancer Res 2016; 22(5): 1234-42.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2071] [PMID: 26933176]
[235]
Field MG, Durante MA, Decatur CL, et al. Epigenetic reprogramming and aberrant expression of PRAME are associated with increased metastatic risk in Class 1 and Class 2 uveal melanomas. Oncotarget 2016; 7(37): 59209-19.
[http://dx.doi.org/10.18632/oncotarget.10962] [PMID: 27486988]
[236]
Field MG, Harbour JW. Recent developments in prognostic and predictive testing in uveal melanoma. Curr Opin Ophthalmol 2014; 25(3): 234-9.
[http://dx.doi.org/10.1097/ICU.0000000000000051] [PMID: 24713608]
[237]
DeParis SW, Taktak A, Eleuteri A, et al. External validation of the liverpool uveal melanoma prognosticator online. Invest Ophthalmol Vis Sci 2016; 57(14): 6116-22.
[http://dx.doi.org/10.1167/iovs.16-19654] [PMID: 27835710]
[238]
Vaquero-Garcia J, Lalonde E, Ewens KG, Ebrahimzadeh J, Richard-Yutz J, Shields CL, et al. PRiMeUM: A model for predicting risk of metastasis in uveal melanoma. Invest Ophthalmol Vis Sci 201 58(10): 4096-105.
[http://dx.doi.org/10.1167/iovs.17-22255]
[239]
Royer-Bertrand B, Torsello M, Rimoldi D, et al. Comprehensive genetic landscape of uveal melanoma by whole-genome sequencing. Am J Hum Genet 2016; 99(5): 1190-8.
[http://dx.doi.org/10.1016/j.ajhg.2016.09.008] [PMID: 27745836]
[240]
Amaro A, Mirisola V, Angelini G, Musso A, Tosetti F, Esposito AI, et al. Evidence of epidermal growth factor receptor expression in uveal melanoma: inhibition of epidermal growth factor-mediated signalling by Gefitinib and Cetuximab triggered antibody-dependent cellular cytotoxicity. Eur J Cancer Oxf Engl 49 (15): 3353-65.1990.
[241]
Li Z, Yu X, Shen J, Jiang Y. MicroRNA dysregulation in uveal melanoma: a new player enters the game. Oncotarget 2015; 6(7): 4562-8.
[http://dx.doi.org/10.18632/oncotarget.2923] [PMID: 25682876]
[242]
Xin X, Zhang Y, Ling F, et al. Identification of a nine-miRNA signature for the prognosis of Uveal Melanoma. Exp Eye Res 2019; 180: 242-9.
[http://dx.doi.org/10.1016/j.exer.2019.01.004] [PMID: 30615885]
[243]
Smit KN, Chang J, Derks K, et al. Aberrant MicroRNA expression and its implications for uveal melanoma metastasis. Cancers (Basel) 2019; 11(6)E815
[http://dx.doi.org/10.3390/cancers11060815] [PMID: 31212861]
[244]
Johansson P, Aoude LG, Wadt K, et al. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget 2016; 7(4): 4624-31.
[http://dx.doi.org/10.18632/oncotarget.6614] [PMID: 26683228]
[245]
Dono M, Angelini G, Cecconi M, et al. Mutation frequencies of GNAQ, GNA11, BAP1, SF3B1, EIF1AX and TERT in uveal melanoma: detection of an activating mutation in the TERT gene promoter in a single case of uveal melanoma. Br J Cancer 2014; 110(4): 1058-65.
[http://dx.doi.org/10.1038/bjc.2013.804] [PMID: 24423917]
[246]
Ewens KG, Kanetsky PA, Richards-Yutz J, et al. Chromosome 3 status combined with BAP1 and EIF1AX mutation profiles are associated with metastasis in uveal melanoma. Invest Ophthalmol Vis Sci 2014; 55(8): 5160-7.
[http://dx.doi.org/10.1167/iovs.14-14550] [PMID: 24970262]
[247]
Decatur CL, Ong E, Garg N, et al. Driver mutations in uveal melanoma: associations with gene expression profile and patient outcomes. JAMA Ophthalmol 2016; 134(7): 728-33.
[http://dx.doi.org/10.1001/jamaophthalmol.2016.0903] [PMID: 27123562]
[248]
Markby DW, Onrust R, Bourne HR. Separate GTP binding and GTPase activating domains of a G alpha subunit. Science 1993; 262(5141): 1895-901.
[http://dx.doi.org/10.1126/science.8266082] [PMID: 8266082]
[249]
Gerami P, Pouryazdanparast P, Vemula S, Bastian BC. Molecular analysis of a case of nevus of ota showing progressive evolution to melanoma with intermediate stages resembling cellular blue nevus. Am J Dermatopathol 2010; 32(3): 301-5.
[http://dx.doi.org/10.1097/DAD.0b013e3181b96db7] [PMID: 20110797]
[250]
Shirley MD, Tang H, Gallione CJ, et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med 2013; 368(21): 1971-9.
[http://dx.doi.org/10.1056/NEJMoa1213507] [PMID: 23656586]
[251]
O’Hayre M, Degese MS, Gutkind JS. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr Opin Cell Biol 2014; 27: 126-35.
[http://dx.doi.org/10.1016/j.ceb.2014.01.005] [PMID: 24508914]
[252]
Boru G, Cebulla CM, Sample KM, Massengill JB, Davidorf FH, Abdel-Rahman MH. Heterogeneity in mitogen-activated protein kinase (MAPK) pathway activation in uveal melanoma with somatic GNAQ and GNA11 mutations. Invest Ophthalmol Vis Sci 2019; 60(7): 2474-80.
[http://dx.doi.org/10.1167/iovs.18-26452] [PMID: 31173078]
[253]
Field MG, Durante MA, Anbunathan H, Cai LZ, Decatur CL, Bowcock AM, et al. Punctuated evolution of canonical genomic aberrations in uveal melanoma. Nat Commun 2018; 9(1): 116.
[http://dx.doi.org/10.1038/s41467-017-02428-w]
[254]
Farquhar N, Thornton S, Coupland SE, et al. Patterns of BAP1 protein expression provide insights into prognostic significance and the biology of uveal melanoma. J Pathol Clin Res 2017; 4(1): 26-38.
[http://dx.doi.org/10.1002/cjp2.86] [PMID: 29416875]
[255]
Carbone M, Yang H, Pass HI, Krausz T, Testa JR, Gaudino G. BAP1 and cancer. Nat Rev Cancer 2013; 13(3): 153-9.
[http://dx.doi.org/10.1038/nrc3459] [PMID: 23550303]
[256]
Njauw C-NJ, Kim I, Piris A, et al. Germline BAP1 inactivation is preferentially associated with metastatic ocular melanoma and cutaneous-ocular melanoma families. PLoS One 2012; 7(4)e35295
[http://dx.doi.org/10.1371/journal.pone.0035295] [PMID: 22545102]
[257]
Rai K, Pilarski R, Boru G, et al. Germline BAP1 alterations in familial uveal melanoma. Genes Chromosomes Cancer 2017; 56(2): 168-74.
[http://dx.doi.org/10.1002/gcc.22424] [PMID: 27718540]
[258]
Kalirai H, Dodson A, Faqir S, Damato BE, Coupland SE. Lack of BAP1 protein expression in uveal melanoma is associated with increased metastatic risk and has utility in routine prognostic testing. Br J Cancer 2014; 111(7): 1373-80.
[http://dx.doi.org/10.1038/bjc.2014.417] [PMID: 25058347]
[259]
Koopmans AE, Verdijk RM, Brouwer RWW, et al. Clinical significance of immunohistochemistry for detection of BAP1 mutations in uveal melanoma. Mod Pathol 2014; 27(10): 1321-30.
[http://dx.doi.org/10.1038/modpathol.2014.43] [PMID: 24633195]
[260]
van Essen TH, van Pelt SI, Versluis M, et al. Prognostic parameters in uveal melanoma and their association with BAP1 expression. Br J Ophthalmol 2014; 98(12): 1738-43.
[http://dx.doi.org/10.1136/bjophthalmol-2014-305047] [PMID: 25147369]
[261]
van de Nes JAP, Nelles J, Kreis S, et al. Comparing the prognostic Value of BAP1 mutation pattern, chromosome 3 status, and BAP1 immunohistochemistry in uveal melanoma. Am J Surg Pathol 2016; 40(6): 796-805.
[http://dx.doi.org/10.1097/PAS.0000000000000645] [PMID: 27015033]
[262]
Glasgow BJ, McCannel TA. Correlation of immunocytochemistry of BRCA1-associated protein 1 (BAP1) with other prognostic markers in uveal melanoma. Am J Ophthalmol 2018; 189: 122-6.
[http://dx.doi.org/10.1016/j.ajo.2018.03.005] [PMID: 29530782]
[263]
Yu H, Pak H, Hammond-Martel I, et al. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci USA 2014; 111(1): 285-90.
[http://dx.doi.org/10.1073/pnas.1309085110] [PMID: 24347639]
[264]
Ismail IH, Davidson R, Gagné J-P, Xu ZZ, Poirier GG, Hendzel MJ. Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res 2014; 74(16): 4282-94.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3109] [PMID: 24894717]
[265]
Matatall KA, Agapova OA, Onken MD, Worley LA, Bowcock AM, Harbour JW. BAP1 deficiency causes loss of melanocytic cell identity in uveal melanoma. BMC Cancer 2013; 13: 371.
[http://dx.doi.org/10.1186/1471-2407-13-371] [PMID: 23915344]
[266]
Scheuermann JC, de Ayala Alonso AG, Oktaba K, et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 2010; 465(7295): 243-7.
[http://dx.doi.org/10.1038/nature08966] [PMID: 20436459]
[267]
Landreville S, Agapova OA, Matatall KA, et al. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma. Clin Cancer Res 2012; 18(2): 408-16.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0946] [PMID: 22038994]
[268]
Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 2006; 6(11): 846-56.
[http://dx.doi.org/10.1038/nrc1991] [PMID: 17060944]
[269]
Gil J, O’Loghlen A. PRC1 complex diversity: where is it taking us? Trends Cell Biol 2014; 24(11): 632-41.
[http://dx.doi.org/10.1016/j.tcb.2014.06.005] [PMID: 25065329]
[270]
He M, Chaurushiya MS, Webster JD, et al. Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. Science 2019; 364(6437): 283-5.
[PMID: 31000662]
[271]
Yu F-X, Luo J, Mo J-S, et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 2014; 25(6): 822-30.
[http://dx.doi.org/10.1016/j.ccr.2014.04.017] [PMID: 24882516]
[272]
Feng X, Degese MS, Iglesias-Bartolome R, et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 2014; 25(6): 831-45.
[http://dx.doi.org/10.1016/j.ccr.2014.04.016] [PMID: 24882515]
[273]
Feng X, Arang N, Rigiracciolo DC, et al. A platform of synthetic lethal gene interaction networks reveals that the GNAQ uveal melanoma oncogene controls the hippo pathway through FAK. Cancer Cell 2019; 35(3): 457-472.e5.
[http://dx.doi.org/10.1016/j.ccell.2019.01.009] [PMID: 30773340]
[274]
Sorrentino G, Ruggeri N, Specchia V, et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol 2014; 16(4): 357-66.
[http://dx.doi.org/10.1038/ncb2936] [PMID: 24658687]
[275]
Valsecchi ME, Orloff M, Sato R, et al. Adjuvant sunitinib in high-risk patients with uveal melanoma: comparison with institutional controls. Ophthalmology 2018; 125(2): 210-7.
[http://dx.doi.org/10.1016/j.ophtha.2017.08.017] [PMID: 28935400]
[276]
Yoo JH, Shi DS, Grossmann AH, Sorensen LK, Tong Z, Mleynek TM, et al. ARF6 Is an Actionable Node that Orchestrates Oncogenic GNAQ Signaling in Uveal Melanoma. Cancer Cell 2016; 29(6): 889-904.
[http://dx.doi.org/10.1016/j.ccell.2016.04.015]
[277]
Alsafadi S, Houy A, Battistella A, et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat Commun 2016; 7: 10615.
[http://dx.doi.org/10.1038/ncomms10615] [PMID: 26842708]
[278]
Demicheli R, Fornili M, Biganzoli E. Bimodal mortality dynamics for uveal melanoma: a cue for metastasis development traits? BMC Cancer 2014; 14: 392.
[http://dx.doi.org/10.1186/1471-2407-14-392] [PMID: 24890689]
[279]
Epping MT, Wang L, Edel MJ, Carlée L, Hernandez M, Bernards R. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell 2005; 122(6): 835-47.
[http://dx.doi.org/10.1016/j.cell.2005.07.003] [PMID: 16179254]
[280]
Tsai KK, Bollin KB, Patel SP. Obstacles to improving outcomes in the treatment of uveal melanoma. Cancer 2018; 124(13): 2693-703.
[http://dx.doi.org/10.1002/cncr.31284] [PMID: 29579316]
[281]
Furney SJ, Pedersen M, Gentien D, et al. SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discov 2013; 3(10): 1122-9.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0330] [PMID: 23861464]
[282]
Niederkorn JY. Ocular immune privilege and ocular melanoma: parallel universes or immunological plagiarism? Front Immunol 2012; 3: 148.
[http://dx.doi.org/10.3389/fimmu.2012.00148] [PMID: 22707951]
[283]
Tumeh PC, Hellmann MD, Hamid O, et al. Liver Metastasis and Treatment Outcome with Anti-PD-1 Monoclonal Antibody in Patients with Melanoma and NSCLC. Cancer Immunol Res 2017; 5(5): 417-24.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0325] [PMID: 28411193]
[284]
Rothermel LD, Sabesan AC, Stephens DJ, et al. Identification of an immunogenic subset of metastatic uveal melanoma. Clin Cancer Res 2016; 22(9): 2237-49.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2294] [PMID: 26712692]
[285]
Qin Y, Petaccia de Macedo M, Reuben A, et al. Parallel profiling of immune infiltrate subsets in uveal melanoma versus cutaneous melanoma unveils similarities and differences: A pilot study. OncoImmunology 2017; 6(6)e1321187
[http://dx.doi.org/10.1080/2162402X.2017.1321187] [PMID: 28680759]
[286]
Zoroquiain P, Esposito E, Logan P, Aldrees S, Dias AB, Mansure JJ, et al. Programmed cell death ligand-1 expression in tumor and immune cells is associated with better patient outcome and decreased tumor-infiltrating lymphocytes in uveal melanoma. Mod Pathol Off J U S Can Acad Pathol Inc 2018.
[http://dx.doi.org/10.1038/s41379-018-0043-5]
[287]
Harbour JW, Wilson D, Finger PT, Worley LA, Onken MD. Gene expressing profiling of iris melanomas. Ophthalmology 120(1)2013.
[http://dx.doi.org/10.1016/j.ophtha.2012.08.016]
[288]
Shields CL, Furuta M, Thangappan A, et al. Metastasis of uveal melanoma millimeter-by-millimeter in 8033 consecutive eyes. Arch Ophthalmol 2009; 127(8): 989-98.
[http://dx.doi.org/10.1001/archophthalmol.2009.208] [PMID: 19667335]
[289]
Scholz SL, Möller I, Reis H, et al. Frequent GNAQ, GNA11, and EIF1AX Mutations in Iris Melanoma. Invest Ophthalmol Vis Sci 2017; 58(9): 3464-70.
[http://dx.doi.org/10.1167/iovs.17-21838] [PMID: 28700778]
[290]
Shain AH, Bagger MM, Yu R, et al. The genetic evolution of metastatic uveal melanoma. Nat Genet 2019; 51(7): 1123-30.
[http://dx.doi.org/10.1038/s41588-019-0440-9] [PMID: 31253977]
[291]
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science 2013; 339(6127): 1546-58.
[http://dx.doi.org/10.1126/science.1235122] [PMID: 23539594]
[292]
Reiter JG, Makohon-Moore AP, Gerold JM, Heyde A, Attiyeh MA, Kohutek ZA, et al. Minimal functional driver gene heterogeneity among untreated metastases. Science 2018; 1033-7.
[http://dx.doi.org/10.1126/science.aat7171]
[293]
Afshar AR, Damato BE, Stewart JM, et al. Next-generation sequencing of uveal melanoma for detection of genetic alterations predicting metastasis. Transl Vis Sci Technol 2019; 8(2): 18.
[http://dx.doi.org/10.1167/tvst.8.2.18] [PMID: 31024753]
[294]
Patel SP, Glitza IC, Diab A, et al. The safety and early efficacy of high-dose ipilimumab (IPI) and the combination nivolumab plus ipilimumab (NIVO + IPI) in patients (pts) with uveal melanoma (UM). J Clin Oncol [Internet] 2017 May 30 [cited 2018 Apr 19]; Available from: http://ascopubs.org/doi/abs/10.1200/JCO.2017.35.15_suppl.9554.
[295]
Fountain E, Bassett RL, Cain S, et al. Adjuvant Ipilimumab in High-Risk Uveal Melanoma. Cancers (Basel) 2019; 11(2)E152
[http://dx.doi.org/10.3390/cancers11020152] [PMID: 30699934]
[296]
Cockerham GC, Hidayat AA, Bijwaard KE, Sheng ZM. Re-evaluation of “reactive lymphoid hyperplasia of the uvea”: an immunohistochemical and molecular analysis of 10 cases. Ophthalmology 2000; 107(1): 151-8.
[http://dx.doi.org/10.1016/S0161-6420(99)00025-1] [PMID: 10647734]
[297]
Coupland SE, Foss H-D, Hidayat AA, Cockerham GC, Hummel M, Stein H. Extranodal marginal zone B cell lymphomas of the uvea: an analysis of 13 cases. J Pathol 2002; 197(3): 333-40.
[http://dx.doi.org/10.1002/path.1130] [PMID: 12115879]
[298]
Mashayekhi A, Shukla SY, Shields JA, Shields CL. Choroidal lymphoma: clinical features and association with systemic lymphoma. Ophthalmology 2014; 121(1): 342-51.
[http://dx.doi.org/10.1016/j.ophtha.2013.06.046] [PMID: 23978622]
[299]
Aronow ME, Portell CA, Sweetenham JW, Singh AD. Uveal lymphoma: clinical features, diagnostic studies, treatment selection, and outcomes. Ophthalmology 2014; 121(1): 334-41.
[http://dx.doi.org/10.1016/j.ophtha.2013.09.004] [PMID: 24144449]
[300]
Fuller ML, Sweetenham J, Schoenfield L, Singh AD. Uveal lymphoma: a variant of ocular adnexal lymphoma. Leuk Lymphoma 2008; 49(12): 2393-7.
[http://dx.doi.org/10.1080/10428190802517781] [PMID: 19052995]
[301]
Mashayekhi A, Shields CL, Shields JA. Iris involvement by lymphoma: a review of 13 cases. Clin Exp Ophthalmol 2013; 41(1): 19-26.
[http://dx.doi.org/10.1111/j.1442-9071.2012.02811.x] [PMID: 22594613]
[302]
Chin KJ, Kempin S, Milman T, Finger PT. Ocular manifestations of multiple myeloma: three cases and a review of the literature. Optometry 2011; 82(4): 224-30.
[http://dx.doi.org/10.1016/j.optm.2010.10.009] [PMID: 21193351]
[303]
Honavar SG, Shields JA, Shields CL, Demirci H, Ehya H. Extramedullary plasmacytoma confined to the choroid. Am J Ophthalmol 2001; 131(2): 277-8.
[http://dx.doi.org/10.1016/S0002-9394(00)00706-6] [PMID: 11228316]
[304]
Ahn ES, Singh AD, Smith SD. Mantle cell lymphoma with uveal metastasis. Leuk Lymphoma 2010; 51(7): 1354-5.
[http://dx.doi.org/10.3109/10428194.2010.486093] [PMID: 20496990]
[305]
Reid JP, Puglis CL, Slagle WS. Intraocular mantle cell lymphoma of the iris. Optom Vis Sci 2014; 91(4)(Suppl. 1): S25-9.
[http://dx.doi.org/10.1097/OPX.0000000000000218] [PMID: 24637484]
[306]
Konstantinidis L, Rospond-Kubiak I, Zeolite I, et al. Management of patients with uveal metastases at the Liverpool Ocular Oncology Centre. Br J Ophthalmol 2014; 98(1): 92-8.
[http://dx.doi.org/10.1136/bjophthalmol-2013-303519] [PMID: 24169654]
[307]
Konstantinidis L, Damato B. Intraocular Metastases--A Review. Asia Pac J Ophthalmol (Phila) 2017; 6(2): 208-14.
[PMID: 28399345]
[308]
Shields CL, Shields JA, Gross NE, Schwartz GP, Lally SE. Survey of 520 eyes with uveal metastases. Ophthalmology 1997; 104(8): 1265-76.
[http://dx.doi.org/10.1016/S0161-6420(97)30148-1] [PMID: 9261313]
[309]
Shields JA, Shields CL, Ehya H, Eagle RC Jr, De Potter P. Fine-needle aspiration biopsy of suspected intraocular tumors. The 1992 Urwick Lecture. Ophthalmology 1993; 100(11): 1677-84.
[http://dx.doi.org/10.1016/S0161-6420(93)31418-1] [PMID: 8233394]
[310]
Shields JA, Shields CL, Scartozzi R. Survey of 1264 patients with orbital tumors and simulating lesions: The 2002 Montgomery Lecture, part 1. Ophthalmology 2004; 111(5): 997-1008.
[http://dx.doi.org/10.1016/j.ophtha.2003.01.002] [PMID: 15121380]
[311]
Xu XL, Li B, Sun XL, et al. Eyelid neoplasms in the Beijing Tongren Eye Centre between 1997 and 2006. Ophthalmic Surg Lasers Imaging 2008; 39(5): 367-72.
[http://dx.doi.org/10.3928/15428877-20080901-18] [PMID: 18831417]
[312]
Deprez M, Uffer S. Clinicopathological features of eyelid skin tumors. A retrospective study of 5504 cases and review of literature. Am J Dermatopathol 2009; 31(3): 256-62.
[http://dx.doi.org/10.1097/DAD.0b013e3181961861] [PMID: 19384066]
[313]
Yu S-S, Zhao Y, Zhao H, Lin J-Y, Tang X. A retrospective study of 2228 cases with eyelid tumors. Int J Ophthalmol 2018; 11(11): 1835-41.
[PMID: 30450316]
[314]
Dasgupta T, Wilson LD, Yu JB. A retrospective review of 1349 cases of sebaceous carcinoma. Cancer 2009; 115(1): 158-65.
[http://dx.doi.org/10.1002/cncr.23952] [PMID: 18988294]
[315]
Song A, Carter KD, Syed NA, Song J, Nerad JA. Sebaceous cell carcinoma of the ocular adnexa: clinical presentations, histopathology, and outcomes. Ophthal Plast Reconstr Surg 2008; 24(3): 194-200.
[http://dx.doi.org/10.1097/IOP.0b013e31816d925f] [PMID: 18520834]
[316]
Shields JA, Saktanasate J, Lally SE, Carrasco JR, Shields CL. Sebaceous Carcinoma of the Ocular Region: The 2014 Professor Winifred Mao Lecture. Asia Pac J Ophthalmol (Phila) 2015; 4(4): 221-7.
[http://dx.doi.org/10.1097/APO.0000000000000105] [PMID: 26147013]
[317]
North JP, Golovato J, Vaske CJ, et al. Cell of origin and mutation pattern define three clinically distinct classes of sebaceous carcinoma. Nat Commun 2018; 9(1): 1894.
[http://dx.doi.org/10.1038/s41467-018-04008-y] [PMID: 29760388]
[318]
Tetzlaff MT, Curry JL, Ning J, et al. Distinct biological types of ocular adnexal sebaceous carcinoma: HPV-driven and virus-negative tumors arise through nonoverlapping molecular-genetic alterations. Clin Cancer Res 2019; 25(4): 1280-90.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1688] [PMID: 30420449]
[319]
Kohlmann W, Gruber SB. Lynch SyndromeGeneReviews® Seattle, WA. University of Washington: Seattle 1993.http://www.ncbi.nlm.nih.gov/books/NBK1211/ [Internet] [cited 2018 Feb 19].
[320]
Mangold E, Pagenstecher C, Leister M, et al. A genotype-phenotype correlation in HNPCC: strong predominance of msh2 mutations in 41 patients with Muir-Torre syndrome. J Med Genet 2004; 41(7): 567-72.
[http://dx.doi.org/10.1136/jmg.2003.012997] [PMID: 15235030]
[321]
South CD, Hampel H, Comeras I, Westman JA, Frankel WL, de la Chapelle A. The frequency of Muir-Torre syndrome among Lynch syndrome families. J Natl Cancer Inst 2008; 100(4): 277-81.
[http://dx.doi.org/10.1093/jnci/djm291] [PMID: 18270343]
[322]
Roberts ME, Riegert-Johnson DL, Thomas BC, et al. A clinical scoring system to identify patients with sebaceous neoplasms at risk for the Muir-Torre variant of Lynch syndrome. Genet Med 2014; 16(9): 711-6.
[http://dx.doi.org/10.1038/gim.2014.19] [PMID: 24603434]
[323]
Lamba AR, Moore AY, Moore T, Rhees J, Arnold MA, Boland CR. Defective DNA mismatch repair activity is common in sebaceous neoplasms, and may be an ineffective approach to screen for Lynch syndrome. Fam Cancer 2015; 14(2): 259-64.
[http://dx.doi.org/10.1007/s10689-015-9782-3] [PMID: 25637498]
[324]
Jessup CJ, Redston M, Tilton E, Reimann JDR. Importance of universal mismatch repair protein immunohistochemistry in patients with sebaceous neoplasia as an initial screening tool for Muir-Torre syndrome. Hum Pathol 2016; 49: 1-9.
[http://dx.doi.org/10.1016/j.humpath.2015.10.005] [PMID: 26826402]
[325]
Everett JN, Raymond VM, Dandapani M, et al. Screening for germline mismatch repair mutations following diagnosis of sebaceous neoplasm. JAMA Dermatol 2014; 150(12): 1315-21.
[http://dx.doi.org/10.1001/jamadermatol.2014.1217] [PMID: 25006859]
[326]
Mojtahed A, Schrijver I, Ford JM, Longacre TA, Pai RK. A two-antibody mismatch repair protein immunohistochemistry screening approach for colorectal carcinomas, skin sebaceous tumors, and gynecologic tract carcinomas. Mod Pathol 2011; 24(7): 1004-14.
[http://dx.doi.org/10.1038/modpathol.2011.55] [PMID: 21499234]
[327]
Mulay K, Shah SJ, Aggarwal E, White VA, Honavar SG. Periocular sebaceous gland carcinoma: do androgen receptor (NR3C4) and nuclear survivin (BIRC5) have a prognostic significance? Acta Ophthalmol 2014; 92(8): e681-7.
[http://dx.doi.org/10.1111/aos.12466] [PMID: 24930483]
[328]
Na HY, Choe J-Y, Shin SA, et al. Proposal of a provisional classification of sebaceous carcinoma based on hormone receptor expression and HER2 status. Am J Surg Pathol 2016; 40(12): 1622-30.
[http://dx.doi.org/10.1097/PAS.0000000000000728] [PMID: 27631512]
[329]
Hasebe T, Mukai K, Yamaguchi N, et al. Prognostic value of immunohistochemical staining for proliferating cell nuclear antigen, p53, and c-erbB-2 in sebaceous gland carcinoma and sweat gland carcinoma: comparison with histopathological parameter. Mod Pathol 1994; 7(1): 37-43.
[PMID: 7909154]
[330]
Bhardwaj M, Sen S, Sharma A, et al. ZEB2/SIP1 as novel prognostic indicator in eyelid sebaceous gland carcinoma. Hum Pathol 2015; 46(10): 1437-42.
[http://dx.doi.org/10.1016/j.humpath.2015.05.026] [PMID: 26220160]
[331]
Kim N, Choung H-K, Lee MJ, Khwarg SI, Kim JE. Cancer stem cell markers in eyelid sebaceous gland carcinoma: high expression of ALDH1, CD133, and ABCG2 correlates with poor prognosis. Invest Ophthalmol Vis Sci 2015; 56(3): 1813-9.
[http://dx.doi.org/10.1167/iovs.14-15547] [PMID: 25711631]
[332]
Jayaraj P, Sen S, Dhanaraj PS, Jhajhria R, Singh S, Singh VK. Immunohistochemical expression of X-linked inhibitor of apoptosis in eyelid sebaceous gland carcinoma predicts a worse prognosis. Indian J Ophthalmol 2017; 65(11): 1109-13.
[http://dx.doi.org/10.4103/ijo.IJO_399_17] [PMID: 29133634]
[333]
Jayaraj P, Sen S, Rangarajan S, et al. Immunohistochemical evaluation of stress-responsive protein sestrin2 and its correlation with p53 mutational status in eyelid sebaceous gland carcinoma. Br J Ophthalmol 2018; 102(6): 848-54.
[http://dx.doi.org/10.1136/bjophthalmol-2017-311283] [PMID: 29478030]
[334]
Bhardwaj M, Sen S, Chosdol K, et al. Vimentin overexpression as a novel poor prognostic biomarker in eyelid sebaceous gland carcinoma. Br J Ophthalmol 2019; pii: bjophthalmol. 2018-313285.
[http://dx.doi.org/10.1136/bjophthalmol-2018-313285] [PMID: 30940620]
[335]
Cho KJ, Khang SK, Koh JS, Chung JH, Lee SS. Sebaceous carcinoma of the eyelids: frequent expression of c-erbB-2 oncoprotein. J Korean Med Sci 2000; 15(5): 545-50.
[http://dx.doi.org/10.3346/jkms.2000.15.5.545] [PMID: 11068992]
[336]
Kwon MJ, Shin HS, Nam ES, et al. Comparison of HER2 gene amplification and KRAS alteration in eyelid sebaceous carcinomas with that in other eyelid tumors. Pathol Res Pract 2015; 211(5): 349-55.
[http://dx.doi.org/10.1016/j.prp.2014.10.006] [PMID: 25468813]
[337]
Bhardwaj M, Sen S, Chosdol K, et al. miRNA-200c and miRNA-141 as potential prognostic biomarkers and regulators of epithelial-mesenchymal transition in eyelid sebaceous gland carcinoma. Br J Ophthalmol 2017; 101(4): 536-42.
[http://dx.doi.org/10.1136/bjophthalmol-2016-309460] [PMID: 28119291]
[338]
Bladen JC, Wang J, Sangaralingam A, et al. MicroRNA and transcriptome analysis in periocular Sebaceous Gland Carcinoma. Sci Rep 2018; 8(1): 7531.
[http://dx.doi.org/10.1038/s41598-018-25900-z] [PMID: 29760516]
[339]
Bladen JC, Moosajee M, Tracey-White D, Beaconsfield M, O’Toole EA, Philpott MP. Analysis of hedgehog signaling in periocular sebaceous carcinoma. Graefes Arch Clin Exp Ophthalmol 2018; 256(4): 853-60.
[http://dx.doi.org/10.1007/s00417-018-3900-5] [PMID: 29423837]
[340]
LoRusso PM, Rudin CM, Reddy JC, et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res 2011; 17(8): 2502-11.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2745] [PMID: 21300762]
[341]
Demirci H, Worden F, Nelson CC, Elner VM, Kahana A. Efficacy of Vismodegib (Erivedge) for Basal Cell Carcinoma Involving the Orbit and Periocular Area. Ophthal Plast Reconstr Surg 2015; 31(6): 463-6.
[http://dx.doi.org/10.1097/IOP.0000000000000388] [PMID: 25675162]
[342]
Ally MS, Aasi S, Wysong A, et al. An investigator-initiated open-label clinical trial of vismodegib as a neoadjuvant to surgery for high-risk basal cell carcinoma. J Am Acad Dermatol 2014; 71(5): 904-911.e1.
[http://dx.doi.org/10.1016/j.jaad.2014.05.020] [PMID: 24929884]
[343]
Queiroz KCS, Spek CA, Peppelenbosch MP. Targeting Hedgehog signaling and understanding refractory response to treatment with Hedgehog pathway inhibitors. Drug Resist Updat 2012; 15(4): 211-22.
[http://dx.doi.org/10.1016/j.drup.2012.05.002] [PMID: 22910179]
[344]
Latuske E-M, Stamm H, Klokow M, et al. Combined inhibition of GLI and FLT3 signaling leads to effective anti-leukemic effects in human acute myeloid leukemia. Oncotarget 2017; 8(17): 29187-201.
[http://dx.doi.org/10.18632/oncotarget.16304] [PMID: 28418873]
[345]
Xu S, Yu H, Fu G, Fan X, Jia R. Programmed death receptor Ligand 1 expression in eyelid sebaceous carcinoma: a consecutive case series of 41 patients. Acta Ophthalmol 2019; 97(3): e390-6.
[http://dx.doi.org/10.1111/aos.13833] [PMID: 29862664]
[346]
Hindsø TG, Esmaeli B, Holm F, et al. International multicentre retrospective cohort study of ocular adnexal marginal zone B-cell lymphoma. Br J Ophthalmol 2019.bjophthalmol-2019-314008.
[http://dx.doi.org/10.1136/bjophthalmol-2019-314008] [PMID: 31177189]
[347]
Rasmussen PK, Coupland SE, Finger PT, et al. Ocular adnexal follicular lymphoma: a multicenter international study. JAMA Ophthalmol 2014; 132(7): 851-8.
[http://dx.doi.org/10.1001/jamaophthalmol.2014.376] [PMID: 24763920]
[348]
Kishimoto W, Nishikori M. Molecular pathogenesis of follicular lymphoma. J Clin Exp Hematop 2014; 54(1): 23-30.
[http://dx.doi.org/10.3960/jslrt.54.23] [PMID: 24942943]
[349]
Jaffe ES, Harris NL, Siebert R. Paediatric-type follicular lymphomaWHO classification of tumours of haematopoietic and lymphoid tissues Revised 4th IARC Lyon. 2017; pp. 278-9.
[350]
Shields JA, Shields CL. Rhabdomyosarcoma: review for the ophthalmologist. Surv Ophthalmol 2003; 48(1): 39-57.
[http://dx.doi.org/10.1016/S0039-6257(02)00415-0] [PMID: 12559326]
[351]
Soleimani VD, Rudnicki MA. New insights into the origin and the genetic basis of rhabdomyosarcomas. Cancer Cell 2011; 19(2): 157-9.
[http://dx.doi.org/10.1016/j.ccr.2011.01.044] [PMID: 21316595]
[352]
Jurdy L, Merks JHM, Pieters BR, et al. Orbital rhabdomyosarcomas: A review. Saudi J Ophthalmol 2013; 27(3): 167-75.
[http://dx.doi.org/10.1016/j.sjopt.2013.06.004] [PMID: 24227982]
[353]
Ladanyi M, Fletcher JA, Dal Cin P. Cytogenetic and Molecular Genetic Pathology of Soft Tissue Tumors. In: Enzinger and Weiss’s soft tissue tumors 6th ed Saunders/Elsevier 6th ed Philadelphia, PA. 2014; pp. 76-109.
[354]
Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, Eds. WHO classification of tumours of soft tissueWHO classification of tumours of soft tissue and bone. 4th ed. Lyon: IARC 2013; pp. 9-11.
[355]
Kodet R, Newton WA Jr, Hamoudi AB, Asmar L, Wharam MD, Maurer HM. Orbital rhabdomyosarcomas and related tumors in childhood: relationship of morphology to prognosis--an Intergroup Rhabdomyosarcoma study. Med Pediatr Oncol 1997; 29(1): 51-60.
[http://dx.doi.org/10.1002/(SICI)1096-911X(199707)29:1<51:AID-MPO10>3.0.CO;2-7] [PMID: 9142207]
[356]
Yang L, Takimoto T, Fujimoto J. Prognostic model for predicting overall survival in children and adolescents with rhabdomyosarcoma. BMC Cancer 2014; 14: 654.
[http://dx.doi.org/10.1186/1471-2407-14-654] [PMID: 25189734]
[357]
Missiaglia E, Selfe J, Hamdi M, et al. Genomic imbalances in rhabdomyosarcoma cell lines affect expression of genes frequently altered in primary tumors: an approach to identify candidate genes involved in tumor development. Genes Chromosomes Cancer 2009; 48(6): 455-67.
[http://dx.doi.org/10.1002/gcc.20655] [PMID: 19235922]
[358]
Hosoi H, Kakazu N, Konishi E, et al. A novel PAX3 rearrangement in embryonal rhabdomyosarcoma. Cancer Genet Cytogenet 2009; 189(2): 98-104.
[http://dx.doi.org/10.1016/j.cancergencyto.2008.10.016] [PMID: 19215790]
[359]
Davicioni E, Anderson MJ, Finckenstein FG, et al. Molecular classification of rhabdomyosarcoma--genotypic and phenotypic determinants of diagnosis: a report from the Children’s Oncology Group. Am J Pathol 2009; 174(2): 550-64.
[http://dx.doi.org/10.2353/ajpath.2009.080631] [PMID: 19147825]
[360]
Shern JF, Chen L, Chmielecki J, et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov 2014; 4(2): 216-31.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0639] [PMID: 24436047]
[361]
Shukla N, Ameur N, Yilmaz I, et al. Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin Cancer Res 2012; 18(3): 748-57.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2056] [PMID: 22142829]
[362]
Martinelli S, McDowell HP, Vigne SD, et al. RAS signaling dysregulation in human embryonal Rhabdomyosarcoma. Genes Chromosomes Cancer 2009; 48(11): 975-82.
[http://dx.doi.org/10.1002/gcc.20702] [PMID: 19681119]
[363]
Paulson V, Chandler G, Rakheja D, et al. High-resolution array CGH identifies common mechanisms that drive embryonal rhabdomyosarcoma pathogenesis. Genes Chromosomes Cancer 2011; 50(6): 397-408.
[http://dx.doi.org/10.1002/gcc.20864] [PMID: 21412928]
[364]
Rudzinski ER, Teot LA, Anderson JR, et al. Dense pattern of embryonal rhabdomyosarcoma, a lesion easily confused with alveolar rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. Am J Clin Pathol 2013; 140(1): 82-90.
[http://dx.doi.org/10.1309/AJCPA1WN7ARPCMKQ] [PMID: 23765537]
[365]
Arnold MA, Anderson JR, Gastier-Foster JM, et al. Histology, fusion status, and outcome in alveolar rhabdomyosarcoma with low-risk clinical features: A report from the children’s oncology group. Pediatr Blood Cancer 2016; 63(4): 634-9.
[http://dx.doi.org/10.1002/pbc.25862] [PMID: 26756883]
[366]
Duan F, Smith LM, Gustafson DM, et al. Genomic and clinical analysis of fusion gene amplification in rhabdomyosarcoma: a report from the Children’s Oncology Group. Genes Chromosomes Cancer 2012; 51(7): 662-74.
[http://dx.doi.org/10.1002/gcc.21953] [PMID: 22447499]
[367]
Skapek SX, Anderson J, Barr FG, et al. PAX-FOXO1 fusion status drives unfavorable outcome for children with rhabdomyosarcoma: a children’s oncology group report. Pediatr Blood Cancer 2013; 60(9): 1411-7.
[http://dx.doi.org/10.1002/pbc.24532] [PMID: 23526739]
[368]
Williamson D, Missiaglia E, de Reyniès A, et al. Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol 2010; 28(13): 2151-8.
[http://dx.doi.org/10.1200/JCO.2009.26.3814] [PMID: 20351326]
[369]
Hingorani P, Missiaglia E, Shipley J, et al. Clinical application of prognostic gene expression signature in fusion gene-negative rhabdomyosarcoma: A report from the children’s oncology group. Clin Cancer Res 2015; 21(20): 4733-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3326] [PMID: 26473193]
[370]
Rudzinski ER, Anderson JR, Lyden ER, et al. Myogenin, AP2β, NOS-1, and HMGA2 are surrogate markers of fusion status in rhabdomyosarcoma: a report from the soft tissue sarcoma committee of the children’s oncology group. Am J Surg Pathol 2014; 38(5): 654-9.
[http://dx.doi.org/10.1097/PAS.0000000000000195] [PMID: 24618610]
[371]
Mosquera JM, Sboner A, Zhang L, et al. Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer 2013; 52(6): 538-50.
[http://dx.doi.org/10.1002/gcc.22050] [PMID: 23463663]
[372]
Alaggio R, Zhang L, Sung Y-S, et al. A Molecular Study of Pediatric Spindle and Sclerosing Rhabdomyosarcoma: Identification of Novel and Recurrent VGLL2-related Fusions in Infantile Cases. Am J Surg Pathol 2016; 40(2): 224-35.
[http://dx.doi.org/10.1097/PAS.0000000000000538] [PMID: 26501226]
[373]
Szuhai K, de Jong D, Leung WY, Fletcher CDM, Hogendoorn PCW. Transactivating mutation of the MYOD1 gene is a frequent event in adult spindle cell rhabdomyosarcoma. J Pathol 2014; 232(3): 300-7.
[http://dx.doi.org/10.1002/path.4307] [PMID: 24272621]
[374]
Agaram NP, Chen C-L, Zhang L, LaQuaglia MP, Wexler L, Antonescu CR. Recurrent MYOD1 mutations in pediatric and adult sclerosing and spindle cell rhabdomyosarcomas: evidence for a common pathogenesis. Genes Chromosomes Cancer 2014; 53(9): 779-87.
[http://dx.doi.org/10.1002/gcc.22187] [PMID: 24824843]
[375]
Agaram NP, LaQuaglia MP, Alaggio R, et al. MYOD1-mutant spindle cell and sclerosing rhabdomyosarcoma: an aggressive subtype irrespective of age. A reappraisal for molecular classification and risk stratification. Mod Pathol 2019; 32(1): 27-36.
[http://dx.doi.org/10.1038/s41379-018-0120-9] [PMID: 30181563]
[376]
Kohsaka S, Shukla N, Ameur N, et al. A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nat Genet 2014; 46(6): 595-600.
[http://dx.doi.org/10.1038/ng.2969] [PMID: 24793135]
[377]
Stewart E, McEvoy J, Wang H, et al. Identification of Therapeutic Targets in Rhabdomyo-sarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell 2018; 34(3): 411-26.
[http://dx.doi.org/10.1016/j.ccell.2018.07.012] [PMID: 30146332]
[378]
Pal A, Chiu HY, Taneja R. Genetics, epigenetics and redox homeostasis in rhabdomyosarcoma: Emerging targets and therapeutics. Redox Biol 2019; 25101124
[http://dx.doi.org/10.1016/j.redox.2019.101124] [PMID: 30709791]
[379]
Skapek SX, Ferrari A, Gupta AA, et al. Rhabdomyosarcoma. Nat Rev Dis Primers 2019; 5(1): 1.
[http://dx.doi.org/10.1038/s41572-018-0051-2] [PMID: 30617281]
[380]
Krawczyk MA, Styczewska M, Sokolewicz EM, Kunc M, Gabrych A, Fatyga A, et al. Tumour expressions of hypoxic markers predict the response to neo-adjuvant chemotherapy in children with inoperable rhabdomyosarcoma. Biomarkers 2019; 24(6): 538-48.
[http://dx.doi.org/10.1080/1354750X.2019.1606275] [PMID: 30995126]
[381]
Parke Ii DW, Lum F, Rich WL. The IRIS® Registry: Purpose and perspectives. Ophthalmologe 2017; 114(Suppl. 1): 1-6.
[http://dx.doi.org/10.1007/s00347-016-0265-1] [PMID: 27306823]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy