Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

A Mini-review of the Genomes and Allergens of Mites and Ticks

Author(s): Qing Xiong, Angel Tsz Yau Wan and Stephen Kwok-Wing Tsui*

Volume 21, Issue 2, 2020

Page: [114 - 123] Pages: 10

DOI: 10.2174/1389203720666190719150432

Price: $65

Abstract

Mites and ticks are associated with many human diseases including allergic diseases and scabies. With the recent advances in the high throughput DNA sequencing technology, many mitochondrial nuclear genomes of these species have been sequenced and the resulting genomic resources will certainly provide novel insights for the future investigation of the functionally important proteins and peptides in these species. In this mini-review, the current situation of mite and tick genomes is described and the future perspectives for the application of the genomic resources are discussed, especially including the novel identification and structural analysis of allergens.

Keywords: Mites and ticks, allergic disease, genome, transcriptome, identification of allergen, DNA sequencing.

Graphical Abstract

[1]
Hanrahan, S.J.; Johnston, J.S. New genome size estimates of 134 species of arthropods. Chromosome Res., 2011, 19(6), 809-823.
[http://dx.doi.org/10.1007/s10577-011-9231-6] [PMID: 21877225]
[2]
Liu, X.Y.; Yang, K.Y.; Wang, M.Q.; Kwok, J.S.L.; Zeng, X.; Yang, Z.; Xiao, X.J.; Lau, C.P.Y.; Li, Y.; Huang, Z.M.; Ba, J.G.; Yim, A.K.Y.; Ouyang, C.Y.; Ngai, S.M.; Chan, T.F.; Leung, E.L.H.; Liu, L.; Liu, Z.G.; Tsui, S.K.W. High-quality assembly of Dermatophagoides pteronyssinus genome and transcriptome reveals a wide range of novel allergens. J. Allergy Clin. Immunol., 2018, 141(6), 2268-2271.e8.
[http://dx.doi.org/10.1016/j.jaci.2017.11.038] [PMID: 29305317]
[3]
Rider, S.D., Jr; Morgan, M.S.; Arlian, L.G. Allergen homologs in the Euroglyphus maynei draft genome. PLoS One, 2017, 12(8)e0183535
[http://dx.doi.org/10.1371/journal.pone.0183535] [PMID: 28829832]
[4]
Rider, S.D., Jr; Morgan, M.S.; Arlian, L.G. Draft genome of the scabies mite. Parasit. Vectors, 2015, 8, 585.
[http://dx.doi.org/10.1186/s13071-015-1198-2] [PMID: 26555130]
[5]
Burgess, S.T.G.; Bartley, K.; Marr, E.J.; Wright, H.W.; Weaver, R.J.; Prickett, J.C.; Hughes, M.; Haldenby, S.; Thi Le, P.; Rombauts, S.; Van Leeuwen, T.; Van de Peer, Y.; Nisbet, A.J. Draft Genome Assembly of the Sheep Scab Mite, Psoroptes ovis. Genome Announc., 2018, 6(16), e00265-e18.
[http://dx.doi.org/10.1128/genomeA.00265-18] [PMID: 29674543]
[6]
Grbić, M.; Van Leeuwen, T.; Clark, R.M.; Rombauts, S.; Rouzé, P.; Grbić, V.; Osborne, E.J.; Dermauw, W.; Ngoc, P.C.; Ortego, F.; Hernández-Crespo, P.; Diaz, I.; Martinez, M.; Navajas, M.; Sucena, É.; Magalhães, S.; Nagy, L.; Pace, R.M.; Djuranović, S.; Smagghe, G.; Iga, M.; Christiaens, O.; Veenstra, J.A.; Ewer, J.; Villalobos, R.M.; Hutter, J.L.; Hudson, S.D.; Velez, M.; Yi, S.V.; Zeng, J.; Pires-daSilva, A.; Roch, F.; Cazaux, M.; Navarro, M.; Zhurov, V.; Acevedo, G.; Bjelica, A.; Fawcett, J.A.; Bonnet, E.; Martens, C.; Baele, G.; Wissler, L.; Sanchez-Rodriguez, A.; Tirry, L.; Blais, C.; Demeestere, K.; Henz, S.R.; Gregory, T.R.; Mathieu, J.; Verdon, L.; Farinelli, L.; Schmutz, J.; Lindquist, E.; Feyereisen, R.; Van de Peer, Y. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 2011, 479(7374), 487-492.
[http://dx.doi.org/10.1038/nature10640] [PMID: 22113690]
[7]
Dong, X.; Chaisiri, K.; Xia, D.; Armstrong, S.D.; Fang, Y.; Donnelly, M.J.; Kadowaki, T.; McGarry, J.W.; Darby, A.C.; Makepeace, B.L. Genomes of trombidid mites reveal novel predicted allergens and laterally transferred genes associated with secondary metabolism. Gigascience, 2018, 7(12)
[http://dx.doi.org/10.1093/gisascience/gjy127] [http://dx.doi.org/10.1093/gigascience/giy127] [PMID: 30445460]
[8]
Dong, X.; Armstrong, S.D.; Xia, D.; Makepeace, B.L.; Darby, A.C.; Kadowaki, T. Draft genome of the honey bee ectoparasitic mite, Tropilaelaps mercedesae, is shaped by the parasitic life history. Gigascience, 2017, 6(3), 1-17.
[http://dx.doi.org/10.1093/gigascience/gix008] [PMID: 28327890]
[9]
Hoy, M.A.; Waterhouse, R.M.; Wu, K.; Estep, A.S.; Ioannidis, P.; Palmer, W.J.; Pomerantz, A.F.; Simão, F.A.; Thomas, J.; Jiggins, F.M.; Murphy, T.D.; Pritham, E.J.; Robertson, H.M.; Zdobnov, E.M.; Gibbs, R.A.; Richards, S. Genome Sequencing of the Phytoseiid Predatory Mite Metaseiulus occidentalis Reveals Completely Atomized Hox Genes and Superdynamic Intron Evolution. Genome Biol. Evol., 2016, 8(6), 1762-1775.
[http://dx.doi.org/10.1093/gbe/evw048] [PMID: 26951779]
[10]
Burgess, S.T.G.; Bartley, K.; Nunn, F.; Wright, H.W.; Hughes, M.; Gemmell, M.; Haldenby, S.; Paterson, S.; Rombauts, S.; Tomley, F.M.; Blake, D.P.; Pritchard, J.; Schicht, S.; Strube, C.; Oines, O.; Van Leeuwen, T.; Van de Peer, Y.; Nisbet, A.J. Draft Genome Assembly of the Poultry Red Mite, Dermanyssus gallinae. Microbiol. Res. Announ., 2018, 7(18), e01221-e18.
[11]
Barrero, R.A.; Guerrero, F.D.; Black, M.; McCooke, J.; Chapman, B.; Schilkey, F.; Pérez de León, A.A.; Miller, R.J.; Bruns, S.; Dobry, J.; Mikhaylenko, G.; Stormo, K.; Bell, C.; Tao, Q.; Bogden, R.; Moolhuijzen, P.M.; Hunter, A.; Bellgard, M.I. Gene-enriched draft genome of the cattle tick Rhipicephalus microplus: assembly by the hybrid Pacific Biosciences/Illumina approach enabled analysis of the highly repetitive genome. Int. J. Parasitol., 2017, 47(9), 569-583.
[http://dx.doi.org/10.1016/j.ijpara.2017.03.007] [PMID: 28577881]
[12]
Miller, J.R.; Koren, S.; Dilley, K.A.; Harkins, D.M.; Stockwell, T.B.; Shabman, R.S.; Sutton, G.G. A draft genome sequence for the Ixodes scapularis cell line, ISE6. F1000 Res., 2018, 7, 297.
[http://dx.doi.org/10.12688/f1000research.13635.1] [PMID: 29707202]
[13]
Cramaro, W.J.; Hunewald, O.E.; Bell-Sakyi, L.; Muller, C.P. Genome scaffolding and annotation for the pathogen vector Ixodes ricinus by ultra-long single molecule sequencing. Parasit. Vectors, 2017, 10(1), 71.
[http://dx.doi.org/10.1186/s13071-017-2008-9] [PMID: 28179027]
[14]
Dermauw, W.; Van Leeuwen, T.; Vanholme, B.; Tirry, L. The complete mitochondrial genome of the house dust mite Dermatophagoides pteronyssinus (Trouessart): a novel gene arrangement among arthropods. BMC Genomics, 2009, 10, 107.
[http://dx.doi.org/10.1186/1471-2164-10-107] [PMID: 19284646]
[15]
Ueda, T.; Tarui, H.; Kido, N.; Imaizumi, K.; Hikosaka, K.; Abe, T.; Minegishi, D.; Tada, Y.; Nakagawa, M.; Tanaka, S.; Omiya, T.; Morikaku, K.; Kawahara, M.; Kikuchi-Ueda, T.; Akuta, T.; Ono, Y. The complete mitochondrial genome of Sarcoptes scabiei var. nyctereutis from the Japanese raccoon dog: Prediction and detection of two transfer RNAs (tRNA-A and tRNA-Y). Genomics, 2018, S0888-7543(18), 30414-2.
[http://dx.doi.org/10.1016/j.ygeno.2018.09.002] [PMID: 30223010]
[16]
Yuan, M.L.; Wei, D.D.; Wang, B.J.; Dou, W.; Wang, J.J. The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs. BMC Genomics, 2010, 11, 597.
[http://dx.doi.org/10.1186/1471-2164-11-597] [PMID: 20969792]
[17]
Yang, B.; Li, C. Characterization of the complete mitochondrial genome of the storage mite pest Tyrophagus longior (Gervais) (Acari: Acaridae) and comparative mitogenomic analysis of four acarid mites. Gene, 2016, 576(2 Pt 2), 807-819.
[http://dx.doi.org/10.1016/j.gene.2015.11.012] [PMID: 26584537]
[18]
Jeyaprakash, A.; Hoy, M.A. The mitochondrial genome of the predatory mite Metaseiulus occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) is unexpectedly large and contains several novel features. Gene, 2007, 391(1-2), 264-274.
[http://dx.doi.org/10.1016/j.gene.2007.01.012] [PMID: 17321074]
[19]
Dermauw, W.; Vanholme, B.; Tirry, L.; Van Leeuwen, T. Mitochondrial genome analysis of the predatory mite Phytoseiulus persimilis and a revisit of the Metaseiulus occidentalis mitochondrial genome. Genome, 2010, 53(4), 285-301.
[http://dx.doi.org/10.1139/G10-004] [PMID: 20616860]
[20]
Sun, E.T.; Li, C.P.; Nie, L.W.; Jiang, Y.X. The complete mitochondrial genome of the brown leg mite, Aleuroglyphus ovatus (Acari: Sarcoptiformes): evaluation of largest non-coding region and unique tRNAs. Exp. Appl. Acarol., 2014, 64(2), 141-157.
[http://dx.doi.org/10.1007/s10493-014-9816-9] [PMID: 24777358]
[21]
Gu, X.B.; Liu, G.H.; Song, H.Q.; Liu, T.Y.; Yang, G.Y.; Zhu, X.Q. The complete mitochondrial genome of the scab mite Psoroptes cuniculi (Arthropoda: Arachnida) provides insights into Acari phylogeny. Parasit. Vectors, 2014, 7, 340.
[http://dx.doi.org/10.1186/1756-3305-7-340] [PMID: 25052180]
[22]
Domes, K.; Maraun, M.; Scheu, S.; Cameron, S.L. The complete mitochondrial genome of the sexual oribatid mite Steganacarus magnus: genome rearrangements and loss of tRNAs. BMC Genomics, 2008, 9, 532.
[http://dx.doi.org/10.1186/1471-2164-9-532] [PMID: 18992147]
[23]
Schäffer, S.; Koblmüller, S.; Klymiuk, I.; Thallinger, G.G. The mitochondrial genome of the oribatid mite Paraleius leontonychus: new insights into tRNA evolution and phylogenetic relationships in acariform mites. Sci. Rep., 2018, 8(1), 7558.
[http://dx.doi.org/10.1038/s41598-018-25981-w] [PMID: 29765106]
[24]
Navajas, M.; Le Conte, Y.; Solignac, M.; Cros-Arteil, S.; Cornuet, J.M. The complete sequence of the mitochondrial genome of the honeybee ectoparasite mite Varroa destructor (Acari: Mesostigmata). Mol. Biol. Evol., 2002, 19(12), 2313-2317.
[http://dx.doi.org/10.1093/oxfordjournals.molbev.a004055] [PMID: 12446822]
[25]
Williams-Newkirk, A.J.; Burroughs, M.; Changayil, S.S.; Dasch, G.A. The mitochondrial genome of the lone star tick (Amblyomma americanum). Ticks Tick Borne Dis., 2015, 6(6), 793-801.
[http://dx.doi.org/10.1016/j.ttbdis.2015.07.006] [PMID: 26189992]
[26]
Burger, T.D.; Shao, R.; Barker, S.C. Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species. Mol. Phylogenet. Evol., 2014, 76, 241-253.
[http://dx.doi.org/10.1016/j.ympev.2014.03.017] [PMID: 24685498]
[27]
Liu, G.H.; Chen, F.; Chen, Y.Z.; Song, H.Q.; Lin, R.Q.; Zhou, D.H.; Zhu, X.Q. Complete mitochondrial genome sequence data provides genetic evidence that the brown dog tick Rhipicephalus sanguineus (Acari: Ixodidae) represents a species complex. Int. J. Biol. Sci., 2013, 9(4), 361-369.
[http://dx.doi.org/10.7150/ijbs.6081] [PMID: 23630448]
[28]
Van Leeuwen, T.; Dermauw, W.; Grbic, M.; Tirry, L.; Feyereisen, R. Spider mite control and resistance management: does a genome help? Pest Manag. Sci., 2013, 69(2), 156-159.
[http://dx.doi.org/10.1002/ps.3335] [PMID: 22696491]
[29]
Dermauw, W.; Osborne, E.J.; Clark, R.M.; Grbić, M.; Tirry, L.; Van Leeuwen, T. A burst of ABC genes in the genome of the polyphagous spider mite Tetranychus urticae. BMC Genomics, 2013, 14, 317.
[http://dx.doi.org/10.1186/1471-2164-14-317] [PMID: 23663308]
[30]
Ahn, S.J.; Dermauw, W.; Wybouw, N.; Heckel, D.G.; Van Leeuwen, T. Bacterial origin of a diverse family of UDP-glycosyltransferase genes in the Tetranychus urticae genome. Insect Biochem. Mol. Biol., 2014, 50, 43-57.
[http://dx.doi.org/10.1016/j.ibmb.2014.04.003] [PMID: 24727020]
[31]
Wybouw, N.; Van Leeuwen, T.; Dermauw, W. A massive incorporation of microbial genes into the genome of Tetranychus urticae, a polyphagous arthropod herbivore. Insect Mol. Biol., 2018, 27(3), 333-351.
[http://dx.doi.org/10.1111/imb.12374] [PMID: 29377385]
[32]
Chan, T.F.; Ji, K.M.; Yim, A.K.Y.; Liu, X.Y.; Zhou, J.W.; Li, R.Q.; Yang, K.Y.; Li, J.; Li, M.; Law, P.T.W.; Wu, Y.L.; Cai, Z.L.; Qin, H.; Bao, Y.; Leung, R.K.K.; Ng, P.K.S.; Zou, J.; Zhong, X.J.; Ran, P.X.; Zhong, N.S.; Liu, Z.G.; Tsui, S.K.W. The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens. J. Allergy Clin. Immunol., 2015, 135(2), 539-548.
[http://dx.doi.org/10.1016/j.jaci.2014.09.031] [PMID: 25445830]
[33]
Stewart, G.A. Studies of house dust mites can now fully embrace the “-omics” era. J. Allergy Clin. Immunol., 2015, 135(2), 549-550.
[http://dx.doi.org/10.1016/j.jaci.2014.12.934] [PMID: 25662308]
[34]
Wawrzyniak, P.; Akdis, C.A.; Finkelman, F.D.; Rothenberg, M.E. Advances and highlights in mechanisms of allergic disease in 2015. J. Allergy Clin. Immunol., 2016, 137(6), 1681-1696.
[http://dx.doi.org/10.1016/j.jaci.2016.02.010] [PMID: 27090934]
[35]
Lin, J.; Li, M.; Liu, Y.; Jiang, C.; Wu, Y.; Wang, Y.; Gao, A.; Liu, Z.; Yang, P.; Liu, X. Expression, purification and characterization of Der f 27, a new allergen from dermatophagoides farinae. Am. J. Transl. Res., 2015, 7(7), 1260-1270.
[PMID: 26328010]
[36]
Lin, J.L.; Wang, Y.Y.; Xiao, X.J.; Wu, Y.L.; Sun, B.Q.; Gao, A.J.; Liu, Z.G.; Li, J.; Yang, P.C.; Liu, X.Y. Characterization of a new subtype of allergen in dermatophagoides farinae-Der f 28. J. Thorac. Dis., 2015, 7(10), 1842-1849.
[PMID: 26623108]
[37]
Jiang, C.; Fan, X.; Li, M.; Xing, P.; Liu, X.; Wu, Y.; Zhang, M.; Yang, P.; Liu, Z. Characterization of Der f 29, a new allergen from dermatophagoides farinae. Am. J. Transl. Res., 2015, 7(7), 1303-1313.
[PMID: 26328014]
[38]
Lin, J.; Wang, H.; Li, M.; Liang, Z.; Jiang, C.; Wu, Y.; Liu, Z.; Yang, P.; Liu, X. Characterization and analysis of a cDNA coding for the group 29b (Der f 29b) allergen of Dermatophagoides farinae. Am. J. Transl. Res., 2016, 8(2), 568-577.
[PMID: 27158348]
[39]
Wang, H.; Lin, J.; Liu, X.; Liang, Z.; Yang, P.; Ran, P.; Liu, Z. Identification of α-tubulin, Der f 33, as a novel allergen from Dermatophagoides farinae. Immunobiology, 2016, 221(8), 911-917.
[http://dx.doi.org/10.1016/j.imbio.2016.03.004] [PMID: 27067709]
[40]
Waldron, R.; McGowan, J.; Gordon, N.; McCarthy, C.; Mitchell, E.B.; Doyle, S.; Fitzpatrick, D.A. Draft Genome Sequence of Dermatophagoides pteronyssinus, the European House Dust Mite. Genome Announc., 2017, 5(32), e00789-e17.
[http://dx.doi.org/10.1128/genomeA.00789-17] [PMID: 28798186]
[41]
Randall, T.A.; Mullikin, J.C.; Mueller, G.A. The Draft Genome Assembly of Dermatophagoides pteronyssinus Supports Identification of Novel Allergen Isoforms in Dermatophagoides Species. Int. Arch. Allergy Immunol., 2018, 175(3), 136-146.
[http://dx.doi.org/10.1159/000481989] [PMID: 29320781]
[42]
Engelman, D.; Kiang, K.; Chosidow, O.; McCarthy, J.; Fuller, C.; Lammie, P.; Hay, R.; Steer, A. Toward the global control of human scabies: introducing the International Alliance for the Control of Scabies. PLoS Negl. Trop. Dis., 2013, 7(8)e2167
[http://dx.doi.org/10.1371/journal.pntd.0002167] [PMID: 23951369]
[43]
Navia, D.; Novelli, V.M.; Rombauts, S.; Freitas-Astua, J.; Santos de Mendonca, R.; Nunes, M.A.; Machado, M.A.; Lin, Y.C.; Le, P.; Zhang, Z.; Grbic, M.; Wybouw, N.; Breeuwer, J.A.J.; Van Leeuwen, T.; Van de Peer, Y. Draft Genome Assembly of the False Spider Mite Brevipalpus yothersi. Microbiol. Resour. Announ., 2019, 8(6), e01563-e18.
[http://dx.doi.org/10.1128/MRA.01563-18]
[44]
Freitas-Astúa, J.; Ramos-González, P.L.; Arena, G.D.; Tassi, A.D.; Kitajima, E.W. Brevipalpus-transmitted viruses: parallelism beyond a common vector or convergent evolution of distantly related pathogens? Curr. Opin. Virol., 2018, 33, 66-73.
[http://dx.doi.org/10.1016/j.coviro.2018.07.010] [PMID: 30081359]
[45]
Sigognault Flochlay, A.; Thomas, E.; Sparagano, O. Poultry red mite (Dermanyssus gallinae) infestation: a broad impact parasitological disease that still remains a significant challenge for the egg-laying industry in Europe. Parasit. Vectors, 2017, 10(1), 357.
[http://dx.doi.org/10.1186/s13071-017-2292-4] [PMID: 28760144]
[46]
Hoy, M.A. The predatory mite Metaseiulus occidentalis: mitey small and mitey large genomes. BioEssays, 2009, 31(5), 581-590.
[http://dx.doi.org/10.1002/bies.200800175] [PMID: 19334003]
[47]
Sammataro, D.; Gerson, U.; Needham, G. Parasitic mites of honey bees: life history, implications, and impact. Annu. Rev. Entomol., 2000, 45, 519-548.
[http://dx.doi.org/10.1146/annurev.ento.45.1.519] [PMID: 10761588]
[48]
Kim, J.H.; Roh, J.Y.; Kwon, D.H.; Kim, Y.H.; Yoon, K.A.; Yoo, S.; Noh, S.J.; Park, J.; Shin, E.H.; Park, M.Y.; Lee, S.H. Estimation of the genome sizes of the chigger mites Leptotrombidium pallidum and Leptotrombidium scutellare based on quantitative PCR and k-mer analysis. Parasit. Vectors, 2014, 7, 279.
[http://dx.doi.org/10.1186/1756-3305-7-279] [PMID: 24947244]
[49]
Calderón, M.A.; Linneberg, A.; Kleine-Tebbe, J.; De Blay, F.; Hernandez Fernandez de Rojas, D.; Virchow, J.C.; Demoly, P. Respiratory allergy caused by house dust mites: What do we really know? J. Allergy Clin. Immunol., 2015, 136(1), 38-48.
[http://dx.doi.org/10.1016/j.jaci.2014.10.012] [PMID: 25457152]
[50]
Patel, S.; Meher, B.R. A review on emerging frontiers of house dust mite and cockroach allergy research. Allergol. Immunopathol. (Madr.), 2016, 44(6), 580-593.
[http://dx.doi.org/10.1016/j.aller.2015.11.001] [PMID: 26994963]
[51]
Calderón, M.A.; Kleine-Tebbe, J.; Linneberg, A.; De Blay, F.; Hernandez Fernandez de Rojas, D.; Virchow, J.C.; Demoly, P. House Dust Mite Respiratory Allergy: An Overview of Current Therapeutic Strategies. J. Allergy Clin. Immunol. Pract., 2015, 3(6), 843-855.
[http://dx.doi.org/10.1016/j.jaip.2015.06.019] [PMID: 26342746]
[52]
Fassio, F.; Guagnini, F. House dust mite-related respiratory allergies and probiotics: a narrative review. Clin. Mol. Allergy, 2018, 16, 15.
[http://dx.doi.org/10.1186/s12948-018-0092-9] [PMID: 29946225]
[53]
Miller, J.D. The Role of Dust Mites in Allergy. Clin. Rev. Allergy Immunol., 2019, 57(3), 312-329.
[http://dx.doi.org/10.1007/s12016-018-8693-0] [PMID: 29936683]
[54]
Guilleminault, L.; Viala-Gastan, C. [Blomia tropicalis: A house dust mite in the tropics]. Rev. Mal. Respir., 2017, 34(8), 791-801.[Blomia tropicalis: A house dust mite in the tropics].
[http://dx.doi.org/10.1016/j.rmr.2016.10.877] [PMID: 28502519]
[55]
Thomas, W.R. Hierarchy and molecular properties of house dust mite allergens. Altesol. Int., 2015, 6(4), 304-311.
[http://dx.doi.org/10.1016/j.alit.2015.05.004]
[56]
Thomas, W.R. IgE and T-cell responses to house dust mite allergen components. Mol. Immunol., 2018, 100, 120-125.
[http://dx.doi.org/10.1016/j.molimm.2018.03.016] [PMID: 29602574]
[57]
Mothes-Luksch, N.; Jordakieva, G.; Hinterhölzl, L.; Jensen, A.N.; Hallmann, P.K.; Kundi, M.; Jensen-Jarolim, E. Allergy diagnosis from symptoms to molecules, or from molecules to symptoms: a comparative clinical study. World Allergy Organ. J., 2018, 11(1), 22.
[http://dx.doi.org/10.1186/s40413-018-0199-y] [PMID: 30214659]
[58]
Chruszcz, M.; Pomés, A.; Glesner, J.; Vailes, L.D.; Osinski, T.; Porebski, P.J.; Majorek, K.A.; Heymann, P.W.; Platts-Mills, T.A.; Minor, W.; Chapman, M.D. Molecular determinants for antibody binding on group 1 house dust mite allergens. J. Biol. Chem., 2012, 287(10), 7388-7398.
[http://dx.doi.org/10.1074/jbc.M111.311159] [PMID: 22210776]
[59]
Osinski, T.; Pomes, A.; Majorek, K. A.; Glesner, J.; Offermann, L. R.; Vailes, L. D.; Chapman, M. D.; Minor, W.; Chruszcz, M. Structural analysis of Der p 1-antibody complexes and comparison with complexes of proteins or peptides with monoclonal antibodies. J. Immunol. (Baltimore, Md.; 1950),, 2015, 195(18), 307-16.
[60]
Chan, S.L.; Ong, S.T.; Ong, S.Y.; Chew, F.T.; Mok, Y.K. Nuclear magnetic resonance structure-based epitope mapping and modulation of dust mite group 13 allergen as a hypoallergen. J. Immunol., 2006, 176(8), 4852-4860.
[http://dx.doi.org/10.4049/jimmunol.176.8.4852]
[61]
Chruszcz, M.; Chapman, M.D.; Vailes, L.D.; Stura, E.A.; Saint-Remy, J.M.; Minor, W.; Pomés, A. Crystal structures of mite allergens Der f 1 and Der p 1 reveal differences in surface-exposed residues that may influence antibody binding. J. Mol. Biol., 2009, 386(2), 520-530.
[http://dx.doi.org/10.1016/j.jmb.2008.12.049] [PMID: 19136006]
[62]
de Halleux, S.; Stura, E.; VanderElst, L.; Carlier, V.; Jacquemin, M.; Saint-Remy, J.M. Three-dimensional structure and IgE-binding properties of mature fully active Der p 1, a clinically relevant major allergen. J. Allergy Clin. Immunol., 2006, 117(3), 571-576.
[http://dx.doi.org/10.1016/j.jaci.2005.11.032] [PMID: 16522455]
[63]
Derewenda, U.; Li, J.; Derewenda, Z.; Dauter, Z.; Mueller, G.A.; Rule, G.S.; Benjamin, D.C. The crystal structure of a major dust mite allergen Der p 2, and its biological implications. J. Mol. Biol., 2002, 318(1), 189-197.
[http://dx.doi.org/10.1016/S0022-2836(02)00027-X] [PMID: 12054778]
[64]
Ichikawa, S.; Hatanaka, H.; Yuuki, T.; Iwamoto, N.; Kojima, S.; Nishiyama, C.; Ogura, K.; Okumura, Y.; Inagaki, F. Solution structure of Der f 2, the major mite allergen for atopic diseases. J. Biol. Chem., 1998, 273(1), 356-360.
[http://dx.doi.org/10.1074/jbc.273.1.356] [PMID: 9417088]
[65]
Ichikawa, S.; Takai, T.; Inoue, T.; Yuuki, T.; Okumura, Y.; Ogura, K.; Inagaki, F.; Hatanaka, H. NMR study on the major mite allergen Der f 2: its refined tertiary structure, epitopes for monoclonal antibodies and characteristics shared by ML protein group members. J. Biochem., 2005, 137(3), 255-263.
[http://dx.doi.org/10.1093/jb/mvi039] [PMID: 15809326]
[66]
Meno, K.; Thorsted, P. B.; Ipsen, H.; Kristensen, O.; Larsen, J. N.; Spangfort, M. D.; Gajhede, M.; Lund, K. The crystal structure of recombinant proDer p 1, a major house dust mite proteolytic allergen. J. Immunol. (Baltimore, Md. : 1950),, 2005, 175(6), 3835-45.
[67]
Meno, K.H.; Kastrup, J.S.; Kuo, I.C.; Chua, K.Y.; Gajhede, M. The structure of the mite allergen Blo t 1 explains the limited antibody cross-reactivity to Der p 1. Allergy, 2017, 72(4), 665-670.
[http://dx.doi.org/10.1111/all.13111] [PMID: 27997997]
[68]
Mueller, G.A.; Benjamin, D.C.; Rule, G.S. Tertiary structure of the major house dust mite allergen Der p 2: sequential and structural homologies. Biochemistry, 1998, 37(37), 12707-12714.
[http://dx.doi.org/10.1021/bi980578+] [PMID: 9737847]
[69]
Mueller, G.A.; Gosavi, R.A.; Krahn, J.M.; Edwards, L.L.; Cuneo, M.J.; Glesner, J.; Pomés, A.; Chapman, M.D.; London, R.E.; Pedersen, L.C. Der p 5 crystal structure provides insight into the group 5 dust mite allergens. J. Biol. Chem., 2010, 285(33), 25394-25401.
[http://dx.doi.org/10.1074/jbc.M110.128306] [PMID: 20534590]
[70]
Naik, M.T.; Chang, C.F.; Kuo, I.C.; Kung, C.C.; Yi, F.C.; Chua, K.Y.; Huang, T.H. Roles of structure and structural dynamics in the antibody recognition of the allergen proteins: an NMR study on Blomia tropicalis major allergen. Struct, 2008, 16(1), 125-136.
[http://dx.doi.org/10.1016/j.str.2007.10.022]
[71]
Naik, M.T.; Chang, C.F.; Kuo, I.C.; Yu, T.; Fang, P.J.; Chua, K.Y.; Huang, T.H. Complete 1H, 13C and 15N resonance assignments of Blo t 5, a major mite allergen from Blomia tropicalis. J. Biomol. NMR, 2007, 38(2), 189.
[http://dx.doi.org/10.1007/s10858-006-9113-y] [PMID: 17206470]
[72]
Pang, S.L.; Ho, K.L.; Waterman, J.; Teh, A.H.; Chew, F.T.; Ng, C.L. Cloning, expression, purification, characterization, crystallization and X-ray crystallographic analysis of recombinant Der f 21 (rDer f 21) from Dermatophagoides farinae. Acta Crystallogr. F Struct. Biol. Commun., 2015, 71(Pt 11), 1396-1400.
[http://dx.doi.org/10.1107/S2053230X1501818X] [PMID: 26527267]
[73]
Suzuki, M.; Tanaka, Y.; Korematsu, S.; Mikami, B.; Minato, N. Crystal structure and some properties of a major house dust mite allergen, Derf 2. Biochem. Biophys. Res. Commun., 2006, 339(2), 679-686.
[http://dx.doi.org/10.1016/j.bbrc.2005.11.065] [PMID: 16313885]
[74]
Tan, K.W.; Jobichen, C.; Ong, T.C.; Gao, Y.F.; Tiong, Y.S.; Wong, K.N.; Chew, F.T.; Sivaraman, J.; Mok, Y.K. Crystal structure of Der f 7, a dust mite allergen from Dermatophagoides farinae. PLoS One, 2012, 7(9)e44850
[http://dx.doi.org/10.1371/journal.pone.0044850] [PMID: 22970319]
[75]
Tan, K.W.; Ong, T.C.; Gao, Y.F.; Tiong, Y.S.; Wong, K.N.; Chew, F.T.; Mok, Y.K. NMR structure and IgE epitopes of Blo t 21, a major dust mite allergen from Blomia tropicalis. J. Biol. Chem., 2012, 287(41), 34776-34785.
[http://dx.doi.org/10.1074/jbc.M112.348730] [PMID: 22887997]
[76]
Cui, Y. Structural biology of mite allergens. Mol. Biol. Rep., 2013, 40(1), 681-686.
[http://dx.doi.org/10.1007/s11033-012-2108-8] [PMID: 23054022]
[77]
Mueller, G.A.; Randall, T.A.; Glesner, J.; Pedersen, L.C.; Perera, L.; Edwards, L.L.; DeRose, E.F.; Chapman, M.D.; London, R.E.; Pomes, A. Serological, genomic and structural analyses of the major mite allergen Der p 23. Clin. Exp. Allergy, 2016, 46(2), 365-376.
[78]
Kim, C.R.; Jeong, K.Y.; Yi, M.H.; Kim, H.P.; Shin, H.J.; Yong, T.S. Cross-reactivity between group-5 and -21 mite allergens from Dermatophagoides farinae, Tyrophagus putrescentiae and Blomia tropicalis. Mol. Med. Rep., 2015, 12(4), 5467-5474.
[http://dx.doi.org/10.3892/mmr.2015.4093] [PMID: 26238285]
[79]
Arias-Irigoyen, J.; Lombardero, M.; Arteaga, C.; Carpizo, J.A.; Barber, D. Limited IgE cross-reactivity between Dermatophagoides pteronyssinus and Glycyphagus domesticus in patients naturally exposed to both mite species. J. Allergy Clin. Immunol., 2007, 120(1), 98-104.
[http://dx.doi.org/10.1016/j.jaci.2007.02.028] [PMID: 17412407]
[80]
Curin, M.; Garmatiuk, T.; Resch-Marat, Y.; Chen, K.W.; Hofer, G.; Fauland, K.; Keller, W.; Hemmer, W.; Vrtala, S.; Focke-Tejkl, M.; Valenta, R. Similar localization of conformational IgE epitopes on the house dust mite allergens Der p 5 and Der p 21 despite limited IgE cross-reactivity. Allergy, 2018, 73(8), 1653-1661.
[http://dx.doi.org/10.1111/all.13398] [PMID: 29319884]
[81]
Kamath, S.D.; Johnston, E.B.; Iyer, S.; Schaeffer, P.M.; Koplin, J.; Allen, K.; Lopata, A.L. IgE reactivity to shrimp allergens in infants\ and their cross-reactivity to house dust mite. Pediatr. Allergy Immunol., 2017, 28(7), 703-707.
[http://dx.doi.org/10.1111/pai.12764]
[82]
Popescu, F.D. Cross-reactivity between aeroallergens and food allergens. World J. Methodol., 2015, 5(2), 31-50.
[http://dx.doi.org/10.5662/wjm.v5.i2.31] [PMID: 26140270]
[83]
Glesner, J.; Vailes, L.D.; Schlachter, C.; Mank, N.; Minor, W.; Osinski, T.; Chruszcz, M.; Chapman, M.D.; Pomes, A. Antigenic determinants of Der p 1: Specificity and cross-reactivity associated with IgE antibody recognition. J. Immunol., 2017, 198(3), 1334-1344.
[84]
Kuo, I.C.; Cheong, N.; Trakultivakorn, M.; Lee, B.W.; Chua, K.Y. An extensive study of human IgE cross-reactivity of Blo t 5 and Der p 5. J. Allergy Clin. Immunol., 2003, 111(3), 603-609.
[http://dx.doi.org/10.1067/mai.2003.167] [PMID: 12642844]
[85]
Dehhaghi, M.; Kazemi Shariat Panahi, H.; Holmes, E.C.; Hudson, B.J.; Schloeffel, R.; Guillemin, G.J. Human Tick-Borne Diseases in Australia. Front. Cell. Infect. Microbiol., 2019, 9, 3.
[http://dx.doi.org/10.3389/fcimb.2019.00003] [PMID: 30746341]
[86]
de la Fuente, J.; Waterhouse, R.M.; Sonenshine, D.E.; Roe, R.M.; Ribeiro, J.M.; Sattelle, D.B.; Hill, C.A. Tick Genome Assembled: New Opportunities for Research on Tick-Host-Pathogen Interactions. Front. Cell. Infect. Microbiol., 2016, 6, 103.
[http://dx.doi.org/10.3389/fcimb.2016.00103] [PMID: 27695689]
[87]
Pagel Van Zee, J.; Geraci, N.S.; Guerrero, F.D.; Wikel, S.K.; Stuart, J.J.; Nene, V.M.; Hill, C.A. Tick genomics: the Ixodes genome project and beyond. Int. J. Parasitol., 2007, 37(12), 1297-1305.
[http://dx.doi.org/10.1016/j.ijpara.2007.05.011] [PMID: 17624352]
[88]
Smith, A.A.; Pal, U. Immunity-related genes in Ixodes scapularis--perspectives from genome information. Front. Cell. Infect. Microbiol., 2014, 4, 116.
[http://dx.doi.org/10.3389/fcimb.2014.00116] [PMID: 25202684]
[89]
Gulia-Nuss, M.; Nuss, A.B.; Meyer, J.M.; Sonenshine, D.E.; Roe, R.M.; Waterhouse, R.M.; Sattelle, D.B.; de la Fuente, J.; Ribeiro, J.M.; Megy, K.; Thimmapuram, J.; Miller, J.R.; Walenz, B.P.; Koren, S.; Hostetler, J.B.; Thiagarajan, M.; Joardar, V.S.; Hannick, L.I.; Bidwell, S.; Hammond, M.P.; Young, S.; Zeng, Q.; Abrudan, J.L.; Almeida, F.C.; Ayllón, N.; Bhide, K.; Bissinger, B.W.; Bonzon-Kulichenko, E.; Buckingham, S.D.; Caffrey, D.R.; Caimano, M.J.; Croset, V.; Driscoll, T.; Gilbert, D.; Gillespie, J.J.; Giraldo-Calderón, G.I.; Grabowski, J.M.; Jiang, D.; Khalil, S.M.S.; Kim, D.; Kocan, K.M.; Koči, J.; Kuhn, R.J.; Kurtti, T.J.; Lees, K.; Lang, E.G.; Kennedy, R.C.; Kwon, H.; Perera, R.; Qi, Y.; Radolf, J.D.; Sakamoto, J.M.; Sánchez-Gracia, A.; Severo, M.S.; Silverman, N.; Šimo, L.; Tojo, M.; Tornador, C.; Van Zee, J.P.; Vázquez, J.; Vieira, F.G.; Villar, M.; Wespiser, A.R.; Yang, Y.; Zhu, J.; Arensburger, P.; Pietrantonio, P.V.; Barker, S.C.; Shao, R.; Zdobnov, E.M.; Hauser, F.; Grimmelikhuijzen, C.J.P.; Park, Y.; Rozas, J.; Benton, R.; Pedra, J.H.F.; Nelson, D.R.; Unger, M.F.; Tubio, J.M.C.; Tu, Z.; Robertson, H.M.; Shumway, M.; Sutton, G.; Wortman, J.R.; Lawson, D.; Wikel, S.K.; Nene, V.M.; Fraser, C.M.; Collins, F.H.; Birren, B.; Nelson, K.E.; Caler, E.; Hill, C.A. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun., 2016, 7, 10507.
[http://dx.doi.org/10.1038/ncomms10507] [PMID: 26856261]
[90]
Cramaro, W.J.; Revets, D.; Hunewald, O.E.; Sinner, R.; Reye, A.L.; Muller, C.P. Integration of Ixodes ricinus genome sequencing with transcriptome and proteome annotation of the naïve midgut. BMC Genomics, 2015, 16, 871.
[http://dx.doi.org/10.1186/s12864-015-1981-7] [PMID: 26510422]
[91]
Guerrero, F.D.; Moolhuijzen, P.; Peterson, D.G.; Bidwell, S.; Caler, E.; Bellgard, M.; Nene, V.M.; Djikeng, A. Reassociation kinetics-based approach for partial genome sequencing of the cattle tick, Rhipicephalus (Boophilus) microplus. BMC Genomics, 2010, 11, 374.
[http://dx.doi.org/10.1186/1471-2164-11-374] [PMID: 20540747]
[92]
van Nunen, S.A. Tick-induced allergies: mammalian meat allergy and tick anaphylaxis. Med. J. Aust., 2018, 208(7), 316-321.
[http://dx.doi.org/10.5694/mja17.00591] [PMID: 29642819]
[93]
van Nunen, S. Tick-induced allergies: mammalian meat allergy, tick anaphylaxis and their significance. Asia Pac. Allergy, 2015, 5(1), 3-16.
[http://dx.doi.org/10.5415/apallergy.2015.5.1.3] [PMID: 25653915]
[94]
Cabezas-Cruz, A.; Mateos-Hernández, L.; Chmelař, J.; Villar, M.; de la Fuente, J. Salivary Prostaglandin E2: Role in Tick-Induced Allergy to Red Meat. Trends Parasitol., 2017, 33(7), 495-498.
[http://dx.doi.org/10.1016/j.pt.2017.03.004] [PMID: 28365087]
[95]
Chinuki, Y.; Morita, E. Alpha-Gal-containing biologics and anaphylaxis. Allergol. Int., 2019, 68(3), 296-300.
[http://dx.doi.org/10.1111/pai.12764]
[96]
Wong, X.L.; Sebaratnam, D.F. Mammalian meat allergy. Int. J. Dermatol., 2018, 57(12), 1433-1436.
[http://dx.doi.org/10.1111/ijd.14208] [PMID: 30182427]
[97]
Strickler, J. Mammalian meat allergy: Unexpected danger. Nursing, 2017, 47(8), 48-51.
[http://dx.doi.org/10.1097/01.NURSE.0000521027.38133.7d] [PMID: 28746101]
[98]
Khoury, J.K.; Khoury, N.C.; Schaefer, D.; Chitnis, A.; Hassen, G.W. A tick-acquired red meat allergy. Am. J. Emerg. Med., 2018, 36(2), 341.e1-341.e3.
[http://dx.doi.org/10.1016/j.ajem.2017.10.044] [PMID: 29074067]
[99]
Commins, S.P.; Platts-Mills, T.A. Tick bites and red meat allergy. Curr. Opin. Allergy Clin. Immunol., 2013, 13(4), 354-359.
[http://dx.doi.org/10.1097/ACI.0b013e3283624560] [PMID: 23743512]
[100]
Sánchez, M.; Venturini, M.; Blasco, A.; Lobera, T.; Bartolomé, B.; Oteo, J.A. Tick bite anaphylaxis in a patient allergic to bee venom. J. Investig. Allergol. Clin. Immunol., 2014, 24(4), 284-285.
[PMID: 25219117]
[101]
Fujiwara, M.; Araki, T. Immediate anaphylaxis due to beef intestine following tick bites. Allergol. Int., 2019, 68(1), 127-129.
[http://dx.doi.org/10.1016/j.alit.2018.08.002]
[102]
McGain, F.; Welton, R.; Solley, G.O.; Winkel, K.D. First fatalities from tick bite anaphylaxis. J. Allergy Clin. Immunol. Pract., 2016, 4(4), 769-770.
[http://dx.doi.org/10.1016/j.jaip.2015.12.023] [PMID: 27393785]
[103]
Rappo, T.B.; Cottee, A.M.; Ratchford, A.M.; Burns, B.J. Tick bite anaphylaxis: incidence and management in an Australian emergency department. Emerg. Med. Australas., 2013, 25(4), 297-301.
[http://dx.doi.org/10.1111/1742-6723.12093] [PMID: 23911019]
[104]
Hilger, C.; Bessot, J.C.; Hutt, N.; Grigioni, F.; De Blay, F.; Pauli, G.; Hentges, F. IgE-mediated anaphylaxis caused by bites of the pigeon tick Argas reflexus: cloning and expression of the major allergen Arg r 1. J. Allergy Clin. Immunol., 2005, 115(3), 617-622.
[http://dx.doi.org/10.1016/j.jaci.2004.11.052] [PMID: 15753913]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy